android源码编译运行
A. android源码用64位系统编译了 怎么运行在32位的手机上
android源码编译64位改成32位的办法(转载)
You are attempting to build on a 32-bit system.Only 64-bit build environments are supported beyond froyo/2.2.
需要进行如下修改即可,
将
./external/clearsilver/cgi/Android.mk
./external/clearsilver/java-jni/Android.mk
./external/clearsilver/util/Android.mk
./external/clearsilver/cs/Android.mk
四个文件中的
LOCAL_CFLAGS += -m64
LOCAL_LDFLAGS += -m64
注释掉,或者将“64”换成“32”
LOCAL_CFLAGS += -m32
LOCAL_LDFLAGS += -m32
然后,将
./build/core/main.mk 中的
ifneq (64,$(findstring 64,$(build_arch)))
改为:
ifneq (i686,$(findstring i686,$(build_arch)))
B. 自己可以编译安卓源码吗
用最新的Ubuntu 16.04,请首先确保自己已经安装了Git.没安装的同学可以通过以下命令进行安装:
sudo apt-get install git git config –global user.email “[email protected]” git config –global user.name “test”
其中[email protected]为你自己的邮箱.
简要说明
android源码编译的四个流程:1.源码下载;2.构建编译环境;3.编译源码;4运行.下文也将按照该流程讲述.
源码下载
由于某墙的原因,这里我们采用国内的镜像源进行下载.
目前,可用的镜像源一般是科大和清华的,具体使用差不多,这里我选择清华大学镜像进行说明.(参考:科大源,清华源)
repo工具下载及安装
通过执行以下命令实现repo工具的下载和安装
mkdir ~/binPATH=~/bin:$PATHcurl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repochmod a+x ~/bin/repo
补充说明
这里,我来简单的介绍下repo工具,我们知道AOSP项目由不同的子项目组成,为了方便进行管理,Google采用Git对AOSP项目进行多仓库管理.在聊repo工具之前,我先带你来聊聊多仓库项目:
我们有个非常庞大的项目Pre,该项目由很多个子项目R1,R2,...Rn等组成,为了方便管理和协同开发,我们为每个子项目创立自己的仓库,整个项目的结构如下:
这里写图片描述
执行完该命令后,再使用make命令继续编译.某些情况下,当你执行jack-admin kill-server时可能提示你命令不存在,此时去你去out/host/linux-x86/bin/目录下会发现不存在jack-admin文件.如果我是你,我就会重新repo sync下,然后从头来过.
错误三:使用emulator时,虚拟机停在黑屏界面,点击无任何响应.此时,可能是kerner内核问题,解决方法如下:
执行如下命令:
通过使用kernel-qemu-armv7内核 解决模拟器等待黑屏问题.而-partition-size 1024 则是解决警告: system partion siez adjusted to match image file (163 MB >66 MB)
如果你一开始编译的版本是aosp_arm-eng,使用上述命令仍然不能解决等待黑屏问题时,不妨编译aosp_arm64-eng试试.
结束吧
到现在为止,你已经了解了整个android编译的流程.除此之外,我也简单的说明android源码的多仓库管理机制.下面,不妨自己动手尝试一下.
C. Android源码编译是干什么
编译Android系统。
D. 怎么在ubuntu上编译android源码
步骤一:
安装Ubuntu系统。我们既可以通过虚拟机的方式安装Ubuntu,也可以直接在电脑上安装,为了获得更好的Linux操作体验,我建议直接在电脑上面安装Ubuntu,我在自己电脑上安装了win10和Ubunut Server14.04双系统,使用的时候可以根据自己的需要随时切换系统,非常方便。关于如何搭建双系统,网上有很多教程,我就不在此叙述了,但是我想说明的一点是在安装Ununtu的时候,分配给Ubuntu的磁盘空间一定要尽可能大一点,至少60G,我分配了105G,编译完成之后还剩下50多G,也就是说差不多用了近50G的空间,所以安装Ubuntu的时候一定得分配大一点的磁盘空间,不然编译会因为空间不足而中断。
步骤二:
搭建好Ubuntu系统之后,我们需要下载一份Android6.0的源码,网上很多文章都介绍了如何通过repo的方式来下载源码,但是通过这种方式下载速度可能并不是很理想,直接下载网络云的Android6.0源码,
因为Android6.0的源码所占空间非常大,所以上传者把Android源码分成了很多个文件,待全部下载完毕之后,我们可以通过命令把这些分开的文件合并为一个文件。
步骤三:
如果我们是在Windows上下载的源码,那么当我们打开Ubuntu之后,要做的第一件事请就是把Windows中的Android源码拷贝到Ubuntu系统下面,我直接利用复制粘贴的方式将源码拷贝到了Ubuntu的Home目录下面,拷贝之后的目录结构Home/android6_r1/各个分开的源码文件。
步骤四:
合并这些被分开的源码文件。我们按下键盘上的ctrl + alt + T打开控制台,通过cd命令进入到Home/android6_r1/目录下面,然后执行命令:cat Android6_r1_* > M.tgz,不用多久,在Home/android6_r1/目录下面就会生成一个新的文件——M.tgz,M.tgz就是合并之后的压缩文件。
步骤五:
解压步骤四生成的压缩文件。同样是在Home/android6_r1/目录下面,我们在控制台执行命令:tar zxvf M.tgz,开始解压。解压的过程大概需要20分钟左右的时间,请耐心等待。解压好了之后,在Home/android6_r1/会生成一个mydroid的文件夹,这个文件夹就是Android源码的根文件夹了,里面有abi、devices、hardware、packages、sdk、art等文件夹和文件。
步骤六:
安装编译源码所需要的软件。在控制台中我们通过cd..命令退回到Unbuntu用户的根目录下,然后依次执行以下命令:
sudo apt-get update
sudo apt-get install openjdk-7-jdk
sudo update-alternatives --config java
sudo update-alternatives --config javac
以上命令每一条都必须分开单独执行,目的是为了获取1.7版本的jdk并设置环境变量。当我们安装完Ubuntu之后可能会自带一个jdk,但是如果用自带的jdk编译Android源码很可能会提示jdk版本不符合要求的错误,因此我们需要重新下载1.7版本的jdk,我用openjdk-7-jdk编译未出现任何问题。
接下来继续执行以下命令,同样每一行都是分开单独执行的:
sudo apt-get install git gnupg flex bison gperf build-essential
sudo apt-get install zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev
sudo apt-get install libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386
sudo apt-get install libgl1-mesa-dev g++-multilib mingw32 tofrodos
sudo apt-get install python-markdown libxml2-utils xsltproc zlib1g-dev:i386
sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.so
以上命令主要是安装编译源码时需要用到的各种软件,如果没有安装这些软件,编译的过程中会提示缺少必要的软件而无法继续编译,因此,在正式编译源码之前,一定要先安装这些软件。
步骤七:
开始编译。在控制台中通过cd命令进入到Home/android6_r1/mydroid/目录下,然后执行命令:source build/envsetup.sh,导入编译Android源码所需的环境变量和其它参数。
步骤八:
在控制台中执行命令:lunch,运行命令之后会提示我们选择编译目标。这里我选择的的默认目标,即aosp_arm_eng。
步骤九:
在控制台中执行命令:make -j8,开始编译。注意,make -j8命令中的数字8和我们电脑的CPU核心数以及线程数有关系,一般这个数字的数值最大不能超过CPU线程数的2倍,例如我电脑的处理器是i5 6200U,为双核四线程,因此编译Android源码的时候,我可以设置的最大工作线程数量为4 * 2 = 8。在执行make命令的时候我们应该根据自己的CPU参数设置合理的工作线程数值。
以上步骤执行完之后,就是一段非常漫长的等待了,我从中午十二点多开始编译,一直到晚上九点多编译完成,整个编译过程耗时九个多小时,幸好我的运气还不错,编译过程中没有出现任何错误,只是中途意外中断了一次,但是Android源码是可以接着上次中断的位置继续编译的,已经编译的部分不会重复编译,因此并未对我造成大的影响。同志们,我想说的是,编译的过程中一定要有耐心哟!
整个源码编译完成之后,如果提示如下信息,那么Congratulations, you are successful!!!
E. 怎么使用Android源码编译c模块生成可执行文件
1. 在./development目录下创建一目录 如:myhello
2. 进入hello目录,在其下编写自己的.c文件,如: myhello.c
#include <stdio.h>
int main()
{
printf("hello world\n");
exit(0);
//return 0;
}
3. 在hello目录中,编写Android.mk, 内容如下:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := myhelloworld
LOCAL_SRC_FILES := myhello.c
LOCAL_MODULE_TAGS := optional
include $(BUILD_EXECUTABLE)
4. 回到Android源代码顶层目录,进行编译,make myhelloworld
5. 生成的可执行文件位于:out/target/proct/lotus/system/bin/ 目录下
6. adb push 到手机 /data 目录下,然后进入adb shell,到data目录下,执行./myhelloworld 皆可
手动编译连接【arm-eabi-gcc 的目录随andorid的版本而有变化,还有就是需要链接的文件如果比较多时,需要很多-l 就很麻烦了】
7、编译成目标文件:
#$(yourAndroid)/prebuilt/linux-x86/toolchain/[arm-eabi-4.2.1]/bin/arm-eabi-gcc -I bionic/libc/arch-arm/include/ -I bionic/libc/include -I bionic/libc/kernel/common -I bionic/libc/kernel/arch-arm -g -c helloworld.c -o hello.o
8、生成可执行代码:
#$(yourAndroid)/prebuilt/linux-x86/toolchain/[arm-eabi-4.2.1]/bin/arm-eabi-gcc -nostdlib -Bdynamic -Wl,-T,build/core/armelf.x -Wl,-dynamic-linker,/system/bin/linker -Wl,--gc-sections -Wl,-z,noreloc -o helloworld -Lout/target/proct/[generic]/obj/lib -Wl,-rpath-link=out/target/proct/[generic]/obj/lib -lc hello.o -entry=main
其中[ ]中部分根据实际情况修改
**************************************************
实验:
1. 建目录(my Android)/development/test, 在该目录下新建 Android.mk和fb_test.c文件
2. Android.mk文件
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := myfbtest
LOCAL_SRC_FILES := fb_test.c
LOCAL_MODULE_TAGS := optional
include $(BUILD_EXECUTABLE)
3. 以下为fb_test.c
#include <fcntl.h>
#include <linux/fb.h>
#include <sys/mman.h>
#include <linux/kd.h>
#include <stdio.h>
#define FBBIT_PER_PIXEL 32
#define FBBIT_PIXEL_IMAGE 16
#define PIXELS_WIDTH_BYTE 4
#define BYTE_PER_PIXEL 3
#define FB_GRAPHICS_PATH "/dev/graphics/fb0"
#define DEV_TTY0_PATH "/dev/tty0"
#define DISPLAY_ERROR -1
#define DISPLAY_SUCCESS 0
#define GET_BATTERYCAPACITY_ERR -1
#define MAX_STR 255
static struct {
int fd;
void *pixels;
struct fb_fix_screeninfo fixed;
struct fb_var_screeninfo var;
int align_xres;
} fb;
int getBatteryCapacity(void)
{
FILE *in;
char tmpStr[MAX_STR + 1];
char capfile[] = "/sys/class/power_supply/battery/capacity";
if (capfile == NULL)
return GET_BATTERYCAPACITY_ERR;
in = fopen(capfile, "rt");
if (in == NULL)
return GET_BATTERYCAPACITY_ERR;
if (fgets(tmpStr, MAX_STR, in) == NULL) {
printf("Failed to read battery capacity!\n");
fclose(in);
return GET_BATTERYCAPACITY_ERR;
}
printf("Battery capacity(ascii): %s\n", tmpStr);
fclose(in);
return 0;//atoi(tmpStr);
}
static int vt_set_graphicsmode(int graphics)
{
int fd, r;
fd = open(DEV_TTY0_PATH, O_RDWR | O_SYNC);
if (fd < 0)
return DISPLAY_ERROR;
r = ioctl(fd, KDSETMODE, graphics);
close(fd);
return r;
}
int display_init(void)
{
fb.fd = open(FB_GRAPHICS_PATH, O_RDWR);
if (fb.fd < 0)
return DISPLAY_ERROR;
if (ioctl(fb.fd, FBIOGET_FSCREENINFO, &fb.fixed) < 0)
return DISPLAY_ERROR;
if (ioctl(fb.fd, FBIOGET_VSCREENINFO, &fb.var) < 0)
return DISPLAY_ERROR;
fb.align_xres = fb.fixed.line_length /
(fb.var.bits_per_pixel >> BYTE_PER_PIXEL);
fb.pixels = mmap(0, fb.fixed.line_length * fb.var.yres_virtual,
PROT_READ | PROT_WRITE, MAP_SHARED, fb.fd, 0);
if (fb.pixels == MAP_FAILED)
return DISPLAY_ERROR;
vt_set_graphicsmode(KD_GRAPHICS);
memset(fb.pixels, 0, fb.fixed.line_length * fb.var.yres_virtual);
//display_update(fb.pixels, fb.align_xres, fb.var.yres);
fb.var.activate = FB_ACTIVATE_FORCE;
ioctl(fb.fd, FBIOPUT_VSCREENINFO, &fb.var);
printf("display_init ok\n");
return DISPLAY_SUCCESS;
}
void display_on(void)
{
ioctl(fb.fd, FBIOBLANK, FB_BLANK_UNBLANK);
}
void display_off(void)
{
ioctl(fb.fd, FBIOBLANK, FB_BLANK_POWERDOWN);
}
int main()
{
display_init();
display_off();//关显示屏
getBatteryCapacity();
sleep(5);
display_on();//开显示屏
return 0;
}
F. Android源码编译
在编译源码之前需要做一些准备操作, 详细步骤如下:
1. 安装JDK, google官方要求编译2.3源码需要JDK1.6.
注意: ubuntu自带的源中速度比较慢, 有些软件找不到, 所以需要修改为国内的源, 修改源步骤如下:
执行完上面几步, 数据源就更新完成了, 下面就开始安装编译依赖的软件, 同样, 在终端中以行为单位依次输入以下命令:
G. 如何编辑和调试android源码
在源码中,存在idegen模块,该模块专门用来为idea工具生成系统源码的project.
在开始编译该模块之前,首先确保你已经编译过Android源码了,如果没有,可以参考上篇文章进行编译.
和编译普通的模块一样,我们用mmm命令编译idegen.在开始编译之前,检查out/host/linux-x86/framework/目录下是否存在idegen.jar文件,存在则说明你已经编译过该模块,否者,则需要编译.执行如下命令即可:
soruce build/envsetup.sh
mmm development/tools/idegen/
sudo ./development/tools/idegen/idegen.sh123123
其中mmm development/tools/idegen/执行完成后会生成idegen.jar,而sodo ./development/tools/idegen/idegen.sh则会在源码目录下生成IEDA工程配置文件:android.ipr,android.iml及android.iws.
简单的说明一下这三个文件的作用:
android.ipr:通常是保存工程相关的设置,比如编译器配置,入口,相关的libraries等
android.iml:则是主要是描述了moles,比如moles的路径,依赖关系等.
android.iws:则主要是包含了一些个人工作区的设置.
H. android编译命令的说明
android源码目录下的build/envsetup.sh文件,描述编译的命令
- m: Makes from the top of the tree.
- mm: Builds all of the moles in the current directory.
- mmm: Builds all of the moles in the supplied directories.
要想使用这些命令,首先需要设置android脚本编译环境,在源码根目录执行 source build/envsetup.sh
m:编译所有的模块
mm:编译当前目录下的模块,当前目录下要有Android.mk文件
mmm:编译指定路径下的模块,指定路径下要有Android.mk文件
下面举个例子说明,假设我要编译android下的\framework\av\cmds\screenrecord模块,
当前目录为源码根目录,方法如下:
1、source build/envsetup.sh
2、mmm framework/av/cmds/screenrecord
或者 :
1、source build/envsetup.sh
2、cd framework/av/cmds/screenrecord
3、mm
I. 如何运行打包的android源代码文件
android源码目录下的build/envsetup.sh文件,描述编译的命令
-
m:
makes
from
the
top
of
the
tree.
-
mm:
builds
all
of
the
moles
in
the
current
directory.
-
mmm:
builds
all
of
the
moles
in
the
supplied
directories.
要想使用这些命令,首先需要在android源码根目录执行.
build/envsetup.sh
脚本设置环境
m:编译所有的模块
mm:编译当前目录下的模块,当前目录下要有android.mk文件
mmm:编译指定路径下的模块,指定路径下要有android.mk文件
下面举个例子说明,假设我要编译android下的\hardware\libhardware_legacy\power模块,当前目录为源码根目录,方法如下:
1、.
build/envsetup.sh
2、mmm
hardware/libhardware_legacy/power/
编译完后
运行
make
snod
会重新将你改过的模块打入到system.img中