当前位置:首页 » 编程软件 » 编程权重

编程权重

发布时间: 2023-05-06 23:27:15

Ⅰ matlab求权重系数

你这个用excel就能实陆培现
当然早漏唯也可以用matlab编程实现
系数搜拿是多少是根据第5列数据来的还是固定的

Ⅱ matlab把所有权重设置为1什么意思

clear;clc;
A=[100 28 47 27]
B=[83 45 69 77]
C=[55 66 77 88]
f=@(x)x*[A;B]-C
w=lsqnonlin(f,[1 1],[0 0])
MATLAB是美国MathWorks公司出品的商业数学软仿数件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。它在备乎首数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、顷举实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。

Ⅲ 作为程序员提高编程能力的几个基础算法

一:快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(nlogn)算法更快,因为它的内部循环(innerloop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divideandconquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1从数列中挑出一个元素,称为“基准”(pivot),

2重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

二:堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

创建一个堆H[0..n-1]

把堆首(最大值)和堆尾互换

3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4.重复步骤2,直到堆的尺寸为1

三:归并排序

归并排序(Mergesort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(DivideandConquer)的一个非常典型的应用。

1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

2.设定两个指针,最初位置分别为两个已经排序序列的起始位置

3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

4.重复步骤3直到某一指针达到序列尾

5.将另一序列剩下的所有元素直接复制到合并序列尾

四:二分查找算法

二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

五:BFPRT(线性查找算法)

BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。

1.将n个元素每5个一组,分成n/5(上界)组。

2.取出每一组的中位数,任意排序方法,比如插入排序。

3.递归的调用selection算法查找上一步中所有中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个。

4.用x来分割数组,设小于等于x的个数为k,大于x的个数即为n-k。

5.若i==k,返回x;若i<k,在小于x的元素中递归查找第i小的元素;若i>k,在大于x的元素中递归查找第i-k小的元素。

终止条件:n=1时,返回的即是i小元素。

六:DFS(深度优先搜索)

深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

深度优先遍历图算法步骤:

1.访问顶点v;

2.依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;

3.若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。

上述描述可能比较抽象,举个实例:

DFS在访问图中某一起始顶点v后,由v出发,访问它的任一邻接顶点w1;再从w1出发,访问与w1邻接但还没有访问过的顶点w2;然后再从w2出发,进行类似的访问,…如此进行下去,直至到达所有的邻接顶点都被访问过的顶点u为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

七:BFS(广度优先搜索)

广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。

BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

1.首先将根节点放入队列中。

2.从队列中取出第一个节点,并检验它是否为目标。

如果找到目标,则结束搜寻并回传结果。

否则将它所有尚未检验过的直接子节点加入队列中。

3.若队列为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。

4.重复步骤2。

八:Dijkstra算法

戴克斯特拉算法(Dijkstra’salgorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。我们以V表示G中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u,v)表示从顶点u到v有路径相连。我们以E表示G中所有边的集合,而边的权重则由权重函数w:E→[0,∞]定义。因此,w(u,v)就是从顶点u到顶点v的非负权重(weight)。边的权重可以想象成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有V中有顶点s及t,Dijkstra算法可以找到s到t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

1.初始时令S=,T=,T中顶点对应的距离值

若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值

若不存在<V0,Vi>,d(V0,Vi)为∞

2.从T中选取一个其距离值为最小的顶点W且不在S中,加入S

3.对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

九:动态规划算法

动态规划(Dynamicprogramming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

1.最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。

2.子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。

十:朴素贝叶斯分类算法

朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。

通过掌握以上算法,能够帮你迅速提高编程能力,成为一名优秀的程序员。

Ⅳ 编写程序动态改变MATLAB神经网络的权重呢

运用RBF神经网络设计复合材料界面性能刘子龙;秦伟提出一种设计碳纤维织物/环氧复合材料界友盯面性能的新方法。利用径向基好李和函数神经网络,建扰闹立起工艺参数与复合材料界面性能的关系模型,同时给出实例来验证此方法的有效性。

Ⅳ 编程中权重改变结果会有何不同

编程中结扮渗果跟着权重的改变而改变陵缺升,权重改变,结果也会不一样,尺老例如误差产生。

Ⅵ 用MATLAB如何实现下面变权重编程

专业的问题需要专业的学习吧 高手不多了 可以到学火火弄点免费的视频教程研究下

Ⅶ 怎么用stata编程定义更高维度空间权重矩阵

findit spatreg
点击sg162,然后安装所有命令(spatcorr, spatdiag, spatgsa, spatlsa, spatreg, spatwmat)

这些命令包含了主要的空间自相关检验,空间回归模蔽念闭型(error/lag). 当然你也需要计算空间权重矩阵,但是你只需要增加两高咐个变量的数据,longitude/latitude.这个由你的GIS软件中应该不难得到。这些命令使用起来都比较简单。唯一需要注宏裂意的是,你的sample不能过大,IC 版的stata,有矩阵维数的限制(800*800).

Ⅷ MATLAB编程。有一个二维数组,第一列是坐标,第二列是权重。我想在整数区间内把这些权重求和。

你的方法可以得到你要的结果,只需要加一行吵渗程序就行:
clear;
clc;
AA=[1.5,0.5;2.1,0.1;3.2,0.1;3.5,0.2;4.1,0.1];
min=1;delta=1;bin=5;N=5;
D=zeros(5,2);

t=1;
i=t;

for j=1:bin
t=i;
for i=t:N
if AA(i,1)<min+delta*(j-1)
D(j,2)=D(j,2)+AA(i,2);
else
break
end
end
end

my_need = D(:,2) %%%%% 取第二列就是你要的结果[0;0.5;0.1;0.3;0.1].
结果:
my_need =

0
0.5000
0.1000
0.3000
0.1000
当然也可以采态碰腊用其他方法解决该问题,比如使用switch
首先将AA的第一列向下取整,获得整数,再判断此整数值,然后相应权重累加。完成。
程序需要的话就追问,不帆滑需要的话我也就不编写了。

有问题欢迎追问,有帮助别忘了采个纳
right(c) cxd1301

Ⅸ 修改权重占比的理由怎么写

修改权重占比的理由需要根据具体情况进行阐述。一般来说,可以从以下几个方面进行说明:

1. 课程设置:如果某门课程的内容相对其他课程更为重要,可以适辩哗当增加该门课程的权重。例如,对于某个专业而言,编程技能很重要,那么可以适当增加编程课程的权重。

2. 实践经验:某些课程可能包含实践环节,如实习、项目等,这些实践经验对学生的职业生涯发展起到至关重要的作用。因此,在课程评估中可以适当增加这些课程的权重。

3. 考试难度:如果某些课携隐行程的考试难度明显较高,那么应当适当降低这些课程的权重,以免影响学生的整体成绩。

4. 学院政策:有些学院可能规定了课程的权重占比,可能是基于历史数据或者其他考虑因素。如果需要修改权重占比,需要仔细研究学院政策和相关规定,并给出充分的理由和解携历释。

在写修改权重占比的理由时,需要充分考虑各个方面的因素,确保修改后的权重占比符合课程设计的目标和学生的需求,同时也需要兼顾学院规定和政策。

Ⅹ 二进制转十进制权重,权位指的是什么

二进制转十进制权重,权位指的是进制的(位数-1)次冥,第n位数字的表示值等于数字乘以进制的n-1次方。
比如10进制数1462的第4位1的权是1×10^3,是1000。
2进制权就是2^(n-1),比如1000,第4位的1的权就是1×2^3=8。
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

热点内容
树莓派自带ftp开启 发布:2025-07-07 21:11:41 浏览:50
智慧树用脚本会怎么样 发布:2025-07-07 21:05:48 浏览:515
随机启动脚本 发布:2025-07-05 16:10:30 浏览:535
微博数据库设计 发布:2025-07-05 15:30:55 浏览:32
linux485 发布:2025-07-05 14:38:28 浏览:310
php用的软件 发布:2025-07-05 14:06:22 浏览:760
没有权限访问计算机 发布:2025-07-05 13:29:11 浏览:437
javaweb开发教程视频教程 发布:2025-07-05 13:24:41 浏览:736
康师傅控流脚本破解 发布:2025-07-05 13:17:27 浏览:249
java的开发流程 发布:2025-07-05 12:45:11 浏览:696