当前位置:首页 » 编程软件 » 网络编程图

网络编程图

发布时间: 2023-02-27 19:24:57

⑴ 网络编程(五)TCP详解

考虑最简单的情况:两台主机之间的通信。这个时候只需要一条网线把两者连起来,规定好彼此的硬件接口,如都用 USB、电压 10v、频率 2.4GHz 等, 这一层就是物理层,这些规定就是物理层协议

我们当然不满足于只有两台电脑连接,因此我们可以使用交换机把多个电脑连接起来,如下图:

这样连接起来的网络,称为局域网,也可以称为以太网(以太网是局域网的一种)。在这个网络中,我们需要标识每个机器,这样才可以指定要和哪个机器通信。这个标识就是硬件地址 MAC。

硬件地址随机器的生产就被确定,永久性唯一。在局域网中,我们需要和另外的机器通信时,只需要知道他的硬件地址,交换机就会把我们的消息发送到对应的机器。

这里我们可以不管底层的网线接口如何发送,把物理层抽离,在他之上创建一个新的层次,这就是 数据链路层

我们依然不满足于局域网的规模,需要把所有的局域网联系起来,这个时候就需要用到路由器来连接两个局域网:

但是如果我们还是使用硬件地址来作为通信对象的唯一标识,那么当网络规模越来越大,需要记住所有机器的硬件地址是不现实的;

同时,一个网络对象可能会频繁更换设备,这个时候硬件地址表维护起来更加复杂。这里使用了一个新的地址来标记一个网络对象: IP 地址

通过一个简单的寄信例子来理解 IP 地址。

我住在北京市,我朋友 A 住在上海市,我要给朋友 A 写信:

因此,这里 IP 地址就是一个网络接入地址(朋友 A 的住址),我只需要知道目标 IP 地址,路由器就可以把消息给我带到。 在局域网中,就可以动态维护一个 MAC 地址与 IP 地址的映射关系,根据目的 IP 地址就可以寻找到机器的 MAC 地址进行发送

这样我们不需管理底层如何去选择机器,我们只需要知道 IP 地址,就可以和我们的目标进行通信。这一层就是 网络层 。网络层的核心作用就是 提供主机之间的逻辑通信

这样,在网络中的所有主机,在逻辑上都连接起来了,上层只需要提供目标 IP 地址和数据,网络层就可以把消息发送到对应的主机。

一个主机有多个进程,进程之间进行不同的网络通信,如边和朋友开黑边和女朋友聊微信。我的手机同时和两个不同机器进行通信。

那么当我的手机收到数据时,如何区分是微信的数据,还是王者的数据?那么就必须在网络层之上再添加一层: 运输层

运输层通过 socket(套接字),将网络信息进行进一步的拆分,不同的应用进程可以独立进行网络请求,互不干扰。

这就是运输层的最本质特点: 提供进程之间的逻辑通信 。这里的进程可以是主机之间,也可以是同个主机,所以在 android 中,socket 通信也是进程通信的一种方式。

现在不同的机器上的应用进程之间可以独立通信了,那么我们就可以在计算机网络上开发出形形式式的应用:如 web 网页的 http,文件传输 ftp 等等。这一层称为 应用层

应用层还可以进一步拆分出表示层、会话层,但他们的本质特点都没有改变: 完成具体的业务需求 。和下面的四层相比,他们并不是必须的,可以归属到应用层中。

最后对计网分层进行小结:

这里需要注意的是,分层并不是在物理上的分层,而是逻辑上的分层。通过对底层逻辑的封装,使得上层的开发可以直接依赖底层的功能而无需理会具体的实现,简便了开发。

这种分层的思路,也就是责任链设计模式,通过层层封装,把不同的职责独立起来,更加方便开发、维护等等。

TCP 并不是把应用层传输过来的数据直接加上首部然后发送给目标,而是把数据看成一个字节 流,给他们标上序号之后分部分发送。这就是 TCP 的 面向字节流 特性:

面向字节流的好处是无需一次存储过大的数据占用太多内存,坏处是无法知道这些字节代表的意义,例如应用层发送一个音频文件和一个文本文件,对于 TCP 来说就是一串字节流,没有意义可言,这会导致粘包以及拆包问题,后面讲。

前面讲到,TCP 是可靠传输协议,也就是,一个数据交给他,他肯定可以完整无误地发送到目标地址,除非网络炸了。他实现的网络模型如下:

对于应用层来说,他就是一个可靠传输的底层支持服务;而运输层底层采用了网络层的不可靠传输。虽然在网络层甚至数据链路层就可以使用协议来保证数据传输的可靠性,但这样网络的设计会更加复杂、效率会随之降低。把数据传输的可靠性保证放在运输层,会更加合适。

可靠传输原理的重点总结一下有: 滑动窗口、超时重传、累积确认、选择确认、连续 ARQ

停止等待协议

要实现可靠传输,最简便的方法就是:我发送一个数据包给你,然后你跟我回复收到,我继续发送下一个数据包。传输模型如下:

这种“一来一去”的方法来保证传输可靠就是 停止等待协议 (stop-and-wait)。不知道还记不记得前面 TCP 首部有一个 ack 字段,当他设置为 1 的时候,表示这个报文是一个确认收到报文。

然后再来考虑另一种情况:丢包。网络环境不可靠,导致每一次发送的数据包可能会丢失,如果机器 A 发送了数据包丢失了,那么机器 B 永远接收不到数据,机器 A 永远在等待。

解决这个问题的方法是: 超时重传 。当机器 A 发出一个数据包时便开始计时,时间到还没收到确认回复,就可以认为是发生了丢包,便再次发送,也就是重传。

但重传会导致另一种问题:如果原先的数据包并没有丢失,只是在网络中待的时间比较久,这个时候机器 B 会受到两个数据包,那么机器 B 是如何辨别这两个数据包是属于同一份数据还是不同的数据?

这就需要前面讲过的方法: 给数据字节进行编号 。这样接收方就可以根据数据的字节编号,得出这些数据是接下来的数据,还是重传的数据。

在 TCP 首部有两个字段:序号和确认号,他们表示发送方数据第一个字节的编号,和接收方期待的下一份数据的第一个字节的编号。

停止等待协议的优点是简单,但缺点是 信道利用率 太低。

假定AB之间有一条直通的信道来传送分组

这里的TD是A发送分组所需要的时间(显然TD = 分组长度 / 数据速率)再假定TA是B发送确认分组所需要的时间(A和B处理分组的时间都忽略不计)那么A在经过TD+RTT+TA时间后才能发送下一个分组,这里的RTT是往返时间,因为只有TD是采用来传输有用的数据(这个数据包括了分组首部,如果可以知道传输更精确的数据的时间,可以计算的更精确),所有信道利用率为

为了提高传输效率,发送方可以不使用低效率的停止等待协议,而是采用 流水线传输 :就是发送方可以 连续的发送多个分组 ,不必每发完一个分组就停下来等待对方的确认。这样可使信道上一直有数据不间断地在传送。显然这种传输方式可以获得很高的信道利用率

停止等待协议已经可以满足可靠传输了,但有一个致命缺点: 效率太低 。发送方发送一个数据包之后便进入等待,这个期间并没有干任何事,浪费了资源。解决的方法是: 连续发送数据包

也就是下面介绍的 连续ARQ协议 滑动窗口协议

连续 ARQ 协议

模型如下:

和停止等待最大的不同就是,他会源源不断地发送,接收方源源不断收到数据之后,逐一进行确认回复。这样便极大地提高了效率。但同样,带来了一些额外的问题:

发送是否可以无限发送直到把缓冲区所有数据发送完?不可以。因为需要考虑接收方缓冲区以及读取数据的能力。如果发送太快导致接收方无法接受,那么只是会频繁进行重传,浪费了网络资源。所以发送方发送数据的范围,需要考虑到接收方缓冲区的情况。这就是 TCP 的 流量控制

解决方法是: 滑动窗口 。基本模型如下:

在 TCP 的首部有一个窗口大小字段,他表示接收方的剩余缓冲区大小,让发送方可以调整自己的发送窗口大小。通过滑动窗口,就可以实现 TCP 的流量控制,不至于发送太快,导致太多的数据丢失。

连续 ARQ 带来的第二个问题是:网络中充斥着和发送数据包一样数据量的确认回复报文,因为每一个发送数据包,必须得有一个确认回复。提高网络效率的方法是: 累积确认

接收方不需要逐个进行回复,而是累积到一定量的数据包之后,告诉发送方,在此数据包之前的数据全都收到。例如,收到 1234,接收方只需要告诉发送方我收到 4 了,那么发送方就知道 1234 都收到了。

第三个问题是:如何处理丢包情况。在停止等待协议中很简单,直接一个超时重传就解决了。但,连续 ARQ 中不太一样。

例如:接收方收到了 123 567,六个字节,编号为 4 的字节丢失了。按照累积确认的思路,只能发送 3 的确认回复,567 都必须丢掉,因为发送方会进行重传。这就是 GBN(go-back-n) 思路。

但是我们会发现,只需要重传 4 即可,这样不是很浪费资源,所以就有了: 选择确认 SACK 。在 TCP 报文的选项字段,可以设置已经收到的报文段,每一个报文段需要两个边界来进行确定。这样发送方,就可以根据这个选项字段只重传丢失的数据了。

第四个问题是:拥塞控制的问题
也是通过窗口的大小来控制的,但是检测网络满不满是个挺难的事情,所以 TCP 发送包经常被比喻成往谁管理灌水,所以拥塞控制就是在不堵塞,不丢包的情况下尽可能的发挥带宽。

水管有粗细,网络有带宽,即每秒钟能发送多少数据;水管有长度,端到端有时延。理想状态下,水管里面的水 = 水管粗细 * 水管长度。对于网络上,通道的容量 = 带宽 * 往返时延。

如果我们设置发送窗口,使得发送但未确认的包为通道的容量,就能撑满整个管道。

如图所示,假设往返时间为 8 秒,去 4 秒,回 4 秒,每秒发送一个包,已经过去了 8 秒,则 8 个包都发出去了,其中前四个已经到达接收端,但是 ACK 还没返回,不能算发送成功,5-8 后四个包还在路上,还没被接收,这个时候,管道正好撑满,在发送端,已发送未确认的 8 个包,正好等于带宽,也即每秒发送一个包,也即每秒发送一个包,乘以来回时间 8 秒。

如果在这个基础上调大窗口,使得单位时间可以发送更多的包,那么会出现接收端处理不过来,多出来的包会被丢弃,这个时候,我们可以增加一个缓存,但是缓存里面的包 4 秒内肯定达不到接收端课,它的缺点会增加时延,如果时延达到一定程度就会超时重传

TCP 拥塞控制主要来避免两种现象,包丢失和超时重传,一旦出现了这些现象说明发送的太快了,要慢一点。

具体的方法就是发送端慢启动,比如倒水,刚开始倒的很慢,渐渐变快。然后设置一个阈值,当超过这个值的时候就要慢下来

慢下来还是在增长,这时候就可能水满则溢,出现拥塞,需要降低倒水的速度,等水慢慢渗下去。

拥塞的一种表现是丢包,需要超时重传,这个时候,采用快速重传算法,将当前速度变为一半。所以速度还是在比较高的值,也没有一夜回到解放前。

到这里关于 TCP 的可靠传输原理就已经介绍得差不多。最后进行一个小结:

当然,这只是可靠传输的冰山一角,感兴趣可以再深入去研究

⑵ 基于matlab或C#的神经网络编程

1.人工神经元( Artificial Neuron )模型

人工神经元是神经网络的基本元素,其原理可以用下图表示:


若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。

图1中的这种“阈值加权和”的神经元模型称为M-P模型( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。

⑶ 2018-04-23网络编程-概述-SOCKET-端口绑定-编码解码

计算机都遵守的网络通信协议叫做TCP/IP协议。
因为互联网协议包含了上百种协议标准,但是最重要的两个协议是TCP和IP协议,所以,大家把互联网的协议简称TCP/IP协议。是一组协议族。完成通信的规范。

四种分类法和其中分类法:

端口号:用来标记唯一一个进程(范围:0~65535)
为什么不用pid?——在一个操作系统上,pid绝对不相同,而且进程pid唯一,但在不同系统上,获取另一个系统的pid特别费劲;但是端口对应的程序是确定的,所以端口就是用来区分进程的

端口号只有整数,0~65535。能区分同一服务器所有进程
知名端口:大家都知道的默认的端口,比如网络,0~1023
动态端口:1024~65535之间
查看端口信息的命令:netstat - an

IP地址的作用:用来标记一台电脑在网络中的数字。
同一局域网中,IP地址不能相同

网络号用来分辨不同网络,主机号用来区分不同主机
ip地址:用来在网络中标记一台电脑的一串数字,比如192.168.1.1;在本地局域网上是惟一的。

什么是socket?

socket(简称 套接字 ) 是进程间通信的一种方式,它与其他进程间通信的一个主要不同是:
它能实现不同主机间的进程间通信,我们网络上各种各样的服务大多都是基于 Socket 来完成通信的(能完成多个电脑进程间的通信)
例如我们每天浏览网页、QQ 聊天、收发 email 等等。

UDP快,不稳定
TCP慢,稳定

会变的端口号
说明:
每重新运行一次网络程序,上图中红圈中的数字,不一样的原因在于,这个数字标识这个网络程序,当重新运行时,如果没有确定到底用哪个,系统默认会随机分配
记住一点:这个网络程序在运行的过程中,这个就唯一标识这个程序,所以如果其他电脑上的网络程序如果想要向此程序发送数据,那么就需要向这个数字(即端口)标识的程序发送即可。

UDP绑定信息
一般服务性的程序,往往需要一个固定的端口号,这就是所谓的端口绑定
绑定的意义是使其不变 。
*一个电脑可以有多个IP地址
*单工:收音机 半双工:对讲机 全双工:电话
UDP和TPC(网络)都是全双工,同一时间能发能收
一般,接收方都需要绑定,发送方不需要绑定
绑定示例:

总结
一个udp网络程序,可以不绑定,此时操作系统会随机进行分配一个端口,如果重新运行次程序端口可能会发生变化
一个udp网络程序,也可以绑定信息(ip地址,端口号),如果绑定成功,那么操作系统用这个端口号来进行区别收到的网络数据是否是此进程的
*解包:

⑷ 代码编程——ping命令流程(图)

不是我写的,找的。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

#define WIN32_LEAN_AND_MEAN
#include <winsock.h>
#pragma comment(lib, "Wsock32.lib")

#define ICMP_ECHO 8
#define ICMP_ECHOREPLY 0

//#define ICMP_MIN 8 // minimum 8 byte icmp packet (just header)
#define ICMP_MIN (8 + 4) // minimum 8 byte icmp packet (just header + timestamp)

// IP header
typedef struct _tagX_iphdr
{
unsigned char h_len:4; // length of the header
unsigned char version:4; // Version of IP
unsigned char tos; // Type of service
unsigned short total_len; // total length of the packet

unsigned short ident; // unique identifier
unsigned short frag_and_flags; // flags

unsigned char ttl; // ttl
unsigned char proto; // protocol (TCP, UDP etc)
unsigned short checksum; // IP checksum

unsigned int sourceIP;
unsigned int destIP;
}XIpHeader;

// ICMP header
typedef struct _tagX_icmphdr
{
unsigned char i_type;
unsigned char i_code;
unsigned short i_cksum;
unsigned short i_id;
unsigned short i_seq;
unsigned long i_timestamp;
}XIcmpHeader;

//puclic code
//网际校验和生产算法
//网际校验和是被校验数据16位值的反码和(ones-complement sum)
unsigned short in_cksum(unsigned short* addr, int len)
{
int nleft = len;
int sum = 0;
unsigned short* w = addr;
unsigned short answer = 0;

while(nleft > 1) {
sum += *w++;
nleft -= 2;
}

if(nleft == 1) {
*(unsigned char*)(&answer) = *(unsigned char*)w;
sum += answer;
}

sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
answer = ~sum;

return (answer);
}

void fill_IcmpData(char *buf, int datasize)
{
if (buf)
{
char ch = 0;
char* icmpdata = buf + sizeof(XIcmpHeader);
fprintf(stdout, "(IcmpData)\r\n");
for (int i = 0; i < datasize; i++)
{
ch = 'A' + i%('z' - 'A');
*(icmpdata + i) = ch;
fprintf(stdout, "%c", ch);
}
fprintf(stdout, "\r\n");
}
}

void fill_IcmpHeader(char *buf, int datasize)
{
static unsigned short seq_no = 0;
XIcmpHeader *icmp_hdr = (XIcmpHeader *)buf;
if (icmp_hdr)
{
icmp_hdr->i_type = ICMP_ECHO;
icmp_hdr->i_code = 0;
icmp_hdr->i_cksum = 0;

icmp_hdr->i_id = (unsigned short)GetCurrentProcessId();

icmp_hdr->i_seq = seq_no++;

icmp_hdr->i_timestamp = (unsigned long)::GetTickCount();

icmp_hdr->i_cksum = in_cksum((unsigned short*)buf, sizeof(XIcmpHeader) + datasize);

fprintf(stdout, "(IcmpHeader)\r\n");
fprintf(stdout, "%02X%02X%04X\r\n", icmp_hdr->i_type, icmp_hdr->i_code, icmp_hdr->i_cksum);
fprintf(stdout, "%04X%04X\r\n", icmp_hdr->i_id, icmp_hdr->i_seq);
fprintf(stdout, "%08X\r\n", icmp_hdr->i_timestamp);
}
}

// decode
void decode_IpIcmp(char *buf, int size)
{
XIpHeader *ip_hdr = (XIpHeader *)buf;
unsigned short iphdrlen;
if (ip_hdr)
{
fprintf(stdout, "(IpHeader)\r\n");
fprintf(stdout, "%01X%01X%02X%04X\r\n", ip_hdr->version, ip_hdr->h_len, ip_hdr->tos, ip_hdr->total_len);
fprintf(stdout, "%04X%04X\r\n", ip_hdr->ident, ip_hdr->frag_and_flags);
fprintf(stdout, "%02X%02X%04X\r\n", ip_hdr->ttl, ip_hdr->proto, ip_hdr->checksum);

//iphdrlen = ip_hdr->h_len * 4; // number of 32-bit words *4 = bytes
iphdrlen = ip_hdr->h_len << 2; // number of 32-bit words *4 = bytes
fprintf(stdout, "(IcmpHeader)\r\n");
if (size < iphdrlen + ICMP_MIN)
{
fprintf(stdout, "Reply %d bytes Too few\r\n", size);
}
else
{
XIcmpHeader *icmp_hdr = (XIcmpHeader *)(buf + iphdrlen);

fprintf(stdout, "%02X%02X%04X\r\n", icmp_hdr->i_type, icmp_hdr->i_code, icmp_hdr->i_cksum);
fprintf(stdout, "%04X%04X\r\n", icmp_hdr->i_id, icmp_hdr->i_seq);
fprintf(stdout, "%08X\r\n", icmp_hdr->i_timestamp);

unsigned long timestamp = 0;

timestamp = (unsigned long)::GetTickCount();

timestamp -= icmp_hdr->i_timestamp;

struct sockaddr_in from;
from.sin_addr.s_addr = ip_hdr->sourceIP;

fprintf(stdout, "Reply %d bytes from: %s time<%d TTL=%d icmp_seq=%d\r\n",
size,
inet_ntoa(from.sin_addr),
timestamp,
ip_hdr->ttl,
icmp_hdr->i_seq
);
}
}
}

int main(int argc, char **argv)
{
int ret = 0;

WSADATA ws;
WSAStartup(0x0101,&ws);

int iIcmpDataSize = 0;
struct sockaddr_in dest,from;
unsigned int addr = 0;
struct hostent *hp;

char buffer[1024];
char recv_buffer[1024];

if(argc < 2)
{
fprintf(stderr, "Usage: %s [host|ip] [datasize]\r\n", argv[0]);
return 0;
}

if (argc > 2)
iIcmpDataSize = atoi(argv[2]);
if (iIcmpDataSize < 1 || iIcmpDataSize > 1024)
iIcmpDataSize = 10;

memset(&dest, 0, sizeof dest);
dest.sin_family = AF_INET;
hp = gethostbyname(argv[1]);
if (!hp)
addr = inet_addr(argv[1]);
if ((!hp) && (addr == INADDR_NONE))
{
fprintf(stderr,"Unable to resolve %s\r\n",argv[1]);
return 0;
}
if (hp != NULL)
memcpy(&(dest.sin_addr), hp->h_addr,hp->h_length);
else
dest.sin_addr.s_addr = addr;

int sockfd;
sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);

fprintf(stdout, "XPing...\r\n");
for (int i = 0; i < 3; i++)
{
fprintf(stdout, "Echo...\r\n");
memset(buffer, 0, 1024);
fill_IcmpData(buffer, iIcmpDataSize);
fill_IcmpHeader(buffer, iIcmpDataSize);
XIcmpHeader *icmp_hdr = (XIcmpHeader *)buffer;
int iSendSize = sendto(sockfd, buffer, sizeof(XIcmpHeader) + iIcmpDataSize, 0, (struct sockaddr*)&dest, sizeof(dest));

fprintf(stdout, "Reply...\r\n");
memset(&from, 0, sizeof from);
memset(recv_buffer, 0, 1024);

int fromlen = sizeof(from);
int iRecvSize = recvfrom(sockfd, recv_buffer, 1024, 0, (struct sockaddr*)&from, &fromlen);

if (iRecvSize > 0)
decode_IpIcmp(recv_buffer, iRecvSize);
}

WSACleanup();

return ret;
}

⑸ 网络编程(一)之HTML

这段时间学习了网页的基础知识,考虑到知识点内容比较多,为了方便记忆,我还是记下来,方便日后总结。
这里我学习的方式通过黑马pink老师的教学视频学习。

Web 标准是由 W3C 组织和其他标准化组织制定的 一系列标准的集合 。W3C(万维网联盟)是国际最着名的标准化组织。

Web标准的构成
主要包括 结构(Structure) , 表现(Presentation) , 行为(Behavior) 三个方面。

结构 : 结构用于对网页元素进行整理和分类,现阶段主要学的是HTML。
表现 : 表现用于设置网页元素的版式,颜色、大小等外观样式,主要指的CSS
行为 :行为是指网页模式的定义及交互的编写,现阶段主要学的是JavaScript

HTML分为双标签( <html> 和 </html> ),以及单标签( <br/> ), 这种情况出现的概率不大。

这里主要分三个部分:

为了使网页更具有语义化,我们经常会在页面中用到标题标签。HTML 提供了 6 个等级的网页标题, 即 <h1> - <h6> , 数字越小字体越粗越大。

在网页中,要把文字有条理地显示出来,就需要将这些文字分段显示。在 HTML 标签中, <p> 标签用于 定义段落 ,它可以将整个网页分为若干个段落。

特点:

在 HTML 中,一个段落中的文字会从左到右依次排列,直到浏览器窗口的右端,然后才自动换行。如果希望 某段文本强制换行显示,就需要使用换行标签 <br /> 。

特点:

<div> 标签用来布局,一行只能放一个 <div> ,大盒子
<span> 标签用来布局, 一行可以放多个 <span> ,小盒子

当我们点击某个连接可以快速定位页面中的某个位置

列表标签主要分为三个类别分别是: 无序标签 , 有序标签 和 自定义标签 。

表单主要为了 收集用户信息 , 在 HTML 中,一个完整的表单通常由 表单域 、 表单控件(也称为表单元素) 和 提示信息 3个部分构成。

(1) 表单域
表单域 是一个 包含表单元素的区域 , 在HTML标签中, <form> 标签用于定义表单域,以实现用户信息收集和传递。

action 用于制定url地址
method 用于设置表单数据提交方式,是 get 还是 post
name 用于制定表单的名称,以区分同一个页面的多个表单域

(2)表单控件
表单控件分为三个 input , label , select , textarea
【1】 input (这里注意为单标签)
<input type="属性值" />
这里的type有一下属性:
button 定义可点击按钮, 多数情况可通过JavaScript启动脚本
checkbox 定义复选框
file 定义输入字段和浏览按钮,供文件上传, 可以有界面的选择文件
hidden 定义隐藏的输入字段
image 定义图像形式的提交按钮
password 定义密码字段, 该字段中的字符被掩码
radio 定义单选按钮
reset 定义重置按钮, 重置按钮会清除表单中的所有数据
submit 定义提交按钮,提交按钮会把表单数据发送给服务器
text 定义单行的输入字段,用户可在其中输入文本,默认宽度为20个字符

这里除了 input 外还有其他标签,如下所示:
name 定义input元素的名称, 对于单选/复选框必须有相同的名字才能支持单选功能
value 规定input元素的值, 可以给value一个默认的值
checked 规定此input元素首次加载时应当被选中
maxmargin 规定在输入字段的字符最大长度

【2】label标签
<label> 标签用于绑定一个表单元素, 当点击 <label> 标签内的文本时,浏览器就会自动将焦点(光标)转到或者
选择对应的表单元素上,用来增加用户体验, 如下我鼠标点击 , 相当于 sex 这个单选按钮

【3】select标签
在页面中,如果有多个选项让用户选择,并且想要节约页面空间时,我们可以使用 <select> 标签控件定义下拉列表( <option> 中定义 selected =“ selected " 时,当前项即为默认选中项。 )

【4】textarea标签
在表单元素中, <textarea> 标签是用于定义多行文本输入的控件。 使用多行文本输入控件,可以输入更多的文字,该控件常见于留言板,评论。( rows 表示行数, cols 表示列数)

页是图片、链接、文字、声音、视频等元素组成, 其实就是一个html文件(后缀名为html) 网页生成制作: 有前端人员书写 HTML 文件, 然后浏览器打开,就能看到了网页.
HTML: 超文本标记语言, 用来制作网页的一门语言. 有标签组成的. 比如 图片标签 链接标签 视频标签等...

⑹ Python网络编程6-使用Pysnmp实现简单网管

  简单网络管理协议SNMP(Simple Network Management Protocol)用于网络设备的管理。SNMP作为广泛应用于TCP/IP网络的网络管理标准协议,提供了统一的接口,从而实现了不同种类和厂商的网络设备之间的统一管理。
  SNMP协议分为三个版本:SNMPv1、SNMPv2c和SNMPv3。

  SNMP系统由网络管理系统NMS(Network Management System)、SNMP Agent、被管对象Management object和管理信息库MIB(Management Information Base)四部分组成。

  SNMP查询是指NMS主动向SNMP Agent发送查询请求,如图1-3所示。SNMP Agent接收到查询请求后,通过MIB表完成相应指令,并将结果反馈给NMS。SNMP查询操作有三种:Get、GetNext和GetBulk。SNMPv1版本不支持GetBulk操作。

  不同版本的SNMP查询操作的工作原理基本一致,唯一的区别是SNMPv3版本增加了身份验证和加密处理。下面以SNMPv2c版本的Get操作为例介绍SNMP查询操作的工作原理。假定NMS想要获取被管理设备MIB节点sysContact的值,使用可读团体名为public,过程如下所示:

  SNMP设置是指NMS主动向SNMP Agent发送对设备进行Set操作的请求,如下图示。SNMP Agent接收到Set请求后,通过MIB表完成相应指令,并将结果反馈给NMS。

  不同版本的SNMP Set操作的工作原理基本一致,唯一的区别是SNMPv3版本增加了身份验证和加密处理。下面以SNMPv3版本的Set操作为例介绍SNMP Set操作的工作原理。
假定NMS想要设置被管理设备MIB节点sysName的值为HUAWEI,过程如下所示:

  SNMPv1和SNMPv2c的Set操作报文格式如下图所示。一般情况下,SNMPv3的Set操作信息是经过加密封装在SNMP PDU中,其格式与SNMPv2c的Set操作报文格式一致。

  SNMP Traps是指SNMP Agent主动将设备产生的告警或事件上报给NMS,以便网络管理员及时了解设备当前运行的状态。
  SNMP Agent上报SNMP Traps有两种方式:Trap和Inform。SNMPv1版本不支持Inform。Trap和Inform的区别在于,SNMP Agent通过Inform向NMS发送告警或事件后,NMS需要回复InformResponse进行确认。

  在Ensp中搭建网络环境,在R2上启用SNMP作为SNMP agent,Linux主机作为NMS;为方便观察SNMP报文格式,在R2使用SNMP的版本为v2c。

通过下面的Python脚本获取R2的系统信息与当前的主机名

运行结果如下

  在R2接口上抓包结果如下,Linux主机向R2的161端口发送SNMP get-request报文,可以看到SNMP使用的版本为v2c,设置的团体名为public,随机生成了一个request-id,变量绑定列表(Variable bindings),即要查询的OID,但Value为空;值得注意的是这些信息都是明文传输的,为了安全在实际环境中应使用SNMPv3。

通过下面的Python脚本获取R2的接口信息。

运行结果如下:

在R2接口抓包结果如下,getBuikRequest相比get-request设置了一个max-repetitions字段,表明最多执行get操作的次数。Variable bindings中请求的OID条目只有一条。

下面Python脚本用于设置R2的主机名为SNMPv2R2。

运行结果如下

在路由器上可以看到主机名有R2变为了SNMPv2R2。

get-response数据包内容与set-request中无异。

下面Python脚本用于接收,R2发送的Trap,并做简单解析。

先运行该脚本,之后再R2上手动将一个接口shutdown,结果如下:

接口上抓包结果如下,此时团体名用的是public,data部分表明是trap。

由于Ensp中的通用路由器认证算法只支持des56,而pysnmp不支持该算法,因此使用AR路由器配置SNMPv3。

使用下面Python脚本发送snmpv3 get报文获取设备系统信息。

抓包结果如下,首先发送get-resques进行SNMPv3认证请求,随机生成一个msgID,认证模式为USM,msgflgs中Reportable置1要求对方发送report,其他为置0,表示不进行加密与鉴权;另外安全参数,认证参数、加密参数都为空,此时不携带get请求数据。

路由器给NMS回复report,msgID与resquest一致,Msgflgs中各位都置0,同时回复使用的安全引擎,认证与加密参数为空,不进行认证与加密,因此能看到data中的数据。

AR1收到请求后进行回复,数据包中msgflags标志位中除reportable外其他位都置1,表示不需要回复,同时进行加密与鉴权。同样也可以看到认证用户为testuser,认证参数与加密参数都有填充,data部分也是同样加密。

参考:
什么是SNMP - 华为 (huawei.com)
AR100-S V300R003 MIB参考 - 华为 (huawei.com)
SNMP library for Python — SNMP library for Python 4.4 documentation (pysnmp.readthedocs.io)

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:746
制作脚本网站 发布:2025-10-20 08:17:34 浏览:1009
python中的init方法 发布:2025-10-20 08:17:33 浏览:715
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:876
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:774
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1124
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:349
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:227
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:911
python股票数据获取 发布:2025-10-20 07:39:44 浏览:873