当前位置:首页 » 编程软件 » 电气装置编程

电气装置编程

发布时间: 2022-12-15 22:15:58

❶ PLC编程要学习什么知识

可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller), 简称PLC,它主要用来代替继电器实现逻辑控制随着技术的发展这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC。

一、PLC 的由来

在60 年代,汽车生产流水线的自动控制系统基本上都是由继电器控制装置构成的。当时汽车的每一次改型都直接导致继电器控制装置的重新设计和安装。随着生产的发展,汽车型号更新的周期愈来愈短,这样,继电器控制装置就需要经常地重新设计和安装,十分费时,费工,费料,甚至阻碍了更新周期的缩短。为了改变这一现状,美国通用汽车公司在1969 年公开招标,要求用新的控制装置取代继电器控制装置,并提出了十项招标指标,即:

1.编程方便现场可修改程序;

2.维修方便采用模块化结构;

3.可靠性高于继电器控制装置;

4.体积小于继电器控制装置;

5.数据可直接送入管理计算机;

6.成本可与继电器控制装置竞争;

7. 输入可以是交流115V;

8.输出为交流115V 2A 以上能直接驱动电磁阀接触器等;

9.在扩展时原系统只要很小变更;

10.用户程序存储器容量至少能扩展到4K。

1969 年,美国数字设备公司(DEC) 研制出第一台PLC,在美国通用汽车自动装配线上试用,获得了成功。这种新型的工业控制装置以其简单易懂,操作方便,可靠性高,通用灵活,体积小,使用寿命长等一系列优点,很快地在美国其他工业领域推广应用。到1971 年,已经成功地应用于食品饮料冶金造纸等工业。

这一新型工业控制装置的出现,也受到了世界其他国家的高度重视。1971 日本从美国引进了这项新技术,很快研制出了日本第一台PLC。1973年,西欧国家也研制出它们的第一台PLC。我国从1974 年开始研制,于1977年开始工业应用。

二、PLC 的定义

PLC 问世以来,尽管时间不长,但发展迅速。为了使其生产和发展标准化,美国电气制造商协会NEMA(National Electrical Manufactory Association) 经过四年的调查工作,于1984 年首先将其正式命名为PC(Programmable Controller),并给PC 作了如下定义

“PC 是一个数字式的电子装置,它使用了可编程序的记忆体储存指令。用来执行诸如逻辑,顺序,计时,计数与演算等功能,并通过数字或类似的输入/输出模块,以控制各种机械或工作程序。一部数字电子计算机若是从事执行PC 之功能着,亦被视为PC,但不包括鼓式或类似的机械式顺序控制器。”

以后国际电工委员会(IEC)又先后颁布了PLC 标准的草案第一稿,第二稿,并在1987 年2 月通过了对它的定义:

“可编程控制器是一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。可编程控制器及其有关外部设备,都按易于与工业控制系统联成一个整体,易于扩充其功能的原则设计。”

总之,可编程控制器是一台计算机,它是专为工业环境应用而设计制造的计算机。它具有丰富的输入/输出接口,并且具有较强的驱动能力。但可编程控制器产品并不针对某一具体工业应用,在实际应用时,其硬件需根据实际需要进行选用配置,其软件需根据控制要求进行设计编制。

三、PLC 的特点

1. PLC 的主要特点

(1)高可靠性

1)所有的I/O 接口电路均采用光电隔离,使工业现场的外电路与PLC 内部电路之间电气上隔离。

2)各输入端均采用R-C滤波器,其滤波时间常数一般为10~20ms。

3)各模块均采用屏蔽措施,以防止辐射干扰。

4)采用性能优良的开关电源。

5)对采用的器件进行严格的筛选。

6)良好的自诊断功能,一旦电源或其他软、硬件发生异常情况,CPU立即采用有效措施,以防止故障扩大。

7)大型PLC 还可以采用由双CPU 构成冗余系统或有三CPU 构成表决系统,使可靠性更进一步提高。

(2)丰富的I/O 接口模块

PLC针对不同的工业现场信号,如:

• 交流或直流;

• 开关量或模拟量;

• 电压或电流;

• 脉冲或电位;

• 强电或弱电等。

有相应的I/O 模块与工业现场的器件或设备,如:

• 按钮

• 行程开关

• 接近开关

• 传感器及变送器

• 电磁线圈

• 控制阀

直接连接另外为了提高操作性能,它还有多种人-机对话的接口模块;为了组成工业局部网络,它还有多种通讯联网的接口模块,等等。

(3)采用模块化结构

为了适应各种工业控制需要除了单元式的小型PLC 以外绝大多数PLC 均

采用模块化结构PLC 的各个部件包括CPU 电源I/O 等均采用模块化设计由

机架及电缆将各模块连接起来系统的规模和功能可根据用户的需要自行组合

(4)编程简单易学

PLC的编程大多采用类似于继电器控制线路的梯形图形式对使用者来说

不需要具备计算机的专门知识因此很容易被一般工程技术人员所理解和掌握

(5)安装简单维修方便

PLC不需要专门的机房可以在各种工业环境下直接运行使用时只需将现

场的各种设备与PLC 相应的I/O 端相连接即可投入运行各种模块上均有运行和

故障指示装置便于用户了解运行情况和查找故障

由于采用模块化结构因此一旦某模块发生故障用户可以通过更换模块的

方法使系统迅速恢复运行

2.PLC 的功能

(1) 逻辑控制

(2) 定时控制

(3) 计数控制

(4) 步进(顺序)控制

(5) PID 控制

(6) 数据控制

PLC 具有数据处理能力

(七) 通信和联网

(八) 其它

PLC还有许多特殊功能模块,适用于各种特殊控制的要求,如:定位控制模块,CRT 模块。

四、PLC 的发展阶段

虽然PLC 问世时间不长,但是随着微处理器的出现,大规模、超大规模集成电路技术的迅速发展和数据通讯技术的不断进步,PLC 也迅速发展,其发展过程大致可分三个阶段:

1.早期的PLC(60 年代末—70 年代中期)

早期的PLC一般称为可编程逻辑控制器。这时的PLC 多少有点继电器控制装置的替代物的含义,其主要功能只是执行原先由继电器完成的顺序控制、定时等。它在硬件上以准计算机的形式出现,在I/O 接口电路上作了改进以适应工业控制现场的要求。装置中的器件主要采用分立元件和中小规模集成电路,存储器采用磁芯存储器。另外还采取了一些措施,以提高其抗干扰的能力。在软件编程上,采用广大电气工程技术人员所熟悉的继电器控制线路的方式—梯形图。因此,早期的PLC 的性能要优于继电器控制装置,其优点包括简单易懂,便于安装,体积小,能耗低,有故障指使,能重复使用等。其中PLC 特有的编程语言—梯形图一直沿用至今。

2.中期的PLC(70 年代中期—80 年代中后期)

在70 年代微处理器的出现使PLC 发生了巨大的变化。美国,日本,德国等一些厂家先后开始采用微处理器作为PLC 的中央处理单元(CPU)。

这样,使PLC 得功能大大增强。在软件方面,除了保持其原有的逻辑运算、计时、计数等功能以外,还增加了算术运算、数据处理和传送、通讯、自诊断等功能。在硬件方面,除了保持其原有的开关模块以外,还增加了模拟量模块、远程I/O模块、各种特殊功能模块。并扩大了存储器的容量,使各种逻辑线圈的数量增加,还提供了一定数量的数据寄存器,使PLC 得应用范围得以扩大。

3.近期的PLC(80 年代中后期至今)

进入80 年代中、后期,由于超大规模集成电路技术的迅速发展,微处理器的市场价格大幅度下跌,使得各种类型的PLC 所采用的微处理器的当次普遍提高。而且,为了进一步提高PLC 的处理速度,各制造厂商还纷纷研制开发了专用逻辑处理芯片。这样使得PLC 软、硬件功能发生了巨大变化。

五、PLC 的分类

1.小型PLC

小型PLC 的I/O 点数一般在128 点以下,其特点是体积小、结构紧凑,整个硬件融为一体除了开关量I/O 以外,还可以连接模拟量I/O 以及其他各种特殊功能模块。它能执行包括逻辑运算、计时、计数、算术运算、数据处理和传送、通讯联网以及各种应用指令。

2.中型PLC

中型PLC 采用模块化结构,其I/O点数一般在256~1024 点之间。I/O的处理方式除了采用一般PLC 通用的扫描处理方式外,还能采用直接处理方式,即在扫描用户程序的过程中,直接读输入,刷新输出。它能联接各种特殊功能模块,通讯联网功能更强,指令系统更丰富,内存容量更大,扫描速度更快。

3.大型PLC

一般I/O点数在1024点以上的称为大型PLC。大型PLC的软、硬件功能极强。具有极强的自诊断功能。通讯联网功能强,有各种通讯联网的模块,可以构成三级通讯网,实现工厂生产管理自动化。大型PLC 还可以采用三CPU构成表决式系统,使机器的可靠性更高。

六、PLC 的基本结构

PLC 实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同,如图所示:

1.中央处理单元(CPU)

中央处理单元(CPU)是PLC 的控制中枢。它按照PLC 系统程序赋予的功能接收并存储从编程器键入的用户程序和数据:检查电源、存储器、I/O 以及警戒定时器的状态,并能诊断用户程序中的语法错误,当PLC 投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O 映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O 映象区或数据寄存器内。等所有的用户程序执行完毕之后,最后将I/O 映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。

为了进一步提高PLC 的可靠性,近年来对大型PLC 还采用双CPU 构成冗余系统,或采用三CPU 的表决式系统。这样,即使某个CPU 出现故障,整个系统仍能正常运行。

2.存储器

存放系统软件的存储器称为系统程序存储器。

存放应用软件的存储器称为用户程序存储器。

(1) PLC 常用的存储器类型

1)RAM (Random Assess Memory)

这是一种读/写存储器(随机存储器)其存取速度最快由锂电池支持。

2)EPROM (Erasable Programmable Read Only Memory)

这是一种可擦除的只读存储器在断电情况下存储器内的所有内容保持不变。(在紫外线连续照射下可擦除存储器内容)

3)EEPROM(Electrical Erasable Programmable Read Only Memory)

这是一种电可擦除的只读存储器。使用编程器就能很容易地对其所存储的内容进行修改。

(2) PLC 存储空间的分配

虽然各种PLC的CPU的最大寻址空间各不相同,但是根据PLC的工作原理其存储空间一般包括以下三个区域:

系统程序存储区

系统RAM 存储区(包括I/O 映象区和系统软设备等)

用户程序存储区

1)系统程序存储区

在系统程序存储区中存放着相当于计算机操作系统的系统程序。包括监控程序、管理程序、命令解释程序、功能子程序、系统诊断子程序等。由制造厂商将其固化在EPROM 中,用户不能直接存取。它和硬件一起决定了该PLC 的性能。

2)系统RAM 存储区

系统RAM 存储区包括I/O 映象区以及各类软设备,如:

逻辑线圈

数据寄存器

计时器

计数器

变址寄存器

累加器

等存储器

A.I/O 映象区 由于PLC 投入运行后,只是在输入采样阶段才依次读入各输入状态和数据,在输出刷新阶段才将输出的状态和数据送至相应的外设。因此,它需要一定数量的存储单元(RAM)以存放I/O 的状态和数据,这些单元称作I/O 映象区。

一个开关量I/O 占用存储单元中的一个位(bit),一个模拟量I/O 占用存储单元中的一个字(16 个bit)。因此整个I/O 映象区可看作两个部分组成:

开关量I/O 映象区

模拟量I/O 映象区

B.系统软设备存储区

除了I/O 映象区区以外,系统RAM 存储区还包括PLC 内部各类软设备(逻辑线圈、计时器、计数器、数据寄存器和累加器等)的存储区。该存储区又分为具有失电保持的存储区域和无失电保持的存储区域,前者在PLC 断电时,由内部的锂电池供电,数据不会遗失;后者当PLC 断电时,数据被清零。

1) 逻辑线圈

与开关输出一样,每个逻辑线圈占用系统RAM 存储区中的一个位,但不能直接驱动外设,只供用户在编程中使用,其作用类似于电器控制线路中的继电器。另外,不同的PLC 还提供数量不等的特殊逻辑线圈,具有不同的功能。

2)数据寄存器

与模拟量I/O 一样,每个数据寄存器占用系统RAM 存储区中的一个字(16bits)。另外,PLC 还提供数量不等的特殊数据寄存器,具有不同的功能。

3) 计时器

4) 计数器

(3)用户程序存储区

用户程序存储区存放用户编制的用户程序。不同类型的PLC,其存储容量各不相同。

3.电源

PLC 的电源在整个系统中起着十分重要得作用。如果没有一个良好的、可靠得电源系统是无法正常工作的,因此PLC 的制造商对电源的设计和制造也十分重视。

一般交流电压波动在±10%(±15%)范围内,可以不采取其它措施而将PLC 直接连接到交流电网上去。

七、PLC 的工作原理

最初研制生产的PLC 主要用于代替传统的由继电器接触器构成的控制装置,但这两者的运行方式是不相同的:

继电器控制装置采用硬逻辑并行运行的方式,即如果这个继电器的线圈通电或断电,该继电器所有的触点(包括其常开或常闭触点)在继电器控制线路的哪个位置上都会立即同时动作。

PLC 的CPU 则采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点)不会立即动作,必须等扫描到该触点时才会动作。

为了消除二者之间由于运行方式不同而造成的差异,考虑到继电器控制装置各类触点的动作时间一般在100ms 以上,而PLC 扫描用户程序的时间一般均小于100ms,因此,PLC采用了一种不同于一般微型计算机的运行方式—扫描技术。这样在对于I/O 响应要求不高的场合,PLC 与继电器控制装置的处理结果上就没有什么区别了。

1.扫描技术

当PLC 投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC 的CPU 以一定的扫描速度重复执行上述三个阶段。

(1) 输入采样阶段

在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O 映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O 映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。

(2) 用户程序执行阶段

在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM 存储区中对应位的状态;或者刷新该输出线圈在I/O 映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。

即,在用户程序执行过程中,只有输入点在I/O 映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O 映象区或系统RAM 存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。

(3)输出刷新阶段

当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC 的真正输出。

比较下二个程序的异同:

程序1

程序2

这两段程序执行的结果完全一样但在PLC中执行的过程却不一样。

程序1 只用一次扫描周期,就可完成对%M4 的刷新;

程序2 要用四次扫描周期,才能完成对%M4 的刷新。

这两个例子说明:同样的若干条梯形图,其排列次序不同,执行的结果也不同。另外,也可以看到:采用扫描用户程序的运行结果与继电器控制装置的硬逻辑并行运行的结果有所区别。当然,如果扫描周期所占用的时间对整个运行来说可以忽略,那么二者之间就没有什么区别了。

一般来说,PLC 的扫描周期包括自诊断、通讯等,如下图所示,即一个扫描周期等于自诊断、通讯、输入采样、用户程序执行、输出刷新等所有时间的总和。

2.PLC 的I/O 响应时间

为了增强PLC 的抗干扰能力,提高其可靠性,PLC的每个开关量输入端都采用光电隔离等技术。

为了能实现继电器控制线路的硬逻辑并行控制,PLC 采用了不同于一般微型计算机的运行方式(扫描技术)。

以上两个主要原因,使得PLC 得I/O 响应比一般微型计算机构成的工业控制系统满的多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至更长。

所谓I/O 响应时间指从PLC 的某一输入信号变化开始到系统有关输出端信号的改变所需的时间。其最短的I/O 响应时间与最长的I/O 响应时间如图所示:

最短I/O 响应时间:

最长I/O 响应时间:

八、PLC 的I/O 系统

1.I/O 寻址方式

PLC的硬件结构主要分单元式和模块式两种。前者将PLC 的主要部分(包括I/O 系统和电源等)全部安装在一个机箱内。后者将PLC 的主要硬件部分分别制成模块,然后由用户根据需要将所选用的模块插入PLC 机架上的槽内,构成一个PLC 系统。

不论采取哪一种硬件结构,都必须确立用于连接工业现场的各个输入/输出点与PLC 的I/O 映象区之间的对应关系,即给每一个输入/输出点以明确的地址确立这种对应关系所采用得方式称为I/O 寻址方式。

I/O寻址方式有以下三种

固定的I/O 寻址方式

这种I/O 寻址方式是由PLC 制造厂家在设计、生产PLC 时确定的,它的每一个输入/输出点都有一个明确的固定不变的地址。一般来说,单元式的PLC 采用这种I/O寻址方式。

开关设定的I/O 寻址方式

这种I/O 寻址方式是由用户通过对机架和模块上的开关位置的设定来确定的。

用软件来设定的I/O 寻址方式

这种I/O 寻址方式是有用户通过软件来编制I/O 地址分配表来确定的。

❷ 电气装置技能大赛参赛人数

电气装置技能大赛参赛人数共32人。电气装置技能大赛将持续3天,第一天进行模块A考核,第二天考核‘模块B:PLC电气控制系统编程与调试’,第三天进行‘模块C:机电设备线路故障诊断与排除’、以及‘模块D:直流调速系统安装与调试’比赛。

❸ 我是学电气自动化的,关于接线方面需要明白什么,请哥哥姐姐们发点资料给我。感激不尽~

1.《电气装置

施工及验收规范》GBJ147-90;

2.《电气装置

、油浸

施工及验收规范》GBJ148-90;

3.《电气装置

装置施工及验收规范》GBJ149-90;

4.《电气装置安装工程
交接试验标准》GB50150-91;

5.《电气装置安装工程
施工及验收规范》GB50168-92;

6.《电气装置安装工程
施工及验收规范》 GB50169-92;

7.《电气装置安装工程旋转电机施工及验收规范》GB50170-92;

8.《电气装置安装工程盘、柜及
接线施工及验收规范》GB50171-92;

9.《电气装置安装工程
施工及验收规范》GB50172-92;

10.《电气装置安装工程35kV及以下架空电力线路施工及验收规范》GB50173-92;

11.《电气装置安装工程
施工及验收规范》GB50254-96;

12.《电气装置安装工程电力变流设备施工及验收规范》GB50255-96;

13.《电气装置安装工程
电气装置施工验收规范》GB50256-96;

14.《电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范》GB50257-96;

15.《
》GB50303-2002;

16.《电力建设安全工作规程》GL-5009.1-92;

17.《
》JCJ/T16-92;

18.《

标准》GB50034-92;

19.《电力建设质量等级评定标准》。

❹ 高压共轨柴油机的故障维修方法

在生活中,高压共轨柴油机使用很广泛,为保障高压共轨柴油机的正常运行,如果出现了故障就要对其进行维修处理,那么该怎么修理呢?以下是我为你整理的高压共轨柴油机的故障维修,希望能帮到你。

高压共轨柴油机的故障维修

在目前普遍使用的高压共轨柴油系统中,在没有显示警报记录的状况发生时,例如发动机无力或加不起速,需首先分析是气路还是油路出问题,对燃油和滤清器进行检查,假若发现燃油和滤清器都是脏的,则可判定故障产生的缘由在于此;而对由于电路问题造成的故障,系统电脑会自动进行故障记录(注意事项:在进行检修时不允许擅自对高压油管进行拆卸,如若拆开则必须对高压油管进行更换,避免出现因高压油管损坏而产生更为严重的影响);。

在检修过程中首先需检查油路、气路是否存在堵塞、脏污现象和检测机器电瓶是否正常,在确认没有问题后可以先停止试车,然后根据不同机型设定的不同回油泄漏量对喷油器进行相应的检测和数据比对[1]。检测过程中结合利用专用电脑数据进行记录与比对[2]。当检测数据显示为无泄漏量时,则表示发动机没有得到规定的供油量,此时需对高压供油泵和输油泵新系统进行检查;当检测数据中的显示数值超过原先设定的数值,则表示发动机因启动油量不足而无法正常启动,则可尝试更换高压燃油泵来进行调试(此类状况较少)[3]。这类情况的判断和处理往往是维修人员在积累专用电脑经验后,在没有配备电脑的情况下进行的简单故障判断。

油路中最关键的喷油器在制造过程中往往存在一定量的误差,为满足规定要求,需在每次更换喷油器之后通过采用专用诊断电脑来进行软件刷新,以保证喷油器的参数在正常范围内,来确保喷油器的正常运行[4]。对于目前使用的绝大部分喷油器中对应的喷油量的设定对发动机的启动运行并不存在太大的影响,因此,没必要进行实时性的刷新。

电控发动机故障检修注意事项

1.不论发动机是否在运转,只要点火开关接通(ON),决不可断开ECU,传感器及执行器,由于任何一线圈的自感作用,都会产生很高的瞬时电压,使ECU及传感器严重受损。因此,应养成在关闭点火开关(OFF)的状态下,拔、插ECU与传感器、执行器和插接件的习惯,否则往往会带来老的故障没有排除,而新的故障接踵而来的后果。

而且在发动机运转或点火开关接通(ON)时拔下任何传感器连接器插接件,还会使ECU中出现人为的故障代码(假码的一种),从而干扰维修人员正确地判断和排除故障。

2.在对装有电控系统的汽车进行电弧焊时,应断开电脑供电电源线,避免电弧焊接时的高压电造成电脑的损坏。为此,在电焊时,应提前将蓄电池总的搭铁线拆卸。

3.在靠近ECU或传感器的地方进行车身修理作业时,应特别小心,以免碰坏这些电子元件。

4.拆开任何油路部分,应首先对燃油系统进行卸压。检修油路系统时,千万不能吸烟,并要远离明火。由于电控高压共轨燃料喷射系统内燃油压力极高,因此在检查发动机故障时,绝对不允许用拆卸喷油器接头的方法来实现“断缸”,否则喷出的高压燃油会直接造成人身的伤害。

5.拆下蓄电池负极搭铁线后,电脑内所储存的所有故障信息(代码)都会被清除,因此,如有必要,应在拆下蓄电池负菜搭铁线前,读取电脑内的故障信息。

6.在对蓄电池进行拆卸与安装时,务必使点火开关和其他用电设备开关均置于关断位置。

7.切记电控汽车车上所采用的供电系统均为负极搭铁,安装蓄电池时,要特别注意正、负极不可接反。

8.车上不宜装功率超过8W的无线电台,如必须装时,天线应尽量远离ECU,否则会损坏ECU中的电路和部件。

9.在装上或取下ECU时,操作人员应先使自己搭铁(接触车身),否则,身体上的静电会损坏ECU电路。

10.对电控系统进行检修时,应避免电控系统由于过载而损坏。电控系统中,ECU与传感器的工作电流通常都比较小,因此,与之相应的电路元器件的负载能力也比较小。

电控发动机故障排查和维修的错误做法

1.没有读取电控单元(ECU)记录的故障代码之前便拆除蓄电池连接线

电控汽车的电控单元(ECU)都具有记忆功能。当电控系统出现故障时,ECU会存储其对应的故障代码。维修人员便可从故障自诊断系统中读取故障代码,进而查找故障原因和故障部位。若在读取故障代码之前冒然拆下蓄电池连接线(或拔掉电源熔丝),由于中断了ECU的电源,存储其内的故障代码便会自动消除。再想获得故障信息(故障代码),就必须重复(再现)故障发生时的工作状况和环境条件(譬如:特定范围的发动机转速及负荷、发动机的某种水温、某种进气温度以及有关传感器的某种工况等),显然,这是非常麻烦和费时间的。因此,在维修电控汽车之前应按要求先读取并记录故障代码,然后才能进行其他的维修作业,以免不慎丢失故障代码。

2.点火开关处于接通(ON)位置时就拆除蓄电池连接线

当点火开关处于接通(ON)位置时,无论发动机是否正在运转,此时绝不可拆下蓄电池连接线或熔丝。因为突然断电将会使电路中的线圈产生自感电动势而出现很高的瞬间电压(有时高达近万伏),从而使ECU及相关传感器等微电子器件严重受损。

必须引起注意的是:除蓄电池连接线外,其他凡是与蓄电池电压相同的电气装置的导线,当点火开关处于接通(ON)位置时,也都不能拆除。否则,也同样会使相关的线圈产生自感而烧坏ECU的传感器。

这些电气装置包括:ECU的可编程只读存贮器(PROM),喷油器,空调及其他电磁离合器,还有ECU某些连接线等。

3.检修燃油系统前不拆蓄电池连接线

在对电控发动机燃料系统进行检查作业之前,应拆下蓄电池的连接线(或熔丝),以免发生火灾。即在拆卸油路之前应先关闭点火开关(置OFF),再拆下蓄电池连接线或熔丝。由于供油系统中残存一定的压力,故还得对燃油系统“卸压”。较简单的方法是在拆卸油路的接头处裹上布条或棉纱,并在其下面放一油盆,然后慢慢松动接头将燃油导入盆内,以防飞溅。当燃油检测装置(如油压表)接入管路后,若需用蓄电池电源对其测试,也必须先关闭点火开关,再接蓄电池连接线,然后打开点火开关。

特别要指出的是:当燃油系统检查完毕后,在拆卸检测装置之前,同样必须先关闭点火开关,然后拆下蓄电池连接线,方可执行燃料系的作业。

4.采用拆除蓄电池连接线的方法清除故障代码

发动机维修妥善后,需清除掉ECU中的原故障代码。对大多数电喷发动机而言,拆下蓄电池连接线或拆下通往ECU的熔丝,保持断电30S即可清除掉ECU中的故障代码。但是,个别发动机则不适用这种拆卸电源的办法,否则将会使其石英钟和音响等附属设备的内存(包括防盗码)一起被消除掉。

5.“没有故障代码输出,电控系统就肯定没有故障”的认识是不准确的

自诊断系统也有显示不出来的传感器故障.ECU在对传感器信号进行检测时,只能接收其内设范围以外的(传感器)超常信号,从而判别传感器有无故障.一般在解读故障代码后,只要对相应的传感器、导线连接器、导线进行检查,找到并排除断路、短路的故障点,即告成功。但是,若因某种原因使传感器的灵敏度下降(虽在ECU设定的范围之内,但反应迟钝、输出特性偏移等),则自诊断系统就检测不出来了。尽管发动机油故障表现,但自诊断系统却输出了表示无故障的正常代码,这时就应该根据发动机的故障征兆进行分析判断,继而对传感器单体进行针对性的检测,以找到并排除传感器故障。

例如,当发动机怠速不稳并伴有行驶中发动机运转失调,系统又无故障代码输出时,首先值得考虑(怀疑)的便是进行气管(真空)压力传感器和油门踏板传感器出了故障。因为这两个传感器性能的好坏直接影响到基本燃油喷射量,尽管此时没有显示相应的故障代码,也应该对他们进行检查。

6.“某个元器件的故障代码,就说明该元器件坏了”的认识也是简单片面的

这是维修中最常见的一种错误认识和最多的一种错误做法。目前许多维修人员普遍认为故障代码是值得某个元器件损坏了,只要换件就行了,这时大错特错的。殊不知,故障代码的含义不是具体再某一具体元件,而是代表的故障系统。只依据故障代码,采用换件维修的方法,是不能真正排除电控系统故障的,调出故障代码后,一定要进行深入诊断,确定具体的故障部位后,再采取相应的维修措施。

7.“只要有故障代码显示,代码所指系统就一定有故障”的认识也是不准确的

这里须特别提醒的是,电控汽车故障自诊断有可能显示错误的故障代码,这种情况多数是由于工况信号失误而引起的假故障代码,情况较多也较复杂,应视具体情况分析。总之,当故障代码出现后,应与发动机的实际故障征兆相对比分析,以得到合理的判断,不应把故障代码奉为唯一的依据。也就是说故障代码所指示的信号系统也不一定有故障。

8.随便插拔线路连接器的插接件,也会记录并显示故障代码

目前在修理中,经常出现一次调出许多故障代码的情况,有时甚至多达十几个。这便是有些人不太懂电脑系统,特别是驾驶人员,当车辆有故障、故障指示灯点亮时,便在点火开关打开,甚至在发动机运转过程中,便将一些元件的导线插头拔下再插上,殊不知,这样每做一次或每拔一个传感器的插头,ECU便会记录一个故障代码。有些维修人员在维修中,当怀疑某个元件有故障时,也往往采用断开其插头的方法试验,这样插接一次接头也会记录故障代码。这些故障代码我们称为人为故障代码。在维修中要注意区分。另外。若上一次对电喷汽车修理后,由于操作不当而未能完成消除旧的故障代码,那么在本次读码时,那些残存的旧码仍然要重复显示,给维修工作带来混乱及困难。

9.故障排除了,故障代码不一定很快消除

这是一种认识上的错误。电控汽车故障排除后,必须利用专门的程序清除电脑中记录的故障代码。否则,故障代码将仍然存在ECU中,直到若干个启动循环,该处不再发生故障后,故障代码才自动清除。只要ECU中记录有故障代码,无论该故障是否存在,仪表板上的故障指示灯便会点亮以示报警,这样驾驶人员便以为仍有故障。若在故障代码自动清除之前,又有新故障出现,一是不易及时发现新的故障,二是在故障排除中,旧码会干扰维修人员的“视线”,给维修工作带来混乱及困难。因此在对电控发动机实施维修后,必须按照特定的程序或用专用解码器清除故障代码。不清除故障代码就说明维修工作没有结束。这时我们实际工作中,碰到的又一类“假故障代码” '

10.电控发动机的故障不一定是电控系统引起的

电控发动机油故障并不一定都是电控系统不正常造成的,因为电控发动机其他部分照样会发生故障。

①在ECU自诊断系统上正常的前提下,若发动机有故障征兆而故障警示灯未亮(即无故障代码出现),这些故障往往与电喷控制系统无关。此时,应按传统发动机故障的判断步骤进行排查;切记不要盲目检查电控系统的执行器、传感器和电路,否则不仅徒劳无功,稍有不慎反会损坏与ECU相关的某些器件。

②电控发动机控制系统的工作可靠性很高,使用中出现的故障机率很小。故在一般的检修中不要随便拆检其器件或无意识地拆除其连接器或导线(尤其是ECU的有关部分)。

③即便是电控控制系统本身的故障,往往也是以一般的机械故障形式出现。如接线不良、喷油器或滤清器脏污堵塞、进气道有积碳等。

因此,在对ECU自诊断系统所显示的故障进行检查时,也应首先从简单的机械故障查起。尤其是显示“进气系统故障”时,应特别注意进气系统相配零件是否松脱,进气歧管压力传感器的真空软件是否破裂或密封不严甚至脱落等。

11.检修电控发动机燃油系统之前不卸压

电控发动机在发动机熄火后,燃油管路内仍保持着较高的燃油压力。因此在对电控发动机燃油系统进行维修时,特别是在拆卸燃油管道,进行检修或更换喷油器等部件时,应该先释放掉燃油管道内的油压,以免松开油管接头时大量燃油高速喷出,造成人身伤害或火灾。所以,进行燃油系统检修前必须先对燃油系统卸压。

12.严禁采用“划火法”检查电控系统电路

在传统汽车线路系统故障排除中,常用“划火法”来试电路是否通电,在现代修理中,如果仍采用“划火法”那在划火过程中,由于过电压,或过电流容易损坏点火系统中的电子元件,甚至损坏电控单元(ECU)

13.不要随意使用更换ECU的方法来判断故障

在电控车维修中普遍采用的换件法来查找故障,这种方法的具体操作是:当怀疑某个元件有故障时,用一个新件或用另一同型号车上的相同部件进行换件验证。目前多是将新件或别的车上的元件装在故障车上试验故障是否消失来判断故障的部位。但这种方法并不是对所有元件都可行。传感器、执行器等可采用这种方法,但是电控单元(ECU即电脑)则不能采用此法,只能采用将故障车ECU换到其他同类型车(非故障车)上试验其是否仍有同样故障的方法来判断ECU是否存有故障。这是因为ECU的故障多是由外部元件或线路损坏造成的,在没有排除外围故障的情况下,将新ECU或别的车上拆下的ECU装在故障车上实验,有可能因故障车的故障而导致新换上的ECU损坏。这一点在维修当中没有引起注意,并已造成过许多损失。

14.在没拆下ECU(或没有切断其电源)的情况下,便在车上实施电焊

❺ PLC可编程控制器是什么东西干什么用的

PLC是数控机床中可编程控制器的功能,用于存储程序,执行逻辑运算、顺序控制、定时、计数、算术运算等面向用户的指令,通过数字或模拟输入输出控制各种类型的机械或生产过程。补充:三菱PLC,又称三菱可编程控制器,是三菱电气在大连生产的主要产品。它采用一种可编程存储器,用于在其中存储程序,执行逻辑运算、顺序控制、定时、计数、算术运算等面向用户的指令,通过数字或模拟输入输出控制各种类型的机械或生产过程。以下类型的三菱PLC在中国市场比较常见:fr-fx1nfr-fx1sfr-fx2nfr-fx3ufr-fx2ncfr-a fr-q)。

PLC是一种可编程逻辑控制器,它利用一种可编程存储器在其中存储程序,执行面向用户的逻辑运算、顺序控制、定时、计数、算术运算等指令,通过数字或模拟输入输出控制各种类型的机械或生产过程。扩展数据基本结构可编程逻辑控制器本质上是一种专用于工业控制的计算机,其硬件结构与微机基本相同。基本组成如下:1 .可编程控制器的电源在整个系统中起着非常重要的作用。如果没有良好可靠的供电系统,就无法正常工作。因此,可编程逻辑控制器制造商非常重视电源的设计和制造。一般交流电压波动在10%(15%)以内,所以PLC可以直接接入交流电网,无需采取其他措施。2.中央处理器(CPU)中央处理器(CPU)是可编程逻辑控制器的控制中心。它根据可编程逻辑控制器系统程序给出的功能,接收并存储程序员键入的用户程序和数据;检查电源、内存、输入/输出和报警计时器的状态,并诊断用户程序中的语法错误。当可编程逻辑控制器投入运行时,它首先通过扫描接收现场各输入设备的状态和数据,并将其存储在I/O图像区,然后从用户程序存储器中逐个读取用户程序,并在解释命令后,根据指令执行逻辑或算术运算的结果,并将其发送到I/O图像区或数据寄存器中。所有的用户程序执行完毕后,I/O镜像区中每个输出状态或输出寄存器中的数据最终被传送到相应的输出设备,操作循环进行,直到操作停止。

为了进一步提高PLC的可靠性,大型PLC采用双CPU冗余系统或三CPU表决系统。这样,即使一个CPU出现故障,整个系统仍然可以正常运行。第三,存储系统软件的存储器称为系统程序存储器。用于存储应用软件的存储器称为用户程序存储器。四.输入输出接口电路

1.现场输入接口电路由光耦合电路和微机输入接口电路组成,作为PLC和现场控制之间接口的输入通道。

2.现场输出接口电路由输出数据寄存器、选通电路和中断请求电路集成,可编程逻辑控制器通过现场输出接口电路向现场执行部件输出相应的控制信号。五、计数、定位等功能模块。

❻ PLC编程是干什么的

PLC编程:使用梯形图语言或者指令表等语言编写具有一定逻辑与计算的程序,根据输入量来控制输出量的发出,从而控制电气设备或器件工作。
程序执行过程:
PLC是采用“顺序扫描,不断循环”的方式进行工作的。即在PLC运行时,CPU根据用户按控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期性循环扫描,如无跳转指令,则从第一条指令开始逐条顺序执行用户程序,直至程序结束,然后重新返回第一条指令,开始下一轮新的扫描,在每次扫描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。
PLC的一个扫描周期必经输入采样、程序执行和输出刷新三个阶段。
PLC在输入采样阶段:首先以扫描方式按顺序将所有暂存在输入锁存器中的输入端子的通断状态或输入数据读入,并将其写入各对应的输入状态寄存器中,即刷新输入,随即关闭输入端口,进入程序执行阶段。
PLC在程序执行阶段:按用户程序指令存放的先后顺序扫描执行每条指令,经相应的运算和处理后,其结果再写入输出状态寄存器中,输出状态寄存器中所有的内容随着程序的执行而改变。
输出刷新阶段:当所有指令执行完毕,输出状态寄存器的通断状态在输出刷新阶段送至输出锁存器中,并通过一定的方式(继电器、晶体管或晶间管)输出,驱动相应输出设备工作。

❼ qlc是什么电气装置

PLC是可编程控制器的英文缩写,广泛应用于工业控制领域

❽ PLC基础知识简介

在自动化控制领域,PLC是一种重要的控制设备。目前,世界上有200多厂家生产300多品种PLC产品,应用在汽车(23%)、粮食加工(16.4%)、化学/制药(14.6%)、金属/矿山(11.5%)、纸浆/造纸(11.3%)等行业。为了使各位初学者更方便地了解PLC,本文对PLC的发展、基本结构、配置、应用等基本知识作一简介,以期对各位网友有所帮助。
一、PLC的发展历程
在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。传统上,这些功能是通过气动或电气控制系统来实现的。1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字公司研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称Programmable Controller(PC)。
个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC),现在,仍常常将PLC简称PC。
PLC的定义有许多种。国际电工委员会(IEC)对PLC的定义是:可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存贮器,用来在其内部存贮执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字的、模拟的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统形成一个整体,易于扩充其功能的原则设计。
上世纪80年代至90年代中期,是PLC发展最快的时期,年增长率一直保持为30~40%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。
二、PLC的构成
从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。
三、CPU的构成
CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。
CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。
在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。但工作节奏由震荡信号控制。运算器用于进行数字或逻辑运算,在控制器指挥下工作。寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。
CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。
四、I/O模块
PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。
开关量是指只有开和关(或1和0)两种状态的信号,模拟量是指连续变化的量。常用的I/O分类如下:
开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。
模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。
除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。
按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。
五、电源模块
PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VAC)。
六、底板或机架
大多数模块式PLC使用底板或机架,其作用是:电气上,实现各模块间的联系,使CPU能访问底板上的所有模块,机械上,实现各模块间的连接,使各模块构成一个整体。
七、PLC系统的其它设备
1、编程设备:编程器是PLC开发应用、监测运行、检查维护不可缺少的器件,用于编程、对系统作一些设定、监控PLC及PLC所控制的系统的工作状况,但它不直接参与现场控制运行。小编程器PLC一般有手持型编程器,目前一般由计算机(运行编程软件)充当编程器。
2、人机界面:最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式操作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。
3、输入输出设备:用于永久性地存储用户数据,如EPROM、EEPROM写入器、条码阅读器,输入模拟量的电位器,打印机等。
八、PLC的通信联网
依靠先进的工业网络技术可以迅速有效地收集、传送生产和管理数据。因此,网络在自动化系统集成工程中的重要性越来越显着,甚至有人提出"网络就是控制器"的观点说法。
PLC具有通信联网的功能,它使PLC与PLC 之间、PLC与上位计算机以及其他智能设备之间能够交换信息,形成一个统一的整体,实现分散集中控制。多数PLC具有RS-232接口,还有一些内置有支持各自通信协议的接口。
PLC的通信,还未实现互操作性,IEC规定了多种现场总线标准,PLC各厂家均有采用。
对于一个自动化工程(特别是中大规模控制系统)来讲,选择网络非常重要的。首先,网络必须是开放的,以方便不同设备的集成及未来系统规模的扩展;其次,针对不同网络层次的传输性能要求,选择网络的形式,这必须在较深入地了解该网络标准的协议、机制的前提下进行;再次,综合考虑系统成本、设备兼容性、现场环境适用性等具体问题,确定不同层次所使用的网络标准。

❾ 数控机床电气控制系统由哪些装置组成

数控机床电气控制系统由

①数控装置

②进给伺服系统

③主轴伺服系统

④机床强电控制系统

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:705
制作脚本网站 发布:2025-10-20 08:17:34 浏览:968
python中的init方法 发布:2025-10-20 08:17:33 浏览:676
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:828
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:737
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1076
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:308
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:188
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:875
python股票数据获取 发布:2025-10-20 07:39:44 浏览:829