所有高级语言的编译器都一样对吗
⑴ 编译器是什么
简单讲,编译器就是将“一种语言(通常为高级语言)”翻译为“另一种语言(通常为低级语言)”的程序。一个现代编译器的主要工作流程:源代码 (source code) → 预处理器 (preprocessor) → 编译器 (compiler) → 目标代码 (object code) → 链接器 (Linker) → 可执行程序 (executables)
高级计算机语言便于人编写,阅读交流,维护。机器语言是计算机能直接解读、运行的。编译器将汇编或高级计算机语言源程序(Source program)作为输入,翻译成目标语言(Target language)机器代码的等价程序。源代码一般为高级语言 (High-level language), 如Pascal、C、C++、java、汉语编程等或汇编语言,而目标则是机器语言的目标代码(Object code),有时也称作机器代码(Machine code)。
对于C#、VB等高级语言而言,此时编译器完成的功能是把源码(SourceCode)编译成通用中间语言(MSIL/CIL)的字节码(ByteCode)。最后运行的时候通过通用语言运行库的转换,编程最终可以被CPU直接计算的机器码(NativeCode)。
编译是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器语言)的翻译过程。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。
典型的编译器输出是由包含入口点的名字和地址, 以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的EXE,
所以我们电脑上的文件都是经过编译后的文件。
⑵ .C语言与PASCAL等其他高级语言的编译器是兼容的,都可完成源程序的编译功能. 是对吗
都可以完成编译 不过只能编译自己本身的语言
C编译器只能编译C
pascal只能编译pascal
互相并不兼容。
⑶ 每个编程语言都有不同的编译器吗
是的,在编程的世界里面,对于每一种边缘都需要使用不同的编译器,因为他们的编码的形式和规则都是不一样的,希望可以帮到你
⑷ 计算机语言的分类及之间的联系与区别
计算机高级编程语言按其程序的执行方式可以分为两种:编译型,解释型
1.编译型语言是指使用专门的编译器、针对特定平台(操作系统)将某种高级语言源程序一次性“翻译”成可被该平台硬件运行的机器码(包括指令和操作数),并包装成该平台的操作系统所能识别和运行的格式。
这种语言的程序执行时效率高,可以脱离开发环境独立运行,但如果要移植必须修改源程序,或者针对不同的平台采用不同的编译器进行重新编译。现在的多是高级语言,如c,c++,Pascal,LISP等都是编译型的。
2.解释型是指用专门的解释器将某种高级语言源程序逐条解释成特定平台的机器码指令并立即执行,解释一句执行一句,而不进行整体的编译和链接处理。
3.java语言是解释型和编译型的结合,先采用通用的java编译器将java源程序编译成为与平台无关的中间产物,然后利用java虚拟机(JVM:Java Virtual Maching)进行解释执行。
(4)所有高级语言的编译器都一样对吗扩展阅读:
汇编语言
为了减轻使用机器语言编程的痛苦,人们进行了一种有益的改进:用一些简洁的英文字母、符号串来替代一个特定的指令的二进制串,
比如,用"ADD"代表加法,"MOV"代表数据传递等等,这样一来,人们很容易读懂并理解程序在干什么,纠错及维护都变得方便了,这种程序设计语言就称为汇编语言,即第二代计算机语言。
然而计算机是不认识这些符号的,这就需要一个专门的程序,专门负责将这些符号翻译成二进制数的机器语言,这种翻译程序被称为汇编程序。
汇编语言同样十分依赖于机器硬件,移植性不好,但效率仍十分高,针对计算机特定硬件而编制的汇编语言程序,能准确发挥计算机硬件的功能和特长,程序精炼而质量高,所以至今仍是一种常用而强有力的软件开发工具。
汇编语言的实质和机器语言是相同的,都是直接对硬件操作,只不过指令采用了英文缩写的标识符,更容易识别和记忆。它同样需要编程者将每一步具体的操作用命令的形式写出来。
⑸ 什么是编译器
编译器,是将便于人编写,阅读,维护的高级计算机语言翻译为计算机能识别,运行的低级机器语言的程序。编译器将源程序(Source program)作为输入,翻译产生使用目标语言(Target language)的等价程序。源程序一般为高级语言(High-level language),如Pascal,C++等,而目标语言则是汇编语言或目标机器的目标代码(Object code),有时也称作机器代码(Machine code)。
一个现代编译器的主要工作流程如下:
源程序(source code)→预处理器(preprocessor)→编译器(compiler)→汇编程序(assembler)→目标程序(object code)→连接器(链接器,Linker)→可执行程序(executables])
工作原理
翻译是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器言)。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。
典型的编译器输出是由包含入口点的名字和地址以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的可执行程序。
编译器种类
编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高级语言作为输入,输出也是高级语言的编译器。例如: 自动并行化编译器经常采用一种高级语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。
预处理器(preprocessor)
作用是通过代入预定义等程序段将源程序补充完整。
编译器前端(frontend)
前端主要负责解析(parse)输入的源程序,由词法分析器和语法分析器协同工作。词法分析器负责把源程序中的‘单词’(Token)找出来,语法分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。
例如“a = b + c;”前端词法分析器看到的是“a, =, b , +, c;”,语法分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。
前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在次基础上进一步优化,处理。
编译器后端(backend)
编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。
一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。
编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源程序的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源程序的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。
常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的 变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等等。
上述的程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变新有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。 优化和变形的目的是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threaded code)。
机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。
⑹ 每一种高级语言都有它对应的编译程序这句话是不是对的
这句话是错的,并不是所有的高级程序设计语言都是编译执行的,有些高级程序设计语言就是解释执行的。
这里的关键是理解编译执行和解释执行的不同,编译执行是由编译程序编译链接之后,生成可执行文件,以后只要执行可执行文件就好了;而解释执行,是由解释器来执行代码的,每次执行都是解释执行代码的过程。解释执行的典型高级程序设计语言就是JAVA,另外还有VB等脚本语言。
⑺ 编译程序也是高级语言
能被执行的程序肯定是已经编译成机器字节码的程序。比如常见的C++编译器
C++的编译器虽然自己也是以C/C++高级语言编写,但被你用到的时候都已经编译成“执行档”binary。你只用执行档。执行档是操作系统作为运行环境的,由操作系统运行。
想Java或.net之类的平台,高级语言被编译成字节码的执行档,运行环境不是操作系统而是虚拟机。由虚拟机运行。
这个过程更明显地体现在Free BASIC语言的发展过程。FB第一版是C语言写的编译的,然后从第二版开始都以BASIC语言编写,自己FB编译自己FB。这种叫自主编译self-hosting.
编译翻译的过程就是一个查词典的过程
比如
高级语言的+号,翻译成add指令,写入字节码05 XX
这和把换行\n翻译成html的<br/>是类似的不同语言间的翻译过程。
⑻ 不同语言的程序编译之后一样吗
肯定不是一模一样的
但是运行的结果是一样的
只要你的高级语言的算法和实现细节是一样的
能反编译,但只能到汇编语言,不可能到高级语言
因为机器码和汇编是一一对应的
但是,不同的高级语言有可能对应相同的低级语言
所以不能翻译成高级语言
所谓的0
和
1
其实是有电流,无电流的意思
因为电子计算机实际上是一个复杂的电路
⑼ 我要选择什么C语言编译器,VC VS GCC还是其他什么的。他们都有什么区别。
学习C语言的话,VC基本上就差不多了,小巧,方便,启动快
而VS是大软件,启动时有点慢,
GCC是linux系统内的C语言编辑器,上面两个是window下的