编译原理2型文法一定会满足1
‘壹’ 编译原理的LL(1)文法是什么意思
1.文法不含左递归,没有公共左因子
2.对于文法中的每个非终结符A的产生式的候选首符集两两不相交。
3.对于文法中的每个非终结符A,它存在某个候选首符集包括ε,则FIRST(A)∩FOLLOW(A)=空
满足以上条件的文法为LL(1)文法
‘贰’ 在编译原理中,什么是上下文无关文法什么是语言
二型文法如下:S->AcS->ScA->abA->aAb三型文法如下:S->aSA->bAB->cBB->cA->BbA、2型文法是上下文无关文法,表现在产生式上就是产生式的左部只有一个非终结符;3型文法从广义上讲包括左线形文法、右线形文法和正规文法。B、左线形文法产生式的右部要么没有非终结符,如果有非终结符也只能有一个,且必须位于产生式右部的最左端。C、右线形文法产生式的右部要么没有非终结符,如果有非终结符也只能有一个,且必须位于产生式右部的最右端。D、正规文法是右线形文法的一个子集,其产生式右部只有三种情况:1)空串2)只有一个终结符3)只有一个终结符后接一个非终结符E、所有的3型文法都是2型文法。
‘叁’ 编译原理 文法类型
0型文法(Type-0 Grammar)
1型文法(Type-1 Grammar)
2型文法(Type-2 Grammar)
3型文法(Type-3 Grammar)
无限制文法(Unrestricted Grammar) /短语结构文法(Phrase Structure Grammar, PSG )
∀α → β∈P, α中至少包含1个非终结符
0型语言
由0型文法G生成的语言L(G )
上下文有关文法(Context-Sensitive Grammar , CSG )
∀α → β∈P,|α|≤|β|
产生式的一般形式: α1Aα2 → α1βα2 ( β≠ε )
上下文有关语言(1型语言)
由上下文有关文法(1型文法) G生成的语言L(G )
上下文无关文法(Context-Free Grammar, CFG )
∀α → β∈P,α ∈ VN
产生式的一般形式:A→β
上下文无关语言(2型语言)
由上下文无关文法(2型文法) G生成的语言L(G )
正则文法(Regular Grammar, RG )
右线性(Right Linear)文法: A→wB 或 A→w
左线性(Left Linear) 文法: A→Bw 或 A→w
左线性文法和右线性文法都称为正则文法
0型文法:α中至少包含1个非终结符
1型文法(CSG) :|α|≤|β|
2型文法(CFG) :α ∈ VN
3型文法(RG):A→wB 或 A→w (A→Bw 或A→w)
0型文法包含1型文法,1型文法包含2型文法,2型文法包含3型文法
‘肆’ 编译原理-LL1文法详细讲解
我们知道2型文法( CFG ),它的每个产生式类型都是 α→β ,其中 α ∈ VN , β ∈ (VN∪VT)*。
例如, 一个表达式的文法:
最终推导出 id + (id + id) 的句子,那么它的推导过程就会构成一颗树,即 CFG 分析树:
从分析树可以看出,我们从文法开始符号起,不断地利用产生式的右部替换产生式左部的非终结符,最终推导出我们想要的句子。这种方式我们称为自顶向下分析法。
从文法开始符号起,不断用非终结符的候选式(即产生式)替换当前句型中的非终结符,最终得到相应的句子。
在每一步推导过程中,我们需要做两个选择:
因为一个句型中,可能存在多个非终结符,我们就不确定选择那一个非终结符进行替换。
对于这种情况,我们就需要做强制规定,每次都选择句型中第一个非终结符进行替换(或者每次都选择句型中最后一个非终结符进行替换)。
自顶向下的语法分析采用最左推导方式,即总是选择每个句型的最左非终结符进行替换。
最终的结果是要推导出一个特定句子(例如 id + (id + id) )。
我们将特定句子看成一个输入字符串,而每一个非终结符对应一个处理方法,这个处理方法用来匹配输入字符串的部分,算法如下:
方法解析:
这种方式称为递归下降分析( Recursive-Descent Parsing ):
当选择的候选式不正确,就需要回溯( backtracking ),重新选择候选式,进行下一次尝试匹配。因为要不断的回溯,导致分析效率比较低。
这种方式叫做预测分析( Predictive Parsing ):
要实现预测分析,我们必须保证从文法开始符号起,每一个推导过程中,当前句型最左非终结符 A 对于当前输入字符 a ,只能得到唯一的 A 候选式。
根据上面的解决方法,我们首先想到,如果非终结符 A 的候选式只有一个以终结符 a 开头候选式不就行了么。
进而我们可以得出,如果一个非终结符 A ,它的候选式都是以终结符开头,并且这些终结符都各不相同,那么本身就符合预测分析了。
这就是S_文法,满足下面两个条件:
例子:
这就是一个典型的S_文法,它的每一个非终结符遇到任一终结符得到候选式是确定的。如 S -> aA | bAB , 只有遇到终结符 a 和 b 的时候,才能返回 S 的候选式,遇到其他终结符时,直接报错,匹配不成功。
虽然S_文法可以实现预测分析,但是从它的定义上看,S_文法不支持空产生式(ε产生式),极大地限制了它的应用。
什么是空产生式(ε产生式)?
例子
这里 A 有了空产生式,那么 S 的产生式组 S -> aA | bAB ,就可以是 a | bB ,这样 a , bb , bc 就变成这个文法 G 的新句子了。
根据预测分析的定义,非终结符对于任一终结符得到的产生式是确定的,要么能获取唯一的产生式,要么不匹配直接报错。
那么空产生式何时被选择呢?
由此可以引入非终结符 A 的后继符号集的概念:
定义: 由文法 G 推导出来的所有句型,可以出现在非终结符 A 后边的终结符 a 的集合,就是这个非终结符 A 的后继符号集,记为 FOLLOW(A) 。
因此对于 A -> ε 空产生式,只要遇到非终结符 A 的后继符号集中的字符,可以选择这个空产生式。
那么对于 A -> a 这样的产生式,只要遇到终结符 a 就可以选择了。
由此我们引入的产生式可选集概念:
定义: 在进行推导时,选用非终结符 A 一个产生式 A→β 对应的输入符号的集合,记为 SELECT(A→β)
因为预测分析要求非终结符 A 对于输入字符 a ,只能得到唯一的 A 候选式。
那么对于一个文法 G 的所有产生式组,要求有相同左部的产生式,它们的可选集不相交。
在 S_文法基础上,我们允许有空产生式,但是要做限制:
将上面例子中的文法改造:
但是q_文法的产生式不能是非终结符打头,这就限制了其应用,因此引入LL(1)文法。
LL(1)文法允许产生式的右部首字符是非终结符,那么怎么得到这个产生式可选集。
我们知道对于产生式:
定义: 给定一个文法符号串 α , α 的 串首终结符集 FIRST(α) 被定义为可以从 α 推导出的所有串首终结符构成的集合。
定义已经了解清楚了,那么该如何求呢?
例如一个文法符号串 BCDe , 其中 B C D 都是非终结符, e 是终结符。
因此对于一个文法符号串 X1X2 … Xn ,求解 串首终结符集 FIRST(X1X2 … Xn) 算法:
但是这里有一个关键点,如何求非终结符的串首终结符集?
因此对于一个非终结符 A , 求解 串首终结符集 FIRST(A) 算法:
这里大家可能有个疑惑,怎么能将 FIRST(Bβ) 添加到 FIRST(A) 中,如果问文法符号串 Bβ 中包含非终结符 A ,就产生了循环调用的情况,该怎么办?
对于 串首终结符集 ,我想大家疑惑的点就是,串首终结符集到底是针对 文法符号串 的,还是针对 非终结符 的,这个容易弄混。
其实我们应该知道, 非终结符 本身就属于一个特殊的 文法符号串 。
而求解 文法符号串 的串首终结符集,其实就是要知道文法符号串中每个字符的串首终结符集:
上面章节我们知道了,对于非终结符 A 的 后继符号集 :
就是由文法 G 推导出来的所有句型,可以出现在非终结符 A 后边的终结符的集合,记为 FOLLOW(A) 。
仔细想一下,什么样的终结符可以出现在非终结符 A 后面,应该是在产生式中就位于 A 后面的终结符。例如 S -> Aa ,那么终结符 a 肯定属于 FOLLOW(A) 。
因此求非终结符 A 的 后继符号集 算法:
如果非终结符 A 是产生式结尾,那么说明这个产生式左部非终结符后面能出现的终结符,也都可以出现在非终结符 A 后面。
我们可以求出 LL(1) 文法中每个产生式可选集:
根据产生式可选集,我们可以构建一个预测分析表,表中的每一行都是一个非终结符,表中的每一列都是一个终结符,包括结束符号 $ ,而表中的值就是产生式。
这样进行语法推导的时候,非终结符遇到当前输入字符,就可以从预测分析表中获取对应的产生式了。
有了预测分析表,我们就可以进行预测分析了,具体流程:
可以这么理解:
我们知道要实现预测分析,要求相同左部的产生式,它们的可选集是不相交。
但是有的文法结构不符合这个要求,要进行改造。
如果相同左部的多个产生式有共同前缀,那么它们的可选集必然相交。
例如:
那么如何进行改造呢?
其实很简单,进行如下转换:
如此文法的相同左部的产生式,它们的可选集是不相交,符合现预测分析。
这种改造方法称为 提取公因子算法 。
当我们自顶向下的语法分析时,就需要采用最左推导方式。
而这个时候,如果产生式左部和产生式右部首字符一样(即A→Aα),那么推导就可能陷入无限循环。
例如:
因此对于:
文法中不能包含这两种形式,不然最左推导就没办法进行。
例如:
它能够推导出如下:
你会惊奇的发现,它能推导出 b 和 (a)* (即由 0 个 a 或者无数个 a 生成的文法符号串)。其实就可以改造成:
因此消除 直接左递归 算法的一般形式:
例如:
消除间接左递归的方法就是直接带入消除,即
消除间接左递归算法:
这个算法看起来描述很多,其实理解起来很简单:
思考 : 我们通过 Ai -> Ajβ 来判断是不是间接左递归,那如果有产生式 Ai -> BAjβ 且 B -> ε ,那么它是不是间接左递归呢?
间接地我们可以推出如果一个产生式 Ai -> αAjβ 且 FIRST(α) 包括空串ε,那么这个产生式是不是间接左递归。
‘伍’ 四种文法的类型(编译原理)
乔姆斯基(Chomsky)按产生式的类型把文法分为四种类型:0、1、2、3型文法。
*在下文中的产生式中,箭头左边的大写字母为严格的非终结符,而其左边的小写字母不严格要求为非终结符,如[0型文法]中的第2条产生式。
【0型文法】
产生式形式:α→β
要求:箭头左边的α 至少 含有 一个非终结符 , 其余 不加任何限制
例如,G:C→AaB
aA→a
B→b|Bb
【1型文法】
产生式形式:α→β
要求: |α|≤|β| (产生式左端的长度<=右端的长度),S→ε除外。
例如G: C→aAB
aA→aBa
B→b|Bb
【2型文法】(上下文无关文法)
产生式形式:A→β,A∈VN(终结符) ,β∈V *(VN∪VT,即可为终结符也可为非终结符)
说明:当以β替换A时,与A的上下文环境无关;
大部分程序设计语言近似于2型文法。
【3型文法】(正规文法 / 右线性文法)
产生式形式:A→a,A→aB,
说明:a∈VT(终结符) , A,B∈VN(非终结符),即产生式右端的第一个符号必须为 终结符
例如 G:A→aB
B→b|bB
【其他说明】对于这四种类型的文法:
*包含关系:0 > 1 > 2 > 3 (以'>'代替包含符,'A>B'译为A包含B)
*严格程度:3 > 2 > 1 > 0
*判断文法所属类型的顺序:3 → 2 → 1 → 0
‘陆’ 编译原理 正则语言 二义文法 急~
这个没有一个好老师,自己咬文嚼字看懂是很累的
二义性文法
【定义】 若文法中存在这样的句型,它具有两棵不同的语法树,则称该文法是二义性文法。
二义性文法会引起歧义,应尽量避免之!
G(E):E -> E+E | E*E | (E) | i
这两种展开
E E
E + E E * E
i E * E E + E i
i i i i
都可以表示i+i*i
所以;文法具有二义性。
‘柒’ 编译原理中,形式语言里怎么区分2型文法与3型文法
通过算法对文法的每一产生式进行分析,如果存在复杂递归,则必是上下文无关文法,否则就是正则文法.
1、像A->Aa|ε这样的文法,虽然存在递归,但却是单一的自递归,可以通过有穷自动机表示和分析处理,所以是正则文法;
2、但是像E->E+T,T->id|(E)这样的文法显然非单一的自递归,而是存在复杂递归,自动机是无法表示和处理的,必然是上下文无关文法.
另外还请注意:
1、正则文法是上下文文法的子集,正则文法也属于上下文无法,但有的上下文文法不一定是正则文法;
2、同时再结合这两个的形式定义认真揣摩必定能悟出一二.
‘捌’ 编译原理 2型文法一定是1型文法吗 不是一种包含关系吗
1型文法就是上下文有关文法,2型文法是上下文无关文法,1型文法的确是包含了2型文法,因为只要你在1型文法的基础上,加下一个条件:非终结符的替换不必考虑上下文,就成为2型文法了。
‘玖’ 编译原理-文法定义
文法定义公式如下:
Chomsky 文法分类将文法分为四种,0型文法( PSG )、1型文法( CSG )、2型文法( CFG )和3型文法( RG )。
又被称为无限制文法(Unrestricted Grammar), 或者短语结构文法(Phrase Structure Grammar)
定义: 对于产生式 α→β , α 至少包含一个非终结符。
为什么要叫无限制文法,明明它要求产生式的左部必须包含一个非终结符。
又被称为上下文有关文法(Context-Sensitive Grammar)
定义:对于产生式 α→β , |α| <= |β| , 仅仅 S→ε 除外
为什么叫做上下文有关文法?
一般情况下,这种产生式的形式为 α1Aα2→α1βα2
又被称为上下文无关文法(Context-Free Grammar)
定义:对任一产生式 α→β ,都有 α∈VN,β∈(VN∪VT)*
为什么叫上下文无关文法?
又被称为正则文法(Regular Grammar,RG),分为右线性(Right Linear)文法和左线性(Left Linear)文法。
定义: 对任一产生式 α→β ,都有 α∈VN,β最多两个字符元素,如果有二个字符必须是(终结符+非终结符)的格式,如果是一个字符,那么必须是终结符。
根据产生式右部非终结符位置不同,分为右线性文法和左线性文法。
可以看出,不同文法就是对产生式进行逐层的限制,所以各个文法是包含关系,即0型文法包含1型文法;1型文法又包含2型文法;2型文法最后包含3型文法。
