当前位置:首页 » 编程软件 » cuda使用普通编译器

cuda使用普通编译器

发布时间: 2023-04-30 10:04:41

Ⅰ ue5调用cuda程序

UE5是一款游戏引擎,可以通过编写C++代码来与CUDA程序进行交互。下面是一些基本步骤:

1. 构建一个C++插件来实现与CUDA的交互;
2. 将CUDA程序编译为动态链接库(弊做DLL)文件;
3. 在UE5项目中添加动态租仿衡链接库;
4. 在C++插件中使用动态链接库调用CUDA程序。

具体来说,您可以按照以下步骤操作:

1. 在UE5中创建一个新的插件项目。
2. 在插件项目中添加包含CUDA代码的源文件,并将其编译为动态链接库。
3. 在插件项目中添加包含CUDA头文件以及相关库大卜文件的路径。
4. 在插件代码中使用动态链接库调用CUDA程序。

需要注意的是,在开发过程中还需要注意以下几点:

1. 编译CUDA程序时需要使用正确的编译器和CUDA工具包版本;
2. 需要确保CUDA代码能够在动态链接库中正常运行;
3. 如果需要在多个平台上使用该插件,则需要对不同平台进行编译并添加平台特定的代码。

总的来说,与CUDA的交互需要比较深入的技术知识,我们建议您在开始之前做好充分的准备和了解相关知识。

Ⅱ 如何安装CUDA

首先验证你是否有nvidia的显卡(developer.nvidia.com/cuda-gpus这个网站查看你是否有支持gpu的显卡):

[plain] view plain
$ lspci | grep -i nvidia

查看你的linux发行版本(主要是看是64位还是32位的):

[plain] view plain
$ uname -m && cat /etc/*release

看一下gcc的版本:

[plain] view plain
$ gcc --version
首先下载nvidia cuda的仓库安装包(我的是ubuntu 14.0464位,所以下载的是ubuntu14.04的安装包,如果你是32位的可以参看具体的地址,具体的地址是https://developer.nvidia.com/cuda-downloads)

[plain] view plain
wget developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_6.5-14_amd64.deb

下载完成之后可以使用如下命令安装它,注意文件名修改为cuda-repo-ubuntu1404_6.5-14_amd64.deb

[plain] view plain
sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb

安装好仓库之后,就可以更新你的本地仓库。

[plain] view plain
sudo apt-get update

最后开始安装cuda以及显卡驱动(安装cuda的同时就会把显卡驱动也全部安装好,这个真的很方便。但是下载的时间有点长。)

[plain] view plain
sudo apt-get install cuda

需要注意的是,我这里提供的安装方法跟网络上各种安装方法都不一样,他们的方法往往很复杂

主要是因为:(1)有些教程是手工安装显卡的驱动程序,手工屏蔽系统的默认开源的驱动
(2)安装cuda也是手工进行

使用这个方法的时候千万要注意几个问题:
(1)cuda6.5已经不支持老旧的显卡了所以sm11 等等都必须删除。可以参考我的另一个文章,关于编译opencv3.0的
(2)ubuntu14.04是64位的,并且不要一开始就更新系统补丁什么的,因为系统更新过之后,再安装显卡驱动就会无法进入图形界面,我查看了相关的日志发现是卡在了dbus那边。所以,我建议一安装好ubuntu 14.04就不要更新系统补丁。

安装完之后你需要设置环境变量:

[plain] view plain
$ export PATH=/usr/local/cuda-6.5/bin:$PATH
$ export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATH

设置完毕之后,你还可以选择是否安装cuda附带的示例代码(<dir>表示你要安装的位置,你可以将<dir>替换成~):

[plain] view plain
$ cuda-install-samples-6.5.sh <dir>
接下来做一些验证工作:

查看显卡的驱动版本

[plain] view plain
cat /proc/driver/nvidia/version
查看nvcc编译器的版本

[plain] view plain
nvcc -V i

编译cuda的示例代码:

[plain] view plain
cd ~/NVIDIA_CUDA-6.5_Samples
然后make一下编译代码。

进入bin路径运行devicequery

[plain] view plain
cd ~/NVIDIA_CUDA-6.5_Samples/bin
[html] view plain
./ deviceQuery

具体的安装过程可以参考英文。

http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html

这里必须要强调的是一定要是新的ubuntu14.04 在安装显卡驱动之前千万别更新,否则就无法进入桌面,这个问题困扰了我很久了。重装了是十几遍的系统。

这篇guide只是一些零散的安装步骤以及给后来人对于cuda的一些坑上的提醒。

Ⅲ 在vs2010上运行CUDA6.0需要什么

要在VS2010上运行CUDA6.0,你需要以下几个步骤:

  1. 下载并安装CUDA Toolkit 6.0

  2. 首先,你需要从NVIDIA官网下载CUDA Toolkit 6.0,并按照提示进行安装。在安装过程中,请陆枯注意选择正确的操作系统和Visual Studio版本。

2. 配置Visual Studio

在安装完成后,你需要启动Visual Studio,并打开项目属性配置页面。在这里,你需要添加CUDA相关的编译器、链接器和头文件路径。

具体来说,在C/C++选项卡中,你需要将下列路径添加到"附加包含目录"中:

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv6.0include

在链接器选项卡中,你需要添加以下路径到"附加库目录":

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv6.0libx64 (如果你的操早和洞作系统是64位的)

最后,在"预处理器定义"中,添加 "_WIN64" 和 "WIN32" 这两个宏定义。

3. 编写CUDA程序并运行

现在,你已经完成了配置工作,可以开始棚蠢编写CUDA程序了。在程序中,你需要使用CUDA提供的语言扩展(如 __global__ 和 __device__)来标识出GPU可执行的函数,并使用CUDA专用的数据类型(如cudaMalloc()和cudaMemcpy())来管理GPU内存。

编写完CUDA程序后,你可以直接在Visual Studio中编译和运行程序。在调试过程中,你可以使用Visual Studio提供的调试工具来追踪CUDA程序的运行状态。

总结:

要在VS2010上运行CUDA6.0,你需要安装CUDA Toolkit 6.0,并在Visual Studio中进行配置。之后,你可以编写和调试CUDA程序,并使用Visual Studio提供的工具来优化程序性能和调试错误。

Ⅳ cuda主要用于哪。具体是什么。

CUDA CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA的处理器上以超高性能运行。 将来还会支持其它语言,包括FORTRAN以及C++。 随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。 目前只有G80、G92、G94和GT200平台的NVidia显卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。 CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2005集成在一起。 Geforce8CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。 从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。 开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。 运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。 由于目前存在着多种GPU版本的NVidia显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVidia公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品 CUDA 工具包是一种针对支持CUDA功能的GPU(图形处理器)的C语言开发环境。CUDA开发环境包括: · nvcc C语言编译器 · 适用于GPU(图形处理器)的CUDA FFT和BLAS库 · 分析器 · 适用于GPU(图形处理器)的gdb调试器(在2008年3月推出alpha版) · CUDA运行时(CUDA runtime)驱动程序(目前在标准的NVIDIA GPU驱动中也提供) · CUDA编程手册 CUDA开发者软件开发包(SDK)提供了一些范例(附有源代码),以帮助使用者开始CUDA编程。这些范例包括: · 并行双调排序 · 矩阵乘法 · 矩阵转置 · 利用计时器进行性能评价 · 并行大数组的前缀和(扫描) · 图像卷积 · 使用Haar小波的一维DWT · OpenGL和Direct3D图形互操作示例 · CUDA BLAS和FFT库的使用示例 · CPU-GPU C—和C++—代码集成 · 二项式期权定价模型 · Black-Scholes期权定价模型 · Monte-Carlo期权定价模型 · 并行Mersenne Twister(随机数生成) · 并行直方图 · 图像去噪 · Sobel边缘检测滤波器 · MathWorks MATLAB® 新的基于1.1版CUDA的SDK 范例现在也已经发布了。 技术功能 ·在GPU(图形处理器)上提供标准C编程语言 · 为在支持CUDA的NVIDIA GPU(图形处理器)上进行并行计算而提供了统一的软硬件解决方案 · CUDA兼容的GPU(图形处理器)包括很多:从低功耗的笔记本上用的GPU到高性能的,多GPU的系统。 · 支持CUDA的GPU(图形处理器)支持并行数据缓存和线程执行管理器 · 标准FFT(快速傅立叶变换)和BLAS(基本线性代数子程序)数值程序库 · 针对计算的专用CUDA驱动 · 经过优化的,从中央处理器(CPU)到支持CUDA的GPU(图形处理器)的直接上传、下载通道 · CUDA驱动可与OpenGL和DirectX图形驱动程序实现互操作 · 支持Linux 32位/64位以及Windows XP 32位/64位 操作系统 · 为了研究以及开发语言的目的,CUDA提供对驱动程序的直接访问,以及汇编语言级的访问 NVIDIA进军高性能计算领域,推出了Tesla&CUDA高性能计算系列解决方案,CUDA技术,一种基于NVIDIA图形处理器(GPU)上全新的并行计算体系架构,让科学家、工程师和其他专业技术人员能够解决以前无法解决的问题,作为一个专用高性能GPU计算解决方案,NVIDIA把超级计算能够带给任何工作站或服务器,以及标准、基于CPU的服务器集群 CUDA是用于GPU计算的开发环境,它是一个全新的软硬件架构,可以将GPU视为一个并行数据计算的设备,对所进行的计算进行分配和管理。在CUDA的架构中,这些计算不再像过去所谓的GPGPU架构那样必须将计算映射到图形API(OpenGL和Direct 3D)中,因此对于开发者来说,CUDA的开发门槛大大降低了。CUDA的GPU编程语言基于标准的C语言,因此任何有C语言基础的用户都很容易地开发CUDA的应用程序。 由于GPU的特点是处理密集型数据和并行数据计算,因此CUDA非常适合需要大规模并行计算的领域。目前CUDA除了可以用C语言开发,也已经提供FORTRAN的应用接口,未来可以预计CUDA会支持C++、Java、Python等各类语言。可广泛的应用在图形动画、科学计算、地质、生物、物理模拟等领域。 2008年NVIDIA推出CUDA SDK2.0版本,大幅提升了CUDA的使用范围。使得CUDA技术愈发成熟 目前,支持CUDA的GPU销量已逾1亿,数以千计的软件开发人员正在使用免费的CUDA软件开发工具来解决各种专业以及家用应用程序中的问题。这些应用程序从视频与音频处理和物理效果模拟到石油天然气勘探、产品设计、医学成像以及科学研究,涵盖了各个领域。 目前市面上已经部署了超过一亿颗支持CUDA的GPU,数以千计的软件开发人员正在使用免费的CUDA软件工具来为各种应用程序加速。 CUDA 的核心有三个重要抽象概念: 线程组层次结构、共享存储器、屏蔽同步( barrier synchronization),可轻松将其作为C 语言的最小扩展级公开给程序员。 CUDA 软件堆栈由几层组成,一个硬件驱动程序,一个应用程序编程接口(API) 和它的Runtime, 还有二个高级的通用数学库,CUFFT 和CUBLAS。硬件被设计成支持轻 量级的驱动和Runtime 层面,因而提高性能。

Ⅳ linux下CUDA程序一般怎么编译

有以下步骤:

1.源程序的编译
在Linux下面,如果要编译一个C语言源程序,我们要使用GNU的gcc编译器. 下面
我们以一个实例来说明如何使用gcc编译器.
假设我们有下面一个非常简单的源程序(hello.c):
int main(int argc,char **argv)
{
printf("Hello Linux\n");
}
要编译这个程序,我们只要在命令行下执行:
gcc -o hello hello.c
gcc 编译器就会为我们生成一个hello的可执行文件.执行./hello就可以看到程
序的输出结果了.命令行中 gcc表示我们是用gcc来编译我们的源程序,-o 选项表示
我们要求编译器给我们输出的可执行文件名为hello 而hello.c是我们的源程序文件.
gcc编译器有许多选项,一般来说我们只要知道其中的几个就够了. -o选项我们
已经知道了,表示我们要求输出的可执行文件名. -c选项表示此慧我们只要求编译器输出
目标代码,而不必要输出可执行文件. -g选项拍扒差表示我们要求编译器在编译的时候提
供我们以后对程序进行调试的信息.
知道了这三个选项,我们就可以编译我们自己所写的简单的源程序了,如果你
想要知道更多的选项,可以查看gcc的帮助文档,那里有着许多对其它选项的详细说
明.
2.Makefile的编写
假设我们有下面这样的一个程序,源代码如下袭皮:

#include "mytool1.h"
#include "mytool2.h"
int main(int argc,char **argv)
{
mytool1_print("hello");
mytool2_print("hello");
}

#ifndef _MYTOOL_1_H
#define _MYTOOL_1_H
void mytool1_print(char *print_str);
#endif

#include "mytool1.h"
void mytool1_print(char *print_str)
{
printf("This is mytool1 print %s\n",print_str);
}

#ifndef _MYTOOL_2_H
#define _MYTOOL_2_H
void mytool2_print(char *print_str);
#endif

#include "mytool2.h"
void mytool2_print(char *print_str)
{
printf("This is mytool2 print %s\n",print_str);
}
当然由于这个程序是很短的我们可以这样来编译
gcc -c main.c
gcc -c mytool1.c
gcc -c mytool2.c
gcc -o main main.o mytool1.o mytool2.o
这样的话我们也可以产生main程序,而且也不时很麻烦.但是如果我们考虑一
下如果有一天我们修改了其中的一个文件(比如说mytool1.c)那么我们难道还要重
新输入上面的命令?也许你会说,这个很容易解决啊,我写一个SHELL脚本,让她帮我
去完成不就可以了.是的对于这个程序来说,是可以起到作用的.但是当我们把事情
想的更复杂一点,如果我们的程序有几百个源程序的时候,难道也要编译器重新一
个一个的去编译?
为此,聪明的程序员们想出了一个很好的工具来做这件事情,这就是make.我们
只要执行以下make,就可以把上面的问题解决掉.在我们执行make之前,我们要先
编写一个非常重要的文件.--Makefile.对于上面的那个程序来说,可能的一个
Makefile的文件是:
# 这是上面那个程序的Makefile文件
main:main.o mytool1.o mytool2.o
gcc -o main main.o mytool1.o mytool2.o
main.o:main.c mytool1.h mytool2.h
gcc -c main.c
mytool1.o:mytool1.c mytool1.h
gcc -c mytool1.c
mytool2.o:mytool2.c mytool2.h
gcc -c mytool2.c
有了这个Makefile文件,不过我们什么时候修改了源程序当中的什么文件,我们
只要执行make命令,我们的编译器都只会去编译和我们修改的文件有关的文件,其
它的文件她连理都不想去理的.
下面我们学习Makefile是如何编写的.
在Makefile中也#开始的行都是注释行.Makefile中最重要的是描述文件的依赖
关系的说明.一般的格式是:
target: components
TAB rule
第一行表示的是依赖关系.第二行是规则.
比如说我们上面的那个Makefile文件的第二行
main:main.o mytool1.o mytool2.o
表示我们的目标(target)main的依赖对象(components)是main.o mytool1.o
mytool2.o 当倚赖的对象在目标修改后修改的话,就要去执行规则一行所指定的命
令.就象我们的上面那个Makefile第三行所说的一样要执行 gcc -o main main.o
mytool1.o mytool2.o 注意规则一行中的TAB表示那里是一个TAB键
Makefile有三个非常有用的变量.分别是$@,$^,$<代表的意义分别是:
$@--目标文件,$^--所有的依赖文件,$<--第一个依赖文件.
如果我们使用上面三个变量,那么我们可以简化我们的Makefile文件为:
# 这是简化后的Makefile
main:main.o mytool1.o mytool2.o
gcc -o $@ $^
main.o:main.c mytool1.h mytool2.h
gcc -c $<
mytool1.o:mytool1.c mytool1.h
gcc -c $<
mytool2.o:mytool2.c mytool2.h
gcc -c $<
经过简化后我们的Makefile是简单了一点,不过人们有时候还想简单一点.这里
我们学习一个Makefile的缺省规则
.c.o:
gcc -c $<
这个规则表示所有的 .o文件都是依赖与相应的.c文件的.例如mytool.o依赖于
mytool.c这样Makefile还可以变为:
# 这是再一次简化后的Makefile
main:main.o mytool1.o mytool2.o
gcc -o $@ $^
.c.o:
gcc -c $<
好了,我们的Makefile 也差不多了,如果想知道更多的关于Makefile规则可以查
看相应的文档.

3.程序库的链接
试着编译下面这个程序

#include
int main(int argc,char **argv)
{
double value;
printf("Value:%f\n",value);
}
这个程序相当简单,但是当我们用 gcc -o temp temp.c 编译时会出现下面所示
的错误.
/tmp/cc33Ky.o: In function `main':
/tmp/cc33Ky.o(.text+0xe): undefined reference to `log'
collect2: ld returned 1 exit status
出现这个错误是因为编译器找不到log的具体实现.虽然我们包括了正确的头
文件,但是我们在编译的时候还是要连接确定的库.在Linux下,为了使用数学函数,我
们必须和数学库连接,为此我们要加入 -lm 选项. gcc -o temp temp.c -lm这样才能够
正确的编译.也许有人要问,前面我们用printf函数的时候怎么没有连接库呢?是这样
的,对于一些常用的函数的实现,gcc编译器会自动去连接一些常用库,这样我们就没
有必要自己去指定了. 有时候我们在编译程序的时候还要指定库的路径,这个时候
我们要用到编译器的 -L选项指定路径.比如说我们有一个库在 /home/hoyt/mylib下
,这样我们编译的时候还要加上 -L/home/hoyt/mylib.对于一些标准库来说,我们没
有必要指出路径.只要它们在起缺省库的路径下就可以了.系统的缺省库的路径/lib
/usr/lib /usr/local/lib 在这三个路径下面的库,我们可以不指定路径.
还有一个问题,有时候我们使用了某个函数,但是我们不知道库的名字,这个时
候怎么办呢?很抱歉,对于这个问题我也不知道答案,我只有一个傻办法.首先,我到
标准库路径下面去找看看有没有和我用的函数相关的库,我就这样找到了线程
(thread)函数的库文件(libpthread.a). 当然,如果找不到,只有一个笨方法.比如我要找
sin这个函数所在的库. 就只好用 nm -o /lib/*.so|grep sin>~/sin 命令,然后看~/sin
文件,到那里面去找了. 在sin文件当中,我会找到这样的一行libm-2.1.2.so:00009fa0
W sin 这样我就知道了sin在 libm-2.1.2.so库里面,我用 -lm选项就可以了(去掉前面
的lib和后面的版本标志,就剩下m了所以是 -lm).

4.程序的调试
我们编写的程序不太可能一次性就会成功的,在我们的程序当中,会出现许许
多多我们想不到的错误,这个时候我们就要对我们的程序进行调试了.
最常用的调试软件是gdb.如果你想在图形界面下调试程序,那么你现在可以选
择xxgdb.记得要在编译的时候加入 -g选项.关于gdb的使用可以看gdb的帮助文件.由
于我没有用过这个软件,所以我也不能够说出如何使用. 不过我不喜欢用gdb.跟踪
一个程序是很烦的事情,我一般用在程序当中输出中间变量的值来调试程序的.当
然你可以选择自己的办法,没有必要去学别人的.现在有了许多IDE环境,里面已经自
己带了调试器了.你可以选择几个试一试找出自己喜欢的一个用.

5.头文件和系统求助
有时候我们只知道一个函数的大概形式,不记得确切的表达式,或者是不记得函数在那个头文件进行了说明.这个时候我们可以求助系统,比如说我们想知道fread这个函数的确切形式,我们只要执行 man fread 系统就会输出着函数的详细解释的.和这个函数所在的头文件说明了。如果我们要write这个函数说明,当我们执行man write时,输出的结果却不是我们所需要的。因为我们要的是write这个函数的说明,可是出来的却是write这个命令的说明。为了得到write的函数说明我们要用man 2 write。2表示我们用的是write这个函数是系统调用函数,还有一个我们常用的是3表示函数是c的库函数。

Ⅵ linux下CUDA程序一般怎么编译

需要编写Makefile 可以参照gcc的Makefile编写一个 cu格式是cuda的程橡银序么? 那调用的编译器应该有所区别 Makefile里需要稿如没指定编译器 CC:=gcc gcc改成你用的编译键纳器

Ⅶ CUDA支持的Fortran编译器现在只有PGI吗

目前来说,是只有PGI的fortran才能编译成cuda。虽然已经开放了接口,但别扮消的编译器还没有开始动作。毕竟CUDA是个新生事物,旁缺首况且还有opencl这样的东西。
话说cuda还是用C写比较好,编译器自动并运数行的,总感觉心里不踏实。

Ⅷ 什么是CUDA

CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。
简单来讲,比如通过CUDA架构,视频播放软件可以充分挖掘NVIDIA系列显卡的GPU并行计算能力,轻松进行高清影片的播放,与软件高清解码相比,CPU占用可以下降一半以上。当然,CUDA的应用领域绝不仅仅是视频、图形、游戏,包括各种3D和建模,医疗、能源、科学研究等,到处都可见到这种技术架构的应用。
支持CUDA的硬件环境需要有NVidia GF8系列及以上型号的显卡,并且安装185版本以上的显卡驱动程序。以QQ影音播放器来讲,要想开启CUDA硬件解码加速,可以打开QQ影音的“播放器设置”,进入“高清加速”面板,在“硬件优化”中选择“自定义优化模式”,然后在“滤镜配置”中的“视频解码器”中自定义选择相应的“QQ CUDA Video Decoder(CUDADecFilter.ax)”即可。而关闭CUDA加速,只需取消选择“QQ CUDA Video Decoder(CUDADecFilter.ax)”,或者切换到“智能高清模式”或“稳定兼容模式”通过这种高清解码定义的开启,并不是说你的画质能够提升多少,而是提升高清视频播放时的流畅以及降低CPU的占用。这个时候,节约下来的CPU空间,可以允许你再去做别的工作,这样就会大大提升你的工作效率,而不至于除了看视频,其他的什么都不能做了。

Ⅸ CUDA是不是一个程序编译器,就如同计算机语言一样使GPU也能演算其他程序

GPU的特长是强大的并行运算能力,CUDA是一种计算统一设备体系结构,NVIDIA希望GPU也可以进行通用并行运算,因而在很早以颤则凯前就提出过GPGPU但是因为适用盯芹面太窄或者成本极高等原因进展缓慢,
CUDA基于C,茄唤程序员只需进行简单的培训即可进行基于GPU的程序设计,但是还要强调的一点就是GPU擅长的是并行运算,如果遇到串行运算,那么将会力不从心。

现在还有OpenCL,它可以充分调用GPU和CPU使其可以优势互补.

CUDA是一种开发环境。

热点内容
安卓的手机来电闪光灯在哪里 发布:2025-07-10 16:49:02 浏览:836
androidstudio导入as项目 发布:2025-07-10 16:43:37 浏览:538
c语言中编译和编辑的差别 发布:2025-07-10 16:43:35 浏览:486
iphone清除缓存软件 发布:2025-07-10 16:20:03 浏览:680
以下所列的c语言常量中错误的是 发布:2025-07-10 16:19:00 浏览:852
怎么给安卓应用重命名 发布:2025-07-10 16:18:01 浏览:1001
php调用栈 发布:2025-07-10 15:58:33 浏览:870
android页面返回 发布:2025-07-10 15:58:22 浏览:463
php解析多层json 发布:2025-07-10 15:51:36 浏览:874
谷歌x86版安卓系统哪个最流畅 发布:2025-07-10 15:51:33 浏览:446