linux内核重启之后要编译吗
Linux下内核和界面(如窗口管理器, gnome, kde 等)是分离的, 这个和windows是完全不同的.
你编译一个新的内核, 并重启,让它生效, 界面是没有任何影响的.
如何编译内核, 你自己google吧.不难的.
B. 一文了解riscv软件系列之linux内核编译运行
一、交叉编译工具链的安装
安装交叉编译工具链主要包含几个步骤:下载源码、安装编译依赖、编译工具链、配置路径。确保下载所有子模块使用--recursive选项。安装编译所需的工具如:gcc、binutils等。编译支持32位和64位系统的交叉编译工具链,最终安装于/opt/riscv目录,前缀为riscv64-unknown-linux-gnu-,兼容两种位数系统。
二、编译Linux内核
下载Linux 5.2.4源码,配置RISC-V内核选项,将defconfig拷贝到.config文件,直接保存退出,使用默认配置。编译时,添加CROSS_COMPILE=riscv64-unknown-linux-gnu-选项。编译完成后,在arch/riscv/boot目录下找到内核镜像,分别为Image和Image.gz。
三、根文件系统制作
下载BusyBox源码,选择静态编译方式,修改配置以满足RISC-V环境需求。进入目录,创建常见文件夹,复制BusyBox生成的文件至指定路径。修改fstab>文件配置,调整init.d/rcS>文件以优化系统启动。完成rootfs.img卸载后,根文件系统镜像文件rootfs.img制作完成。
四、QEMU模拟器运行Linux内核
获取QEMU模拟器,选择对应操作系统版本的下载链接。运行Linux内核,观察运行结果。至此,完成了内核配置、编译、文件系统编译及Linux系统运行的全过程。
结语
通过以上步骤,实现了使用RISC-V架构编译、运行Linux内核的全过程。具体实践过程中,可能会遇到权限问题,需要适当调整,确保操作顺利进行。
C. linux编译内核步骤
一、准备工作
a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。
b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。
c) 下载一份纯净的Linux内核源码包,并解压好。
注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。
不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/moles/`uname -r`/build/.config
d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。
例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。
[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version
arm-linux-gcc (Buildroot 2010.11) 4.3.5
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for ing conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
注:arm的工具链,可以从这里下载:回复“ARM”即可查看。
二、设置编译目标
在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。
如果你是为当前使用的PC机编译内核,则无须设置。
否则的话,就要明确设置。
这里以arm为例,来说明。
有两种设置方法():
a) 修改Makefile
打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。
ARCH := arm
CROSS_COMPILE := arm-linux-
注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。
b) 每次执行make命令时,都通过命令行参数传入这些信息。
这其实是通过make工具的命令行参数指定变量的值。
例如
配置内核时时,使用
make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
编译内核时使用
make ARCH=arm CROSS_COMPILE=arm-linux-
注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
ARCH?= $(SUBARCH)
CROSS_COMPILE ?=
经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。
而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。
最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。
因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。
SRCARCH := $(ARCH)
ifeq ($(ARCH),i386)
SRCARCH := x86
endif
ifeq ($(ARCH),x86_64)
SRCARCH := x86
endif
ifeq ($(ARCH),sparc64)
SRCARCH := sparc
endif
ifeq ($(ARCH),sh64)
SRCARCH := sh
endif
三、配置内核
内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。
但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。
以arm为例,具体做法如下。
a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。
注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。
/lib/moles/`uname -r`/build/.config
这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。
b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。
注
D. Linux启动过程Kernel,Rootfs,Uboot,INIT进程,BootLoader,内核空间一次讲清楚!!!
在用户空间程序启动后,Linux系统进入正常工作状态,允许用户通过Shell或其他应用执行任务,如编辑文本和管理文件等。
以全志H6为例,BootLoader是嵌入式系统启动的关键组件。它负责加载内核文件和设备树文件等,为后续内核运行提供基础环境。BootLoader需完成一系列步骤,如读取、解压、编译和设置参数,以确保内核的顺利启动。
当内核加载完毕后,Linux会加载内存中的root文件系统(rootfs),它是系统的核心文件系统,包含了必需的目录如/bin, /dev等,为用户空间进程提供运行环境。rootfs是一个只包含基本系统组件的内存文件系统,不依赖硬盘。
内核加载rootfs是为了使用户空间进程能够访问和执行文件和资源。内核作为操作系统核心,虽然负责硬件和软件资源管理,但并不包含用户空间程序,因此需要rootfs来支持用户进程的运行。
在Linux启动过程中,init进程作为第一个用户级进程,负责系统初始化和启动,它会按照预定顺序启动其他进程和服务,如加载文件系统和守护进程。内核映像文件,如vmlinuz或bzImage,是编译后的二进制文件,是系统启动时被加载到内存中执行的。
内核空间和用户态是操作系统区分权限的两个层面。用户态程序通过系统调用与内核交互,实现对硬件资源的访问。CPU在内核模式下拥有高度权限,而在用户模式下程序受到限制,以确保系统的安全。