编译原理的运算
㈠ 编译原理四元式
四元式的一般形式为(op, arg1, arg2, result),其中:op为一个二元(也可以是零元或一元)运算符。arg1和arg2为两个运算对象,可以是变量、常数或者系统定义的临时变量名。result为运算结果。
第一步:T1=a*b,
第二步:T2=c*d,
第三步:T3=T2/e,
第四步:T4=T1-T3,
第五步:f=T4.
㈡ 编译原理全部的名词解释
书上有别那么懒!.
编译过程的六个阶段:词法分析,语法分析,语义分析,中间代码生成,代码优化,目标代码生成
解释程序:把某种语言的源程序转换成等价的另一种语言程序——目标语言程序,然后再执行目标程序.解释方式是接受某高级语言的一个语句输入,进行解释并控制计算机执行,马上得到这句的执行结果,然后再接受下一句.
编译程序:就是指这样一种程序,通过它能够将用高级语言编写的源程序转换成与之在逻辑上等价的低级语言形式的目标程序(机器语言程序或汇编语言程序).
解释程序和编译程序的根本区别:是否生成目标代码
句子的二义性(这里的二义性是指语法结构上的.):文法G[S]的一个句子如果能找到两种不同的最左推导(或最右推导),或者存在两棵不同的语法树,则称这个句子是二义性的.
文法的二义性:一个文法如果包含二义性的句子,则这个文法是二义文法,否则是无二义文法.
LL(1)的含义:(LL(1)文法是无二义的; LL(1)文法不含左递归)
第1个L:从左到右扫描输入串 第2个L:生成的是最左推导
1 :向右看1个输入符号便可决定选择哪个产生式
某些非LL(1)文法到LL(1)文法的等价变换: 1. 提取公因子 2. 消除左递归
文法符号的属性:单词的含义,即与文法符号相关的一些信息.如,类型、值、存储地址等.
一个属性文法(attribute grammar)是一个三元组A=(G, V, F)
G:上下文无关文法.
V:属性的有穷集.每个属性与文法的一个终结符或非终结符相连.属性与变量一样,可以进行计算和传递.
F:关于属性的断言或谓词(一组属性的计算规则)的有穷集.断言或语义规则与一个产生式相联,只引用该产生式左端或右端的终结符或非终结符相联的属性.
综合属性:若产生式左部的单非终结符A的属性值由右部各非终结符的属性值决定,则A的属性称为综合属
继承属性:若产生式右部符号B的属性值是根据左部非终结符的属性值或者右部其它符号的属性值决定的,则B的属性为继承属性.
(1)非终结符既可有综合属性也可有继承属性,但文法开始符号没有继承属性.
(2) 终结符只有综合属性,没有继承属性,它们由词法程序提供.
在计算时: 综合属性沿属性语法树向上传递;继承属性沿属性语法树向下传递.
语法制导翻译:是指在语法分析过程中,完成附加在所使用的产生式上的语义规则描述的动作.
语法制导翻译实现:对单词符号串进行语法分析,构造语法分析树,然后根据需要构造属性依赖图,遍历语法树并在语法树的各结点处按语义规则进行计算.
中间代码(中间语言)
1、是复杂性介于源程序语言和机器语言的一种表示形式.
2、一般,快速编译程序直接生成目标代码.
3、为了使编译程序结构在逻辑上更为简单明确,常采用中间代码,这样可以将与机器相关的某些实现细节置于代码生成阶段仔细处理,并且可以在中间代码一级进行优化工作,使得代码优化比较容易实现.
何谓中间代码:源程序的一种内部表示,不依赖目标机的结构,易于代码的机械生成.
为何要转换成中间代码:(1)逻辑结构清楚;利于不同目标机上实现同一种语言.
(2)便于移植,便于修改,便于进行与机器无关的优化.
中间代码的几种形式:逆波兰记号 ,三元式和树形表示 ,四元式
符号表的一般形式:一张符号表的的组成包括两项,即名字栏和信息栏.
信息栏包含许多子栏和标志位,用来记录相应名字和种种不同属性,名字栏也称主栏.主栏的内容称为关键字(key word).
符号表的功能:(1)收集符号属性 (2) 上下文语义的合法性检查的依据: 检查标识符属性在上下文中的一致性和合法性.(3)作为目标代码生成阶段地址分配的依据
符号的主要属性及作用:
1. 符号名 2. 符号的类型 (整型、实型、字符串型等))3. 符号的存储类别(公共、私有)
4. 符号的作用域及可视性 (全局、局部) 5. 符号变量的存储分配信息 (静态存储区、动态存储区)
存储分配方案策略:静态存储分配;动态存储分配:栈式、 堆式.
静态存储分配
1、基本策略
在编译时就安排好目标程序运行时的全部数据空间,并能确定每个数据项的单元地址.
2、适用的分配对象:子程序的目标代码段;全局数据目标(全局变量)
3、静态存储分配的要求:不允许递归调用,不含有可变数组.
FORTRAN程序是段结构,不允许递归,数据名大小、性质固定. 是典型的静态分配
动态存储分配
1、如果一个程序设计语言允许递归过程、可变数组或允许用户自由申请和释放空间,那么,就需要采用动态存储管理技术.
2、两种动态存储分配方式:栈式,堆式
栈式动态存储分配
分配策略:将整个程序的数据空间设计为一个栈.
【例】在具有递归结构的语言程序中,每当调用一个过程时,它所需的数据空间就分配在栈顶,每当过程工作结束时就释放这部分空间.
过程所需的数据空间包括两部分
一部分是生存期在本过程这次活动中的数据对象.如局部变量、参数单元、临时变量等;
另一部分则是用以管理过程活动的记录信息(连接数据).
活动记录(AR)
一个过程的一次执行所需要的信息使用一个连续的存储区来管理,这个区 (块)叫做一个活动记录.
构成
1、临时工作单元;2、局部变量;3、机器状态信息;4、存取链;
5、控制链;6、实参;7、返回地址
什么是代码优化
所谓优化,就是对代码进行等价变换,使得变换后的代码运行结果与变换前代码运行结果相同,而运行速度加快或占用存储空间减少.
优化原则:等价原则:经过优化后不应改变程序运行的结果.
有效原则:使优化后所产生的目标代码运行时间较短,占用的存储空间较小.
合算原则:以尽可能低的代价取得较好的优化效果.
常见的优化技术
(1) 删除多余运算(删除公共子表达式) (2) 代码外提 +删除归纳变量+ (3)强度削弱; (4)变换循环控制条件 (5)合并已知量与复写传播 (6)删除无用赋值
基本块定义
程序中只有一个入口和一个出口的一段顺序执行的语句序列,称为程序的一个基本块.
给我分数啊.
㈢ 求教三道关于编译原理的计算题``比较简单希望步骤尽量详细
㈣ 编译原理follow集与first集的计算
下面我将介绍一下我关于LL(1)文法部分的计算文法非终结符First集以及Follow集两个知识点的理解。
首先是First集的计算部分,计算First集首先看我们原文法的左边,原文法左边不重复的都要进行First集的计算,计算时具体有以下三种情况:
(1)先看产生式后面的第一个符号,如果是终结符,那就可以直接把它写到这个产生式的First集中,例如:产生式为M->nDc,那在First集中我们就可以直接写上First (M)={ n };
(2)如果产生式后面的第一个符号是非终结符,就看这个非终结符的产生式,看的时候同样利用前面的两种看法;但是当产生式为ε时,则需要把ε带入到待求First集的元素的产生式中再判断。例如:A->Bc; B->aM;B->ε,求First(A)时,我们看到A的第一个产生式中的第一个符号是B,B是一个非终结符,所以我们就要接着看B的产生式,B的第一个产生式的第一个符号为a,a是一个终结符,直接把a写入First(A),B的第二个产生式为ε,把ε带入A->Bc中,A->c(注意:如果将B->ε带入表达式后A的产生式为A->ε,ε不可以忽略),c是终结符,所以把c也写入First(A),最后First (A)={ a,c }。
(3)当产生式右边全为非终结符,且两个非终结符又都可以推出ε时,我们需要把这个产生式的所有情况都列出来,再分析。例如:A->BC;B->b|ε;C->c|ε。我们把A的所有产生式利用上述两种方法列出来就是A->bc,A->b;A->c,A->ε;最后First (A)={b,c, ε}。
接下来介绍一下Follow集的部分,先简单介绍一下计算Follow集的大致规则。比如我们要求Follow(X),文法中多个产生式中含有X,则需要考虑多种情况,以下是具体计算时的三种情况:
(1)文法开始符:所有文法开始符的Follow集中都有一个#。
(2)S->αB的形式:求Follow(B),因为B的后面为空,把Follow(S)写入B的Follow集中。
(3)S->αBβ的形式:求Follow(B),B后部不为空。
①当β是终结符时,直接把β写入Follow(B)。
②当β是非终结符时,将First (β)(如果First(B)中有ε,就把ε删掉)写入Follow(B)中。(需要注意的是:如果β->ε,那么原产生式就变成了S->αB,也就是第二种情况,这两种情况都要算在Follow(B)中)。
㈤ 编译原理,求详解A*和A+代表什么意思
V是一个符号集合,假设V指的是三个符号a, b, c的集合,记为 V = {a, b, c }
V* 读作“V的闭包”,它的数学定义是V自身的任意多次自身连接(乘法)运算的积,也是一个集合。
也就是说,用V中的任意符号进行任意多次(包括0次)连接,得到的符号串,都是V*这个集合中的元素。
0次连接的结果是不含任何符号的空串,记为 ε
1次连接就是只有一个符号的符号串,比如,a,b, c
2次连接是两个符号构成的符号串,比如,aa, ab, ac, ba, bb, bc,等等
……
㈥ C语言编译原理是什么
编译共分为四个阶段:预处理阶段、编译阶段、汇编阶段、链接阶段。
1、预处理阶段:
主要工作是将头文件插入到所写的代码中,生成扩展名为“.i”的文件替换原来的扩展名为“.c”的文件,但是原来的文件仍然保留,只是执行过程中的实际文件发生了改变。(这里所说的替换并不是指原来的文件被删除)
2、汇编阶段:
插入汇编语言程序,将代码翻译成汇编语言。编译器首先要检查代码的规范性、是否有语法错误等,以确定代码的实际要做的工作,在检查无误后,编译器把代码翻译成汇编语言,同时将扩展名为“.i”的文件翻译成扩展名为“.s”的文件。
3、编译阶段:
将汇编语言翻译成机器语言指令,并将指令打包封存成可重定位目标程序的格式,将扩展名为“.s”的文件翻译成扩展名为“.o”的二进制文件。
4、链接阶段:
在示例代码中,改代码文件调用了标准库中printf函数。而printf函数的实际存储位置是一个单独编译的目标文件(编译的结果也是扩展名为“.o”的文件),所以此时主函数调用的时候,需要将该文件(即printf函数所在的编译文件)与hello
world文件整合到一起,此时链接器就可以大显神通了,将两个文件合并后生成一个可执行目标文件。
㈦ 编译原理简单文法归约计算
编译原理中的语法和文法是不一样的,但却融会贯通。
在计算机科学中,文法是编译原理的基础,是描述一门程序设计语言和实现其编译器的方法。
文法分成四种类型,即0型、1型、2型和3型。这几类文法的差别在于对产生式施加不同的限制。
形式语言,这种理论对计算机科学有着深刻的影响,特别是对程序设计语言的设计、编译方法和计算复杂性等方面更有重大的作用。
多数程序设计语言的单词的语法都能用正规文法或3型文法(3型文法G=(VN,VT,P,S)的P中的规则有两种形式:一种是前面定义的形式,即:A→aB或A→a其中A,B∈VN ,a∈VT*,另一种形式是:A→Ba或A→a,前者称为右线性文法,后者称为左线性文法。正规文法所描述的是VT*上的正规集)来描述。
四个文法类的定义是逐渐增加限制的,因此每一种正规文法都是上下文无关的,每一种上下文无关文法都是上下文有关的,而每一种上下文有关文法都是0型文法。称0型文法产生的语言为0型语言。上下文有关文法、上下文无关文法和正规文法产生的语言分别称为上下文有关语言、上下文无关语言和正规语言。
㈧ 编译原理 语义分析 算术表达式求值代码
java字符串算术表达式求值:importjava.util.ArrayList;importjava.util.Stack;/****@authoryhh**/publicclassCalculate{/***将字符串转化成List*@paramstr*@return*/publicArrayListgetStringList(Stringstr){ArrayListresult=newArrayList();Stringnum="";for(inti=0;igetPostOrder(ArrayListinOrderList){ArrayListresult=newArrayList();Stackstack=newStack();for(inti=0;ipostOrder){Stackstack=newStack();for(inti=0;i
㈨ 编译原理 四元式
四元式是一种比较普遍采用的中间代码形式。
代码段的四元式表达式:
101 T:=0 (表达式为假的出口)
103 T:=1 (表达式为真的出口)
因为用户的表达式只有一个A<B,因此A<B的真假出口就是表达式的真假出口,所以
100: if a<b goto 103 (a<b为真,跳到真出口103)
101: T:=0(否则,进入假出口)
102: goto 104 (要跳过真出口,否则T的值不就又进入真出口了,为真)
103: T:=1
104:(程序继续执行)
(9)编译原理的运算扩展阅读:
四元式是一种更接近目标代码的中间代码形式。由于这种形式的中间代码便于优化处理,因此,在目前许多编译程序中得到了广泛的应用。
四元式实际上是一种“三地址语句”的等价表示。它的一般形式为:
(op,arg1,arg2,result)
其中, op为一个二元 (也可是一元或零元)运算符;arg1,arg2分别为它的两个运算 (或操作)对象,它们可以是变量、常数或系统定义的临时变量名;运算的结果将放入result中。四元式还可写为类似于PASCAL语言赋值语句的形式:
result ∶= arg1 op arg2
需要指出的是,每个四元式只能有一个运算符,所以,一个复杂的表达式须由多个四元式构成的序列来表示。例如,表达式A+B*C可写为序列
T1∶=B*C
T2∶=A+T1
其中,T1,T2是编译系统所产生的临时变量名。当op为一元、零元运算符 (如无条件转移)时,arg2甚至arg1应缺省,即result∶=op arg1或 op result ;对应的一般形式为:
(op,arg1,,result)
或
(op,,,result)