TPS编程
① 汽车电控是指什么
汽车电控系统是指车辆上的传感器与车上的机械系统配合使用(通常与动力系统、底盘系统和车身系统中的子系统融合),并利用电缆或无线电波互相传输讯息,即所谓的“机电整合”。汽车电子控制系统在硬件结构上一般由3部分组成:传感器、电子控制单元(ECU)和执行机构。汽车在运行时,各传感器不断检测汽车运行的工况信息,并将这些信息实时地通过输入接口传送给ECU。ECU接收到这些信息时,根据内部预先编写好的控制程序,进行相应的决策和处理,并通过其输出接口输出控制信号给相应的执行器,执行器接受到控制信号后,执行相应的动作,实现某种预定的功能。(1)TPS编程扩展阅读EUC一般由输入接口电路、微处理器和输出接口电路组成。输入接口电路主要是完成外部传感器与微处理器之间的信息传递。汽车上用的微处理器主要是8位单片机或16位单片机,现在一些轿车上开始使用32位单片机。单片机是指将CPU、RAM/ROM、I/O接口、定时/计数器等元件集成在一块芯片上所形成的芯片级计算机。单片机具有小型化、功能强、可靠性高、价格低、性能价格比高和功耗低等一系列优点,因而在汽车的实时控制中得到了广泛的应用。输出接口电路将ECU与执行元件联系起来。它将ECU作出的决策指令转变为控制信号来驱动执行元件进行工作,它起着控制信号的生成与放大等功能。常见的输出执行元件通常是一些继电器、电磁线圈或显示器等。
② 请问tantron系统用的是自己的TPS软件编程,其他KNX用的都是ETS,用tantron的继电器和KNX的面板,可以控吗
完全正确。可以控制
测试过了。
③ 软件测试需要学习些什么技能
软件测试需要学习测试用例、测试用例的方法、缺陷管理工具、掌握数据库、App测试、python语言、linux系统、前端语言等技能。
1、测试用例
这是每一个工程师必备技能,也是标志你进入测试行业最低的门槛,关于测试用例可以参考我以前写的文章。

7、python语言
python语言是现在最流行的语言,这是测试人员技能升级最好的方式之一,测试人员可以利用他做非常多的事情。
8、Linux系统
Linux系统,测试人员利用它最多的是看日志,更好地为开发定位bug,这也是提升技能之一。
9、前端语言
前端语言,可以让自己更好的判断bug是前端还是后端造成的,多学一点技能对于测试人员非常好的。
④ 芯片TPS61280具体的规格资料有吗
有,TPS61280是稳压器,是一款DC DC 开关稳压器,工作温度为-40°C ~ 85°C(TA),封装/外壳是16-UFBGA,DSBGA。
电压 - 输入(最小值) 2.3V
电压 - 输入(最大值) 4.85V
电压 - 输出(最小值/固定) 2.85V
电压 - 输出(最大值) 4.4V
电流 - 输出 5A(开关)
频率 - 开关 2.3MHz
⑤ tps543B20和tps543C20区别
没太大的区别,主要是tps543B20的最大输出是20,而tps543C20的最大输出是40。
参数性能拓展:
tps543C20内部补偿高级电流模式控制 40A POL
• 输入电压范围:4V 至 14V
• 输出电压范围:0.6V 至 5.5V
• 集成 3/0.9mΩ 堆叠式 NexFET™功率级,带有无损低侧电流检测功能
• 固定频率 - 同步到外部时钟和/或同步输出
• 可通过引脚搭接进行编程的开关频率
– 独立模式下为 300kHz 至 2MHz
– 堆叠模式下为 300kHz 至 1MHz
• 通过双倍堆叠实现高达 80A 负载,并具有电流共享、电压共享和 CLK 同步功能
• 可通过引脚搭接进行编程的基准电压介于 0.6V 至
1.1V 之间,精度达 0.5%
• 差分遥感
• 安全启动至预偏置输出电压
• 高精度打嗝电流限制
• 异步脉冲注入 (API) 和体制动
• 40 引脚 5mm × 7mm LQFN 封装,具有 0.5mm 间距和单个散热垫
tps543B20
内部补偿高级电流模式控制25A POL
输入电压范围:4V至19V
输出电压范围:0.6V至5.5V
集成4.1/1.9mΩ堆叠式NexFET™功率级,带有无损低侧电流检测功能
固定频率 - 同步到外部时钟和/或同步输出
可通过引脚搭接进行编程的开关频率
独立模式下为300kHz至2MHz
堆叠模式下为300kHz至1MHz
通过双倍堆叠实现高达50A负载,并具有电流共享,电压共享和CLK同步功能
可通过引脚搭接进行编程的基准电压介于0.6V至1.1V之间,精度达0.5%
差分遥感
安全启动至预偏置输出电压
高精度打嗝电流限制
异步脉冲注入(API)和体制动
40引脚5mm×7mm LQFN封装,具有0.5mm间距和单个散热垫
⑥ c代码编程问题,怎样初始化已定义的结构体
第一章:前言
对于c语言,有人认为它已经落伍了.对于这个问题,仁者见仕,智者见智.的确,c++比c有更强大的诸多优势.但c++是建立在c之上的.这也是herbert schildt所着的<>在全世界畅销不衰的原因.更何况,要深入学习linux就必需要有相当的c功底.(这也是我搜集整理本文的根由:-)
现结合个人在编程中的体会,为使新手少走弯路,为老手锦上添花,因此无论你是使用c或c++编程,也无论你是程序设计的初学者还是成熟的专业人员,均会发现,本文将会对你有所收益.当然,我尽力写得清晰易懂,又不古板.
我爱c.(正如世人爱上帝一样:-)..
你可以在forum.linuxaid.com.cn上获得此帖的文本.而其html版本正在赶制之中......
第二章:约定
专业的源程书写风格.
先看看世界级c大师的源程书写风格.如 steve maguire 就有许多不错的建议.
[]倡导使用易于理解的"匈牙利式"的命名约定.
所有的字符变量均以ch开始; 如: char ch_****;
所有的字节变量均冠以b; 如: byte b_****;
所有的长字变量均冠以l; 如: long l_****;
所有的指针变量均冠以p; 如: char *p_ch_****;
建议类型派生出的基本名字之后加上一个以大写字母开头的"标签".如:
分析 char **ppchmydata;
其让人一眼就能看出它****一个指向字符指针mydata的指针.
"匈牙利式"命名的最大不足是难念:-(( .但相对于不是总统演讲稿的c源程来说,这又算得了什么?想想看以下的数据命名:
char a,b,c;
long d,e,f;
[]倡导规范书写.
如果你思如泉涌,而不去也不及顾虑书写格式,那也没关系.在将其交出去之前,用cb命令格式化你的源程.虽然源程的格式不会影响到你编译结果的正确性,但切记,能让其他的程序员能轻松地阅读它.否则没人会理你的.
关于cb命令的更多用法,可以用man cb来参考其手册页.
当然除了cb之外,还有更多更好的.但cb是你在任何unix(linux)上都找得到的.更何况它并不差
第三章:开始任务
开始任务之前,先做个深呼吸!
[]其他文档你准备好了吗?
你是不是除了c源程之外一无所有了吗?兵马未动,粮草先行.你必须先清楚该程序所要完成的功能.在开始写程序之前,对程序的功能应有规范说明.书写规范书和确知程序功能的一个方法是先编写相应的操作手册.如果你是一人单干,劝你首先写需求书.切记切记,这对你意味着事半功倍的大好事.
一个实例:我计划为本行的信贷子功能模块打一个补丁.我用10周的时间用来写规划书,需求书,操作流程,使用说明等等文档.之后用2周的时间编写程序,在初步测试(1周)后递交给各信贷部门测试使用.然后根据反馈的信息再更改相应文档,并根据文档修改源程.6个月后发布正式版.
[]一定该遵循ansi标准吗?
如果你仅使用ansi的标准首标文件,恭喜你,你的程序有着全世界范围内的广泛支持和兼容.光明无限.但你必须在通用与专用之间做出取舍,对不起,我帮不了你.
我的原则是:核心用ansi,界面按需而取.这样在转换平台时仅需另编用户界面而已.实用至上嘛.
附:ansi 标准c头文件
是不是很寒酸?
[]再续前缘?
在得到新任务之后并在开始该新任务之前应马上回想有哪些是曾经拥有的.旧调重弹远比另起炉灶来的高效与环保.
[]是否该有自已的库?
我的答案是应该有自已的特色库,并与ansi兼容.与3.8不同的是,你仅需在源程序之后附上自已的专用库就可以了.其次在有了自已的库后,源码会很精炼的.不用去羡慕别人了吧.
[]要学会条件编译.注意你的平台特性.(高手的标志?)
除非你确定你要写的程序是在某特定的os特定的硬件平台而量身定做.否则应注意数据类型的长度,精度都是不同的,不要想当然.有时甚至是不同的编译器的差异都要考虑考虑.
....
....(欢迎您来充实此处空白)
....
好了,在任务中,又有哪些细节呢?
[]我是不是葛郎台?
不要那么吝啬.在源程序中加入详尽的注释以使自己和他人即使在许多年以后仍能读明白它是什么样的程序.
用注释行分离各个函数.
[]删除不需要的代码时要小心.
一个好建议是:使用#ifdef del,而不是简单地注释掉甚至是粗暴地直接dd.如果你是使用/* ... */,但一旦要删除的代码有很多行,或注释中以有注释时,这就可能不那么好使了.
[]如何给源程序文件命名?
表现特色且不与任何原有应用名相同.一个简单地方法就是试试看,系统有什么样地反应?
[]一次只修改一个地方.
[]一次只编写一个单一功能的函数。
[]编写通用程序.
只有当程序编写完,并且完成了所需要的性能要求之后,再反过头来优化该程序.
[]不要使用a.out作为结果.你大可以使用与源程相同的可执行文件名.
[]是否一定要用vi编辑?
linux下有许多专用编程编辑器.它们能使你有更高的效率和更低的低级输入错误,但我还是要劝你至少要熟练掌握vi.毕竟vi遍地开花.
[]协同作业.请相信,你不是在孤军作战.因此,你有必要熟练掌握一些其它的工具
第四章:使用lint
lint没有你想象中的那样糟糕.相反,一旦源程序形成了没有lint错误的形式,将很容易保持下去,并享受到如此而带来的好处.
[]在cc(gcc)之前就应使用lint.
lint是一语法检查程序,对于这个多嘴的婆婆来说,你应有足够的耐心.虽然你知道自已在干什么,但在cc之前使用lint总是一个好习惯.
[]lint有哪些特色?
在编译之前使用lint的重要原因是lint不但能发现ansi c中的语法错误,而且也能指出潜在的问题或是难于移植于另一机器的代码问题.除了能指出简单语法错误之外,linut还能基于以下原因指出另外的错误:
a.无法达到的语句.
b.没有进入循环.
c.没有被使用的变量.
d.函数参数从未使用.
e.没有赋值之前自动使用参数.
f.函数在有些地方有返回值,但在其他地方不返回.
g.函数调用在不同地方使得参数个数不同.
h.错误使用结构指针.
i.模糊使用操作符优先级.
呵呵呵,挺有用的吧!
[]如何控制lint的输出?
有时lint会有一大屏一大屏的警告信息.但似乎并未指出错误.为了找出潜在的错误则需费心费力地浏览这些大量的警告信息.
但如果你的程序会分出几个独立的模块,在初级启动lint时不要用可选项.当对这些模块进行更改或扩充时,可以忽略与代码无关的某些警告.为此可用以下选择项:
-h 对判别是否有错,类型是否正确不给出启发式测试.
-v 不管函数中没有定义的参数
-u 不管被使用的变量和函数没有定义或定义了但没有使用.
[]干脆,在程序中插入指令来影响lint运行.它看样子有些像注释.
/*notreached*/ 不可达到的代码不给信息说明.
/*varargsn*/ 函数的变量个数不作通常的检查,只检查开始n个参数的数据类型.
/*nostruct*/ 对下一个表达式不作严格类型检查.
/*argused*/ 下一函数中,不给出没被使用参数的警告信息.
/*lintlibrary*/ 置于文件的开头,它将不给出没被使用函数的警告信息.
关于lint的更多用法,请用man lint来获知
第五章:使用make
[]什么是make?
unix(linux)是一个天生的开发平台,我为此感到高兴.make是一个强力的工具.它能依赖的源代码块并组成一程序,使得很容易建立一可执行程序.make就是这种有依赖关系的部分和代码之间所作的规格说明.
[] 所有的程序都要使用make?
是的.尽管你只有几个简单的模块,但你需要有一种结构来支持它从简单走向复杂.除非你的程序已经盖棺定论.
[]makefile由哪些组成?
makefile由以下几个部分组成:
注释.
^^^^
使用#符号插入.make将忽略#之后的任何内容以及其后的return键.
变量.
^^^^
make允许定义与shell变量类似的有名变量.比如,你定义了sources=prog.c,那么该变量的值$(scoures)就包含了源文件名.
依赖关系.
^^^^^^^^
左边是目标模块,后接一冒号.再接与该模块有依赖关系的模块.
命令.
^^^^
以tab键开始(即使用相同数量的空格也不能代替它).
[]makefile示例
下面介绍一个简单的示例来说明make的用法.假设你的程序有两个源文件main.c和myc.c,一个位于子目录include下的头文件myhead.h,一个库由****源文件myrout1.c,myrout2.c,myrout3.c产生.
其makefile文件为:
#一个基本的makefile文件.
#其中包括个人的头文件和个人库.
headers=include/myhead.h
sources=main.c myc.c
proct=$(home)/bin/tool
lib=myrout.a
libsoures=myrout1.c myrout2.c myrout3.c
cc=cc
cflags=-g
all:$(proct)
$(proct):$(sources)
$(cc)$(cflags) -o $(proct)$(sources)
lint:$(proct)
lint $(sources)$(libsources)
哈哈,挺象shell编程的.如果你与我一样使用linux下的gcc,那么只要把上面的cc=cc改为cc=gcc即可.怎么样,想来一个更复杂点的吗?
[]一个更为复杂的makefile
你是否注意到,在上例中,只要启动make,就会重新编译所有源代码.
如果你能看懂以下的makefile,恭喜恭喜,你通关了.
#一个更为复杂的makefile
headers=include/myhead.h
soures=main.c myc.c
objects=main.c myc.c
proct=$(home)/bin/tool
lib=myrout.a
libsources=myrout1.c myrout2.c myrout3.c
libobjects=$(lib)(myrout1.o)$(lib)(myrout2.o)$(lib)(myrout3.o)
include=include
cc=cc
cflags=-g -xc
lint=lint
lintflags=-xc
all:$(proct)
$(proct):$(objects)$(lib)
$(cc)(cflags)-o$(proct)$(objects)$(lib)
.c.o: $(headers)
$(cc)$(cflags) -c i$(include)$<
$(lib):$(headers)$(libsources)
$(cc) $(cflags) -c $(?:.o=.c)
ar rv $(lib) $?
rm $?
.c.c:;
lint: $(proct)
$(lint)$(liniflags)$(sources)$libsources)
第六章:优质无错编程
亲爱的,检查一下,你是否注意到了以下的细节?也就是说,你是否是一个合格的,能编写优质无错代码的程序员?要永远记住,编写无错代码是程序员的责任,而不是测试员.(摘录于本人的"细节页",因此本节将永远不会保持完整,欢迎您来充实她)
[]所有程序员至少出现过的一个错误:
if(a=3){......}如果a等于3,那么......
你至少要养成这样的习惯:当判断一个变量与一个常量是否相等时,将常量写在前面.这样即使你一不小心写成这样:if(3=a){......}在cc 之前就可以很容易发现它.
[]老调重弹:逻辑操作符的优先权.
我不愿多嘴.总之,如果你一定要编写如下代码时:
if(a&0x1&&b&0x2){......}
你的手头最好有一本详尽的指南.或者你是这方面的专家.
[]尽量不使用int数据类型.
这仅是一个忠告.你大可使用char,short,long数据类型.若干年以后,当你成长为高手之时,你会发现此时我的良苦用心.
[]对于非整型函数一定要完整定义.
如 long float jisuan(char charr[],int chnum)
{ long float lmydata;
...
...
return(lmydata); }
[]对于非整型函数的输入要当心.
如 long float lfnum;
...
...
scanf("%lf",&lfnum);
[]float 型的有效数字为7位.当多于7位时,第8位及以后的位将不准确,可以将其定义为long float型.
[]文件的输入出尽量采用fread fwrite函数.只有当另有用途时才用fprintf fscanf 函数
⑦ 并发和QPS的区别 / 网络技术编程
QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。
TPS:是TransactionsPerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数,
⑧ 什么是layer2
layer2 是一个为提升以太坊网络(layer1)性能的整体解决方案,众所周知,由于以太坊网络经常出现拥堵情况,并且手续费奇高不下,导致许多大规模应用无法在以太坊网络实现。例如今年的Defi浪潮中,动辄手续费高达数百美元,非常不利于项目推广;此外,受限于以太坊网络的TPS,导致去中心化交易所难以普及,甚至衍生品等业务无法进一步扩张。Layer 2 层所涉及的是链上与链下的协议,主要负责链上链下消息传递、智能合约编程以及应用相关功能。也就是在现有区块链系统(Layer 1 )之上构建的辅助框架或协议。如果以法律架构来比喻,Layer 1 就像宪法,是所有法律的依据,法律的制定不能够牴触宪法,而 Layer 1 的架构如果要做更动,基本上都必须涉及到区块链分叉,就如同修宪程序一般,复杂且困难。反观 Layer 2 就像是依据宪法制定的法律,修改相对简单,且能够更符合实际需求。目前,Layer 2 协议的主要目标大部分都是为了解决区块链所面临的事务处理速度与扩展难题。layer2有几种解决方案,分别是:Rollups、状态通道(State channels)、侧链(Sidechains)、等离子体(Plasma)、Validium、混合方案(Hybrid solutions)等等。
⑨ 区块链公链都有哪些
区块链有公有区块链、联合(行业)区块链、私有区块链。公链有点对点电子现金系统:比特币、智能合约和去中心化应用平台:以太坊。
区块链为分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。
区块链(Blockchain),为比特币的一个重要概念,它本质上是一个去中心化的数据库,同时作为比特币的底层技术,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次比特币网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。

(9)TPS编程扩展阅读
根据区块链网络中心化程度的不同,分化出3种不同应用场景下的区块链:
1、全网公开,无用户授权机制的区块链,称为公有链;
2、允许授权的节点加人网络,可根据权限查看信息,往往被用于机构间的区块链,称为联盟链或行业链;
3、所有网络中的节点都掌握在一家机构手中,称为私有链。
联盟链和私有链也统称为许可链,公有链称为非许可链。
区块链特征
1、去中心化。区块链技术不依赖额外的第三方管理机构或硬件设施,没有中心管制,除了自成一体的区块链本身,通过分布式核算和存储,各个节点实现了信息自我验证、传递和管理。去中心化是区块链最突出最本质的特征。
2、开放性。区块链技术基础是开源的,除了交易各方的私有信息被加密外,区块链的数据对所有人开放,任何人都可以通过公开的接口查询区块链数据和开发相关应用,因此整个系统信息高度透明。
3、独立性。基于协商一致的规范和协议(类似比特币采用的哈希算法等各种数学算法),整个区块链系统不依赖其他第三方,所有节点能够在系统内自动安全地验证、交换数据,不需要任何人为的干预。
4、安全性。只要不能掌控全部数据节点的51%,就无法肆意操控修改网络数据,这使区块链本身变得相对安全,避免了主观人为的数据变更。
5、匿名性。除非有法律规范要求,单从技术上来讲,各区块节点的身份信息不需要公开或验证,信息传递可以匿名进行。
⑩ 编程语言的历史
两个都是英文版的。
编程语言和软件历史年表大全
Year - Languages, Operating Systems, Major Programs, Etc.
1945 EDVAC utilizes stored program concept
1945 Plankalkul (Konrad Zuse)
1949 Short Code (for BINAC) (John Mauchly)
1950 Intermediate Programming Language (Arthur W. Burks)
1951 Klamemerausdrucke (algebraic language and compilers)
1951 Formules (complete compiler) (Heinz Rutishauser)
1951 Find (for the Whirlwind) (Jack Gilmore)
1952 Autocode compiler (Alick E. Glennie)
1952 Short Code (for UNIVAC 1) (W.F. Schmidt, A.B. Tonik, J.R. Logan)
1952 Sort-Merge Generator (for UNIVAC 1) (Betty Holberton)
1952c COMPOOL (for SAGE) (MIT)
1952 Punchy (for TX-O) (Jack Gilmore)
1953 A-2 Compiler (for UNIVAC) (Grace Hopper)
1953 Algebraic interpreter (for Whirlwind, MIT) (J.H. Laning, N. Zierler)
1953 Speedcoding (for IBM 701) (John Backus)
1954 Operating System (for IBM 701, General Motors Research Laboratory)
1954 Autocode (for Manchester Mark 1) (R.A. Booker)
1954 PiPi-2 Prgrmg Program (compiler, USSR) (E.Z. Liumbimskii, S.S. Kamynin)
1954c Autocoder assembly language (for IBM 705)
1955 PiPi Programming Program (for BESM) (USSR)
1955 BACAIC (for IBM 701) (Mandalay Grems, R.E. Porter, Boeing Airplane Co.)
1955 MATH-MATIC mathematical programming language (for UNIVAC) (C. Katz)
1955 Kompiler 2 (for IBM 701) (A. Kenton Elsworth, Livermore Laboratory)
1956 Operating Sys. (for IBM 704) (General Motors; North American Aviation)
1956 ADES (U.S. Naval Observatory) (E.K.Blum)
1956 APT machine tool control (MIT) (Douglas Ross)
1956 Logic Theorist AI program (A. Newell & H. Simon, Carnegie Institute)
1956 IT (Internal Translator) (for IBM 650) (A. Perlis & J.W. Smith)
1956 Mark I report generator (for IBM 702) (General Electric-Hanford)
1956 FORTRAN (Formula Translation) (John Backus, IBM)
1957 Mark II Report generator (for IBM 702) (General Electric-Hanford)
1957 IPL-V (Information Processing Language V)
1957 Fortransit programming language
1957 COMIT string processing language (Victor Yngve, MIT)
1957 Scope Writer (for TX-2) (Jack Gilmore)
1957 Lincoln Writer (for TX-2) (Jack Gilmore)
1958 APT (Automatically Programmed Tool)
1958 FLOW-MATIC (for UNIVAC, Remington-Rand) (Grace Hopper)
1958c SOAP assembler (for IBM 650)
1958 IR (Information Retrieval) database management system (for IBM 704)
1958 LISP (List Processing language) (John McCarthy, MIT)
1958 AIMACO data processing language
1958 IPL V list processing language
1959 DYNAMO III
1959 TUFF/TUG (for IBM 704)
1959 9PAC file handling (for IBM 709)
1959 FACT business data processing language
1959 SURGE (for IBM 704) (Fletcher Jones)
1959 SAGE operating system (for IBM AN/FSQ7) (System Development Corp.)
1959c SAP assembler (for IBM 704)
1959c ASCI-Matic (Jack Minker)
1959 COBOL (December release)
1960 Atlas operating system for Atlas Computer)
(Manchester Univ. & Ferranti)
1960 ALGOL 60 (Algorithmic Language)
1960 COBOL (Common Business Oriented Language)
1960 JOVIAL (Jules Own Version of Int. Algebraic Language) (Jules Schwartz)
1960 MAD (Michigan Algorithm Decoder)
1960 NELIAC (Navy Electronics Laboratory International Algol Compiler)
1960 TRAC string processing language
1960 SCEPTRE
1960 IOCS operating system (for IBM 709/7090)
1960 FMS operating system (for IBM 709) (North American Aviation)
1961 COBOL revised and reissued
1961 SOS operating system (for IBM 709) (SHARE and IBM)
1961 GPSS (General Purpose Systems Simulator)
1961 SAC/Aids Formatted File System (for SAC 438L system) (SAC)
1961 BASE-BALL natural language system (B.V. Green)
1961 QUERY database (T. E. Cheatham, S. Warshall)
1961 RPG (Report Program Generator) (for IBM 1401)
1961 MADCAP scientific programming language
1961 ALGY formula manipulation language
1961 GECOM business data processing language
1961 QUICKTRAN on-line programming language
1961 Expensive Typewriter (IBM 360) (Stephen Piner)
1961 COBOL 61 Extended
1962 CTSS operating system (for IBM 7090 & IBM 7094) (Dr.F. Corbato, MIT)
1962 Gen. Info. & Retrieval System (GIRLS) for IBM 7090 (J.A. Postley, AIS)
1962 EXEC 1 operating system (for Univac 1107) (Computer Sciences Corp.)
1962 APL (A Programming Language) (Kenneth Iverson)
1962 IBSYS operating system (IBM 7090)
1962 Advanced Data Management System (ADAM) (for IBM 7030) (MITRE)
1962 COLINGO database (for IBM 1401)
1962 FORMAC formula manipulation
1962 SNOBOL (String Oriented Symbolic Language)
1963 Master Control Program operating system (for Burroughs B5000)
1963 COGO (Coordinate Geometry)
1963 Information Processing System (IPS) (for CDC 1604) (NAVCOSSACT)
1963 JOSS (Johnniac Open Shop System) (J.Cliff Shaw, Rand Corporation)
1963 CORC scientific programming language
1963 OMNIT AB scientific programming language
1963 Ambit
1964 Integrated Data Store (I-D-S) (Charles Bachman, General Electric)
1964 OS/360 operating system (for IBM 360)
1964 BASIC (Beginners All-Purpose Symbolic Instruction Code)
(John Kemeny, Thomas Kurtz, Dartmouth College)
1964 FORMAC (Formula Manipulation Compiler) for non-numeric mathematics
(Jean Sammet)
1964 PAT on-line programming language
1964 PL/1 (developed by IBM and SHARE)
1964 Altran
1965 Generalized Update Access Method (GUAM) (IBM 7010)
(developed by North American Space Division)
1965 Remote Access Terminal System (for IBM 7010)
(developed by IBM, and Rockwell International)
1965 Generalized Information System (GIS) (for IBM System/360)
1965 DENDRAL (Edward Fiegenbaum, Joshua Lederberg (Stanford University)
1965 C-10 database management system (IBM 1410) (developed by MITRE)
1965 COGENT report generator (for IBM 709)
1965 CPS on-line programming language
1965 RUSH on-line programming language
1965 Amtran on-line programming language
1965 FLAP formula manipulation programming language
1965 CLP list processing language
1965c MULTICS interactive operating system (for GE/Honeywell 645)
(developed by GE, Bell Labs & MIT)
1965 TRAC
1965 SNOBOL 3
1966 SIMULA I (Kristen Nygaard, Ole-Lohan Dahl) (First Object Oriented Language)
1966 TOSS operating system (for IBM System/360) (developed by RCA)
1966 Dialog on-line programming language
1966 MAP on-line programming language
1966 NAPSS scientific programming language
1966 Euler scientific programming language
1966 Coursewriter II
1966 OMNITAB II
1966 ECAP II (Electronic Circuit Analysis Program II)
1966 MPSX (Mathematical Programming System Extended)
1967 RAMIS non-proceral programming language (Mathematical)
1967 MANAGE database management system (for XDS 940 computer)
(developed by Scientific Data Systems)
1967 AS-IST database management system (for IBM System/360)
(developed by Applications Software)
1967 LUCID database management system (for AN/FSQ32)
(developed by System Development)
1967 ICES (Integrated Civil Engineering System)
1967 CSSL (Continuous Systems Simulation Language)
1967 Simula 67 (Simulation Language 1967)
1967 CPUL programming language
1967 POSE scientific programming language
1967 MAC-30 programming language
1967 DIAGMAG scientific programming language
1967 REDUCE formula manipulation language
1967 SPRINT list processing language
1967 LOLITA list processing language
1967 EOL-3 string processing language
1967 LEAP multipurpose programming language
1967 SNOBOL 4
1968 ALGOL 68 (Algorithmic Language)
1968 ATLAS (Abbreviated Test Language for "All" Systems)
1968 CSMP (Continuous System Modeling Program)
1968 Speakeasy
1968 OS/MFT operating system (for IBM 360 computers)
1968 TSS operating system (for IBM 360/370)
1968 MCP operating system (for Burroughs for B2500 and B3500)
1968 PAL programming language
1968 Proteus programming language
1968 GPL general purpose programming language
1968 TPS
1968 Salem
1968 Ariel
1968 Bruin
1968 TLC
1968 Termac
1968 Active Language 1
1968 Symbal
1968 Champ
1969 MUMPS (Massachusetts General Hospital General Utility
Multi-Programming System)
1969 PILOT
1969 CP-67/CMS operating system (for IBM 360 computer)
1969 OS/MVT operating system (for IBM 360 computer)
1969 Data Manager-1 (developed by Auerbach)
1969 UNIX multi-user, multitasking operating system development begun at Bell Labs
1969 Cobol Data Management System (CDMS) (for IBM 360)
(developed by Defense Intelligence Agency)
1969 Information Management System (IMS) hierarchical database management
system (developed by IBM)
1969 TSOS operating system (for Spectra 70/46) (developed by RCA)
1969 Time Shared Data Management System (TSDMS) (for IBM 360)
1969 Remote File Management System (for CDC 6000)
(developed at University of Texas)
1969 McG360 programming language
1969 DML programming language
1969 REL programming language
1969 PLANNER programming language
1969 REF-ARF programming language
1969 IITRAN multipurpose programming language
1969 APAREL multipurpose programming language
1969 NUCLEOL string processing language
1969 LEAF list processing language
1969 IAM formula manipulation language
1969 PPL on-line programming language
1969 OSCAR on-line programming language
1969 TRANQUIL scientific programming language
1969 SPEAKEASY scientific programming language
1969 STIL scientific programming language
1969 Music V (Max Mathews)
1969 Scratchpad
1970 BLISS (Basic Language for Implementation of System Software)
1970 SC-1 database management system (for IBM 360)
(developed by Western Electric)
1970 DMS data management system (for Sigma 5,7,9 computers)
(developed by Xerox Data Systems)
1970 S2000 data management system (for CDC 6000)(developed by SRI Systems)
1970 AIDS scientific programming language
1970 IIMP scientific programming language
1970 POEL scientific programming language
1970 LPL list processing language
1970 BALM list processing language
1970 Gedanken programming language
1970c Macsyma programming language (Joel Moses, MIT)
1970 Vulcan
1970 PDEL
1970 Pascal (Niklaus Wirth)
1971 VMOS operating system (for Spectra computers) (developed by RCA)
1971 ETC programming language
1971 TUTOR
1971 ISPL (Instruction Set Processor Language)
1971 FORMAC formula manipulation language
1971 HAL/S A programming language used aboard the Space Shuttle Columbia
1972 SMALLTALK object-oriented language (Alan Kay; Xerox)
1972 PL/M high-level language for microprocessor
1972 VS/9 operating system (for UNIVAC Series 90)
1972 Development of C language (Dennis Ritchie)
1973 BS2000 operating system (for Siemens 7500)
1973 VM 1370 operating system (for IBM 370 series)
1973 OS/VS operating system (for IBM 370 series)
1973 Pholas data management system (for Philips P1000)
1973 PDS/MaGEN (Problem Descriptor System)
1974 PL/M
1975 SPSS (Statistical Programs for the Social Sciences)
1975 OS/MVS operating system (for IBM 370 series)
1975 UNIX licensed by Western Electric for academic and commercial sectors
1975 ADA programming language developed for U.S. Dept. of Defense
1975 MDQS (Management Data Query System) developed by Honeywell
1976 Mola multiprocessing language (Niklaus Wirth)
1976 SMALLTALK 76 (Alan Kay, Adele Goldberg, Daniel H. H. Ingalis; Xerox PARC)
1977 CP/M (Control Program for Microprocessors) (Gary Kildall)
1979 VisiCalc electronic spreadsheet software for microcomputers
1979 X-CON (aka RI) expert system (Carnegie-Mellon University)
(used at Digital Equipment Corporation)
1980 INTELLECT natural language query system
(Artificial Intelligence Corporation)
1980 CPF operating system (for IBM System/38 minicomputer)
1980 C++ (Bjarne Stroustrup, Bell Labs)
1981 MS/DOS (Microsoft Disk Operating System)
developed by Microsoft Corporation) (IBM version called PC/DOS)
1983 KEE (expert systems development tool) IntelliCorp.
198? Objective C (Brad Cox; Stepstone Corporation)
1988 Windows 386 version 2.0 Released by Microsoft Corporation
1990 (April) Windows 3.0 released by Microsoft Corporation
1991 Windows NT Server version 3.1 released by Microsoft Corporation
1994 Windows NT Server version 3.5 released by Microsoft Corporation
1995 Windows 95 (microcomputer operating system and interface, Microsoft Corporation)
1995 JAVA (James Gosling, Sun Microsystems)
1996 Windows NT Server version 4.0 released by Microsoft Corporation
1996 "Inferno" under development by Dennis Ritchie and others
1996 (March) Microsoft’s Active X is released
1996 (October) Sun Microsystems SunSoft division releases JavaBeans
1996 Symantec’s Visual Cafe 1.0 tool (supports JavaBeans model)
1996 Delphi announces JBuilder (formerly code-named Latte)
1996 IBM’s Visual Age (supports JavaBean)
1996 Powersoft announces Jato (originally code-named Starbuck) (supports JavaBeans)
1996 Oracle Corporation announces Sedona, a development tools technology
1997 Microsoft Windows NT 5.0
编程语言历史
《BYTE》:A Brief History of Programming Languages
We’ve come a long way from computers programmed with wires and punch cards. Maybe not as far as some would like, though. Here are the innovations in programming.
ca. 1946
Konrad Zuse , a German engineer working alone while hiding out in the Bavarian Alps, develops Plankalkul. He applies the language to, among other things, chess.
--------------------------------------------------------------------------------
1949
Short Code , the first computer language actually used on an electronic computing device, appears. It is, however, a "hand-compiled" language.
--------------------------------------------------------------------------------
1951
Grace Hopper , working for Remington Rand, begins design work on the first widely known compiler, named A-0. When the language is released by Rand in 1957, it is called MATH-MATIC.
--------------------------------------------------------------------------------
1952
Alick E. Glennie , in his spare time at the University of Manchester, devises a programming system called AUTOCODE, a rudimentary compiler.
--------------------------------------------------------------------------------
1957
FORTRAN --mathematical FORmula TRANslating system--appears. Heading the team is John Backus, who goes on to contribute to the development of ALGOL and the well-known syntax-specification system known as BNF.
--------------------------------------------------------------------------------
1958
FORTRAN II appears, able to handle subroutines and links to assembly language. John McCarthy at M.I.T. begins work on LISP--LISt Processing.
The original specification for ALGOL appears. The specific ation does not describe how data will be input or output; that is left to the indivial implementations.
--------------------------------------------------------------------------------
1959
LISP 1.5 appears. COBOL is created by the Conference on Data Systems and Languages (CODASYL).
--------------------------------------------------------------------------------
1960
ALGOL 60 , the first block-structured language, appears. This is the root of the family tree that will ultimately proce the likes of Pascal. ALGOL goes on to become the most popular language in Europe in the mid- to late-1960s.
Sometime in the early 1960s , Kenneth Iverson begins work on the language that will become APL--A Programming Language. It uses a specialized character set that, for proper use, requires APL-compatible I/O devices.
--------------------------------------------------------------------------------
1962
APL is documented in Iverson’s book, A Pro gramming Language .
FORTRAN IV appears.
Work begins on the sure-fire winner of the "clever acronym" award, SNOBOL--StriNg-Oriented symBOlic Language. It will spawn other clever acronyms: FASBOL, a SNOBOL compiler (in 1971), and SPITBOL--SPeedy ImplemenTation of snoBOL--also in 1971.
--------------------------------------------------------------------------------
1963
ALGOL 60 is revised.
Work begins on PL/1.
--------------------------------------------------------------------------------
1964
APL\360 is implemented.
At Dartmouth University , professors John G. Kemeny and Thomas E. Kurtz invent BASIC. The first implementation is a compiler. The first BASIC program runs at about 4:00 a.m. on May 1, 1964.
PL/1 is released.
-----------------------------------------------------------------------------
1965
SNOBOL3 appears.
--------------------------------------------------------------------------------
1966
FORTRAN 66 appears.
LISP 2 appears.
Work begins on LOGO at Bolt, Beranek, & Newman. The team is headed by Wally Fuerzeig and includes Seymour Papert. LOGO is best known for its "turtle graphics."
--------------------------------------------------------------------------------
1967
SNOBOL4 , a much-enhanced SNOBOL, appears.
--------------------------------------------------------------------------------
1968
ALGOL 68 , a monster compared to ALGOL 60, appears. Some members of the specifications committee--including C.A.R. Hoare and Niklaus Wirth--protest its approval. ALGOL 68 proves difficult to implement.
ALTRAN , a FORTRAN variant, appears.
COBOL is officially defined by ANSI.
Niklaus Wirth begins work on Pascal.
--------------------------------------------------------------------------------
1969
500 people attend an APL conference at IBM’s headquarters in Armonk, New York. The demands for APL’s distribution are so great that the event is later referred to as "The March on Armonk."
--------------------------------------------------------------------------------
1970
Sometime in the early 1970s , Charles Moore writes the first significant programs in his new language, Forth.
Work on Prolog begins about this time.
Also sometime in the early 1970s , work on Smalltalk begins at Xerox PARC, led by Alan Kay. Early versions will include Smalltalk-72, Smalltalk-74, and Smalltalk-76.
An implementation of Pascal appears on a CDC 6000-series computer.
Icon , a descendant of SNOBOL4, appears.
--------------------------------------------------------------------------------
1972
The manuscript for Konrad Zuse’s Plankalkul (see 1946) is finally published.
Denni s Ritchie proces C. The definitive reference manual for it will not appear until 1974.
The first implementation of Prolog -- by Alain Colmerauer and Phillip Roussel -- appears.
--------------------------------------------------------------------------------
1974
Another ANSI specification for COBOL appears.
--------------------------------------------------------------------------------
1975
