编译网口
A. 嵌入式系统开发为什么要采用交叉编译的方式
由于宿主机和目标机的体系结构不同,在宿主机X86平台上可以运行的程序在目标机ARM平台上无法运行,因此嵌入式软件开发采用交叉编译方式在一个平台上生成可以在另一个平台上执行的代码。编译的最主要的工作就是将程序转化成运行该程序的CPU所能识别的机器代码。
进行交叉编译的主机称为宿主机,也就是普通的通用计算机,宿主机系统资源丰富,使用方便地集成开发环境和调试工具等。
程序实际运行的环境称为目标机,也就是嵌入式系统环境。
B. linux操作系统有哪五个基本的组成部分
Linux系统一般有4个主要部分:内核、shell、文件系统和应用程序。Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

操作系统的组成要素:
操作系统 = 内核 + 系统程序
系统程序 = 编译环境 + API
编译环境 = 编译程序 + 连接程序 + 装载程序
API = 系统调用 + 语言库函数(C、C++、Java等等)
AUI = shell + 系统服务例程(如x服务器等)+ 应用程序(浏览器,字处理,编辑器等)
软件系统:
软件系统 = 操作系统 + AUI
操作系统最底层的组件是内核,其上层搭建了许多系统软件。
系统程序包括三个部分,分别是:编译环境、应用程序接口和用户接口。
编译环境包含汇编、C 等低高级语言编译程序,连接程序和装载程序,这些程序负责将文本格式的程序语言转变为机器能识别和装载的机器代码。
应用程序接口(API)包含内核提供的系统调用接口和语言库,系统调用是为了能让应用程序使用内核服务,语言库函数则是为了方便应用程序开发,所以将一些常用的基础功能预先编译以供使用,比如对C语言来说常用的C库等;
用户接口(AUI)包括我们熟悉的shell、系统服务程序和常用的应用程序。
这是一个典型的结构,但不是一成不变。许多操作系统的发行中会有所删减,比如应用于嵌入式设备的系统,对X服务器就可能不做要求。但是像内核、系统调用等要素是必不可少的。
Linux系统一般有4个主要部分:内核、shell、文件系统和应用程序。内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。
一.Linux内核
内核是操作系统的核心,具有很多最基本功能,如虚拟内存、多任务、共享库、需求加载、可执行程序和TCP/IP网络功能。Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。
二.Linux shell
shell是系统的用户界面,提供了用户与内核进行交互操作的一种接口。它接收用户输入的命令并把它送入内核去执行,是一个命令解释器。另外,shell编程语言具有普通编程语言的很多特点,用这种编程语言编写的shell程序与其他应用程序具有同样的效果。
三.Linux文件系统
文件系统是文件存放在磁盘等存储设备上的组织方法。Linux系统能支持多种目前流行的文件系统,如EXT2、 EXT3、 FAT、 FAT32、VFAT和ISO9660。
四.Linux应用程序
标准的Linux系统一般都有一套都有称为应用程序的程序集,它包括文本编辑器、编程语言、X
Window、办公套件、Internet工具和数据库等。
C. ZYNQ+linux网口调试笔记(3)PL-ETH
在ZYNQ上使用gigE Vision协议的网络接口相机。
第一步:调通PS侧网口GEM0(Xilinx BSP默认配好)。
第二步:调通PS侧网口GEM1(见前一篇文档:开发笔记(1))。
第三步:调通PL侧网口(本文阐述)。
第四步:在PL侧网口上验证Jumbo Frame特性,并在应用层适配gigE Vision协议。
根据《xapp1082》可知,PL侧的PHY支持1000Base-X和SGMII两种配置,这两种配置对应两种不同的PHY引脚接口(连接到MAC)。而我们的hdf文件使用的是1000Base-X的配置。
关于网口的Linux驱动,我们在官网找到一份资料: Xilinx Wiki - Zynq PL Ethernet 。资料很长,我们只看与我们相关的2.4.1 PL Ethernet BSP installation for 1000Base-X”这一章节就可以了。
首先导入FPGA设计同事提供的hdf文件:
在弹出的图形界面里,进入Subsystem AUTO Hardware Settings——Ethernet Settings——Primary Ethernet,确认可以看到PL侧网络设备axi_ethernet_0,说明hdf文件里已包含了必要的网口硬件信息:
上图中被选中的网口将成为Linux上的设备eth0。这里我们默认选择ps7_ethernet_0,即使用GEM0作为首选网口。
启用Xilinx AXI Ethernet驱动
进入Device Drivers -- Network device support – 选中Xilinx AXI Ethernet(以及Xilinx Ethernet GEM,这是PS侧网口的驱动)
进入Networking support – 选中 Random ethaddr if unset
进入Device Drivers -- Network device support -- PHY Device support and infrastructure – 启用Drivers for xilinx PHYs
进入~~~~Device Drivers -- DMA Engine Support -– 禁用~~~~Xilinx AXI DMAS Engine~~~ (对应的配置项名为 ~~ CONFIG_XILINX_DMA ~~~)
注意: Xilinx Wiki里对设备树节点的引用有误(&axi_ethernet),导致编译报错,应改为&axi_ethernet_0。
注:PL-ETH驱动所在路径:<project>/build/tmp/work-shared/plnx_arm/kernel-source/drivers/net/ethernet/xilinx/xilinx_axienet_main.c和xilinx_axienet_mdio.c。对应的内核配置项为CONFIG_NET_VENDOR_XILINX和CONFIG_XILINX_AXI_EMAC。
启用ethtool和tcpmp(调试用,非必须):
然后将生成的BOOT.BIN和image.ub拷贝到SD卡根目录下,将SD卡插入板子上,上电运行。
上电后,使用ifconfig eth1查看网口信息,观察MAC地址与设置的一致,且ifconfig eth1 192.168.1.11 up没有报错。
测试网络通路:ping PC是通的。说明网口工作正常。
Linux下eth1(即PL-ETH)的MAC地址有误
问题描述:
开机打印:
注意:
MAC地址是错的,驱动里解析出的是GEM0的MAC地址。
试验发现,即使在system-user.dtsi里不写local-mac-address,也照样解析出的是GEM0的MAC。
而将system-user.dtsi里的local-mac-address改名为pl-mac-address,并将驱动里解析的字符串也对应更改为pl-mac-address,则可以正确解析出来:
Passing MAC address to kernel via Device Tree Blob and U-Boot:
http://zedboard.org/content/passing-mac-address-kernel-device-tree-blob
通过更改u-boot环境变量和设备树,为每个板子设置一个独特的MAC地址:
https://www.xilinx.com/support/answers/53476.html
U-Boot里的环境变量ethaddr会覆盖掉设备树里pl-eth的local-mac-addr字段,从而影响Linux启动后的网卡MAC地址;
但U-Boot里的环境变量ipaddr不会对Linux启动后的配置产生任何影响。因为设备树里根本就没有关于IP地址的配置。
phy-mode怎么会是sgmii?查了下官方的提供的BSP里,也是“sgmii”。说明这个没问题。具体原因不清楚。
@TODO: 设备树里的中断号的顺序如何影响功能?
为何读出来的IRQ号不对呢?这是因为这里读到的不是硬件的中断号,而是经过系统映射之后的软件IRQ number。两者不具有线性关系。
关于中断号的疑问:
Linux上的网口eth0、eth1的顺序,似乎是按照phy地址从小到大来排布的。
Xilinx xapp1082-zynq-eth.pdf (v5.0) July 16, 2018
https://www.xilinx.com/support/documentation/application_notes/xapp1082-zynq-eth.pdf
Xilinx Wiki - Zynq PL Ethernet:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841633/Zynq+PL+Ethernet
Xilinx Wiki - Linux Drivers:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841873/Linux+Drivers
Xilinx Wiki - Linux Drivers - Macb Driver:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841740/Macb+Driver
Xilinx Wiki - Zynq Ethernet Performance:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841743/Zynq+Ethernet+Performance
查到关于Jumbo frame MTU的定义,当前值为9000,可否改大一些?
驱动源码里关于jumbo frame的说明:
设置MTU为9000,发现ping包最大长度只能设为ping 192.168.1.10 -s 1472
https://lore.kernel.org/patchwork/patch/939535/
【完】
D. 如何编译hi3520d sdk
第一章 Hi3520D_SDK_Vx.x.x.x版本升级操作说明
如果您是首次安装本SDK,请直接参看第2章。
第二章 首次安装SDK
1、hi3520D SDK包位置
在"hi3520D_V100R001***/01.software/board"目录下,您可以看到一个 hi3520D_SDK_Vx.x.x.x.tgz 的文件,
该文件就是hi3520D的软件开发包。
2、解压缩SDK包
在linux服务器上(或者一台装有linux的PC上,主流的linux发行版本均可以),使用命令:tar -zxf hi3520D_SDK_Vx.x.x.x.tgz ,
解压缩该文件,可以得到一个hi3520D_SDK_Vx.x.x.x目录。
3、展开SDK包内容
返回hi3520D_SDK_Vx.x.x.x目录,运行./sdk.unpack(请用root或sudo权限执行)将会展开SDK包打包压缩存放的内容,请按照提示完成操作。
如果您需要通过WINDOWS操作系统中转拷贝SDK包,请先运行./sdk.cleanup,收起SDK包的内容,拷贝到新的目录后再展开。
4、在linux服务器上安装交叉编译器
1)安装uclibc交叉编译器(注意,需要有sudo权限或者root权限):
进入hi3520D_SDK_Vx.x.x.x/osdrv/toolchain/arm-hisiv100nptl-linux目录,运行chmod +x cross.install,然后运行./cross.install即可。
2) 安装glibc交叉编译器(注意,需要有sudo权限或者root权限,暂时不支持glibc版本):
进入hi3520D_SDK_Vx.x.x.x/osdrv/toolchain/arm-hisiv200-linux目录,运行chmod +x cross.install,然后运行./cross.install即可。
3) 执行source /etc/profile, 安装交叉编译器的脚本配置的环境变量就可以生效了,或者请重新登陆也可。
5、编译osdrv
参见osdrv目录下readme
6、SDK目录介绍
hi3520D_SDK_Vx.x.x.x 目录结构如下:
|-- sdk.cleanup # SDK清理脚本
|-- sdk.unpack # SDK展开脚本
|-- osdrv # 存放操作系统及相关驱动的目录
| |-- busybox # busybox源代码
| |-- drv # drv源代码
| |-- kernel # linux内核源代码
| |-- pub # 编译好的镜像、工具、drv驱动等
| |-- rootfs_scripts # rootfs源代码
| |-- toolchain # 交叉编译器
| |-- tools # linux工具源代码
| |-- uboot # uboot源代码
| `-- Makefile # osdrv Makefile
|-- package # 存放SDK各种压缩包的目录
| |-- osdrv.tgz # linux内核/uboot/rootfs/tools源码压缩包
| |-- mpp.tgz # 媒体处理平台软件压缩包
| `-- image # 可供FLASH烧写的映像文件,如内核、根文件系统
|-- scripts # 存放shell脚本的目录
|-- mpp # 存放媒体处理平台的目录
|-- component # 组件源代码
|-- extdrv # 板级外围驱动源代码
|-- include # 对外头文件
|-- ko # 内核模块
|-- lib # release版本库以及音频库
|-- tools # 媒体处理相关工具
`-- sample # 样例源代码
第三章、安装、升级hi3520DDEMO板开发开发环境
# 如果您使用的hi3520D的DEMO板,可以按照以下步骤烧写u-boot,内核以及文件系统,以下步骤均使用网络来更新。
# 通常,您拿到的单板中已经有u-boot,如果没有的话,就需要使用仿真器进行烧写。
# 更详细的操作步骤及说明,请参见01.software\board\documents目录下的《Linux开发环境用户指南》。
# 以下操作假设您的单板上已经有u-boot,使用网口烧写uboot、kernel及rootfs到Flash中。
# Demo单板默认为从SPI Flahs启动。
1、配置tftp服务器
# 可以使用任意的tftp服务器,将package/image_uclibc(或image_glibc)下的相关文件拷贝到tftp服务器目录下。
2、参数配置
# 单板上电后,敲任意键进入u-boot。设置serverip(即tftp服务器的ip)、ipaddr(单板ip)和ethaddr(单板的MAC地址)。
setenv serverip xx.xx.xx.xx
setenv ipaddr xx.xx.xx.xx
setenv ethaddr xx:xx:xx:xx:xx:xx
setenv netmask xx.xx.xx.xx
setenv gatewayip xx.xx.xx.xx
ping serverip,确保网络畅通。
3、烧写映像文件到SPI Flash
以16M SPI Flash为例。
1)地址空间说明
| 1M | 4M | 11M |
|---------------|---------------|---------------|
| boot | kernel | rootfs |
以下的操作均基于图示的地址空间分配,您也可以根据实际情况进行调整。
2)烧写u-boot
sf probe 0
mw.b 82000000 ff 100000
tftp 0x82000000 u-boot-hi3520D.bin
sf probe 0
sf erase 0 100000
sf write 82000000 0 100000
reset
3)烧写内核
mw.b 82000000 ff 400000
tftp 82000000 uImage_3520d
sf probe 0
sf erase 100000 400000
sf write 82000000 100000 400000
4)烧写文件系统
mw.b 82000000 ff b00000
tftp 0x82000000 rootfs_3520d_64k.jffs2
sf erase 500000 b00000
sf write 82000000 500000 b00000
5)设置启动参数
setenv bootargs 'mem=64M console=ttyAMA0,115200 root=/dev/mtdblock2 rootfstype=jffs2 mtdparts=hi_sfc:1M(boot),4M(kernel),11M(rootfs)'
setenv bootcmd 'sf probe 0;sf read 0x82000000 0x100000 0x400000;bootm 0x82000000'
sa
4、启动新系统
reset # 重启进入新系统。
第四章、开发前环境准备
1、管脚复用
与媒体业务相关的管脚复用都在mpp/ko_hi3520D目录下的sh脚本中配置,如果与实际情况不符请直接修改,此脚本被load3520D调用,在加载mpp内核模块之前被执行;
mpp之外的其他管脚复用统一在uboot中配置,详细说明请参见《U-boot移植应用开发指南》。
第五章、使用SDK和DEMO板进行开发
1、开启Linux下的网络
# 设置网络
ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx;
ifconfig eth0 xx.xx.xx.xx netmask xx.xx.xx.xx;
route add default gw xx.xx.xx.xx
# 然后ping一下其他机器,如无意外,网络将能正常工作。
2、使用NFS文件系统进行开发
# 在开发阶段,推荐使用NFS作为开发环境,可以省去重新制作和烧写根文件系统的工作。
# 挂载NFS文件系统的操作命令:
mount -t nfs -o nolock -o tcp xx.xx.xx.xx:/your-nfs-path /mnt
# 然后就可以在/mnt目录下访问服务器上的文件,并进行开发工作。
3、开启telnet服务
# 网络正常后,运行命令 telnetd& 就可以启动单板telnet服务,然后才能使用telnet登录到单板。
4、运行MPP业务
# 在单板linux系统下,进入mpp/ko目录,加载KO
cd mpp/ko
./load3520D -i
# 进入各sample目录下执行相应样例程序(sample需要先在服务器上成功编译过)
cd mpp/sample/vio
./sample_vio 0
第六章 地址空间分配与使用
1、DDR内存管理说明
1)所有DDR内存中,一部分由操作系统管理,称为OS内存;另一部分由MMZ模块管理,供媒体业务单独使用,称为MMZ内存。
2)OS内存起始地址为0x80000000,内存大小可通过bootargs进行配置,例如第三章中的setenv bootargs 'mem=64M ... ',表示分配给操作系统内存为64M,您可以根据实际情况进行调整。
3)MMZ内存由MMZ内核模块管理(mpp/ko_hi35xx目录下的mmz.ko),加载mmz模块时,通过模块参数指定其起始地址及大小,例如:
insmod mmz.ko mmz=anonymous,0,0x84000000,186M:jpeg,0,0x8fa00000,5M anony=1 || report_error
表示mmz两块区域,区域一的名称为anonymous,起始地址为0x84000000,大小为186M;区域二的名称为jpeg,起始地址为0x8fa00000,大小为5M。
您可以通过修改mpp/ko_hi35XX目录下load3520D脚本中的mmz模块参数,来修改其起始地址和总大小。
4)请注意MMZ内存地址范围不能与OS内存重叠。
2、DEMO板DDR内存管理示意
1) 以容量为256MBytes的DDR内存为例,以下为根据本文档和SDK默认配置得到的内存管理示意图:
DDR:
-----|-------| 0x80000000 # Memory managed by OS.
64M | OS |
| |
-----|-------| 0x84000000 # Memory managed by MMZ block anonymous.
187M | MMZ |
| |
-----|-------| 0x8fa00000 # Memory managed by MMZ block jpeg.
5M | |
| |
-----|-------| 0x8ff00000 # Not used.
1M | |
| |
-----|-------| 0x90000000 # End of DDR.
注意:
(1)用户在配置启动参数时需要设置OS的管理内存为64M,“setenv bootargs 'mem=64M ...”。
(2)系统启动后,配置load3520D的脚本中mmz的管理内存为191M,“insmod mmz.ko mmz=anonymous,0,0x84000000,186M:jpeg,0,0x8fa00000,5M anony=1 || report_error”。
