当前位置:首页 » 编程软件 » python编译后运行速度慢

python编译后运行速度慢

发布时间: 2022-05-20 18:32:29

A. python语言运行速度如此差

这就要说到 Python 类语言和 C 类语言的主要区别了,Python 属于解释型语言,通俗来说就是你可以一句一句地输入,而 Python 解释器(Interpreter)可以一句一句地执行,而 C 语言属于编译型语言,无法做到这一点,只能一次性输入完成,编译成一个完整的程序再执行,而这个编译的过程由于现代编译器做了非常多的优化,并且你的程序没有输入只有输出,每次运行都出固定的结果,所以极有可能被编译器优化成为了只有一条输出语句(实际情况可能要复杂一些),总的来说就是由于二者之间原理的差异导致了性能的差异,你可以搜一搜相关的资料,关掉 C 语言编译时的优化,再看一下性能,或者将固定的那些值改为运行时需要输入再看一下效果。
Python 相较于 C 的优势有很多,性能这一方面你不需要关心,做出一个足够复杂的程序,它们之间运行效率差不了多少的。

B. Python 执行速度慢只是因为它是解释型语言吗

Python 不是解释型语言,事实上也没有“解释型”语言这个分类。

Python 性能略有不佳的原因可能有几个:

首先是 Python 希望自己是一个简单和优雅的语言,需要性能的组件通常用 C 实现,没有太多改进性能的动力。

然后 Python 具有垃圾回收和自动的内存管理功能,并且采用动态类型系统,会在运行时进行类型检查,这会不可避免地略微影响性能,使其不如静态类型(java)或没有垃圾回收(C/C++)的语言。

摘自维基网络:

  • “Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到Python内。”

  • “因为Python属于动态类型语言,动态类型语言是在运行期间检查数据的类型,不得不保持描述变量值的实际类型标记,程序在每次操作变量时,需要执行数据依赖分支”

C. 为什么python运行的慢

python 是一种脚本语言啊

它运行的层级比编译型语言要高
也就是说 python 距离底层硬件比编译型语言远
自然运行效率就不如编译型语言高了

D. 为啥Python 运行速度这么慢

因为Python的是需要用解释执行器,先解释成C在执行的,而且Python的多线程的全局解释器锁的存在,同一时刻只能解释执行一个线程的原因

E. Python 语言为什么执行速度相当慢不是一般的慢!!

java和c都是编译型语言,一个是解释型语言。
编译型语言在程序执行之前,有一个单独的编译过程,将程序翻译成机器语言,以后执行这个程序的时候,就不用再进行翻译了。
解释型语言,是在运行的时候将程序翻译成机器语言,所以运行速度相对于编译型语言要慢。
当然更多的是与算法有关而不是语言。你python代码换成这个看看,速度是不是比你快多了
def primes1(n):
""" Returns a list of primes < n """
sieve = [True] * (n/2)
for i in xrange(3,int(n**0.5)+1,2):
if sieve[i/2]:
sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]
import time
start = time.time()
a = primes1(4000000)
end = time.time()
print a
print 'used time:' end-start

F. 用python处理一个1G左右的数据集,运行速度非常慢,怎样优化

给你几点个人的建议哈:

考虑拿C或C++重写.

考虑并行搞,找个hadoop集群,写成maprece程序跑 放在hadoop上跑,更多数据都不怕.

考虑升级机器,多搞点内存,然后东西尽量放在内存里搞.

考虑程序优化.

希望可以帮助到你哦,这只是我的一个建议哈!

G. 用python处理一个1G左右的数据集,运行速度非常慢,怎样优化

这里面有两个原因吧:
首先, 是算法的问题。复杂度不一样的算法, 在数据规模大的情况下, 运行速度差别会越来越大。你没有描述具体算法, 所以我们也不知道能怎样提升算法。不过根据我的经验, 机器学习算法慢很正常, 因为计算量非常大。很多步骤如果你参照现成一些方法的话, 基本就已经是已知的在算法复杂度和代码复杂度上做了非常好的平衡而且算法复杂度已经很不错的方法。 要想再提高的话要么就要投入大量时间做学术研究,或者大量时间编写复杂的代码。
解决方法是你要自己分析你的程序, 确定每一个部分的复杂度大概是多少,找出算法的瓶颈, 然后花精力优化瓶颈上的算法。
第二个问题是众所周知的 python 本身速度慢的问题,python作为完全建立在解释器上的支持OO支持FP且类型dynamic的语言, 能使用的机器指令优化非常有限,一般认为比native程序慢10-100倍是正常的。
解决方法:一个快速的 work-around 是使用 JIT 编译器例如 PyPy, 速度可以提高大概几倍到10倍左右。 另外,使用一个 profile 技术找到运行时间的瓶颈, 可以把瓶颈部分用 C 重写,即可几乎达到native速度。
最后, 在这个多核和云时代, 你应该考虑多核甚至多机器了。 Python 本身又 GIL, 一个进程内不支持计算意义上的多线程, 把你的程序各个部件好好划分一下, 分解成多进程。 然后用一台机器的多个CPU同时跑, 或者仍给多台机器跑。

H. 请问大佬们,为什么我python运行程序特别慢啊,我这个程序怎么改一下可以运行的更快呢

您好,茫茫人海之中,能为君排忧解难实属朕的荣幸,在下拙见,若有错误,还望见谅!。展开全部
yxhtest7772017-07-18

关注

分享

697 2

python运行速度慢怎么办?6个Python性能优化技巧



Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。

Python的批评者声称Python性能低效、执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序。

关键代码可以依赖于扩展包

Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。

下面这些扩展包你可以考虑添加到你的个人扩展库中:

Cython

PyInlne

PyPy

Pyrex

这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。

使用关键字排序

有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。

优化循环

每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。

使用新版本

任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。

当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!

I. python运行速度慢怎么办

yxhtest7772017-07-18

关注

分享

 697     2

python运行速度慢怎么办?6个Python性能优化技巧



Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。

Python的批评者声称Python性能低效、执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序。

关键代码可以依赖于扩展包

Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。

下面这些扩展包你可以考虑添加到你的个人扩展库中:

Cython

PyInlne

PyPy

Pyrex

这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。

使用关键字排序

有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。

优化循环

每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。

使用新版本

任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。

当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是

J. 如何提高python的运行效率

窍门一:关键代码使用外部功能包

Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意。使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率。这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包。简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率。以下是一些你可以选择用来提升效率的功能包:

Cython
Pylnlne
PyPy
Pyrex

这些功能包的用处各有不同。比如说,使用C语言的数据类型,可以使涉及内存操作的任务更高效或者更直观。Pyrex就能帮助Python延展出这样的功能。Pylnline能使你在Python应用中直接使用C代码。内联代码是独立编译的,但是它把所有编译文件都保存在某处,并能充分利用C语言提供的高效率。

窍门二:在排序时使用键

Python含有许多古老的排序规则,这些规则在你创建定制的排序方法时会占用很多时间,而这些排序方法运行时也会拖延程序实际的运行速度。最佳的排序方法其实是尽可能多地使用键和内置的sort()方法。譬如,拿下面的代码来说:

import operator
somelist = [(1, 5,]
在每段例子里,list都是根据你选择的用作关键参数的索引进行排序的。这个方法不仅对数值类型有效,还同样适用于字符串类型。

窍门三:针对循环的优化

每一种编程语言都强调最优化的循环方案。当使用Python时,你可以借助丰富的技巧让循环程序跑得更快。然而,开发者们经常遗忘的一个技巧是:尽量避免在循环中访问变量的属性。譬如,拿下面的代码来说:

lowerlist = ['this', 'is', 'lowercase']
upper = str.upper
upperlist = []
append = upperlist.append
for word in lowerlist:
append(upper(word))
print(upperlist)
#Output = ['THIS', 'IS', 'LOWERCASE']
每次你调用str.upper, Python都会计算这个式子的值。然而,如果你把这个求值赋值给一个变量,那么求值的结果就能提前知道,Python程序就能运行得更快。因此,关键就是尽可能减小Python在循环中的工作量。因为Python解释执行的特性,在上面的例子中会大大减慢它的速度。

(注意:优化循环的方法还有很多,这只是其中之一。比如,很多程序员会认为,列表推导式是提高循环速度的最佳方法。关键在于,优化循环方案是提高应用程序运行速度的上佳选择。)

窍门四:使用较新的Python版本

如果你在网上搜索Python,你会发现数不尽的信息都是关于如何升级Python版本。通常,每个版本的Python都会包含优化内容,使其运行速度优于之前的版本。但是,限制因素在于,你最喜欢的函数库有没有同步更新支持新的Python版本。与其争论函数库是否应该更新,关键在于新的Python版本是否足够高效来支持这一更新。

你要保证自己的代码在新版本里还能运行。你需要使用新的函数库才能体验新的Python版本,然后你需要在做出关键性的改动时检查自己的应用。只有当你完成必要的修正之后,你才能体会新版本的不同。

然而,如果你只是确保自己的应用在新版本中可以运行,你很可能会错过新版本提供的新特性。一旦你决定更新,请分析你的应用在新版本下的表现,并检查可能出问题的部分,然后优先针对这些部分应用新版本的特性。只有这样,用户才能在更新之初就觉察到应用性能的改观。

窍门五:尝试多种编码方法

每次创建应用时都使用同一种编码方法几乎无一例外会导致应用的运行效率不尽人意。可以在程序分析时尝试一些试验性的办法。譬如说,在处理字典中的数据项时,你既可以使用安全的方法,先确保数据项已经存在再进行更新,也可以直接对数据项进行更新,把不存在的数据项作为特例分开处理。请看下面第一段代码:

n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
if char not in myDict:
myDict[char] = 0
myDict[char] += 1
print(myDict)
当一开始myDict为空时,这段代码会跑得比较快。然而,通常情况下,myDict填满了数据,至少填有大部分数据,这时换另一种方法会更有效率。

n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
try:
myDict[char] += 1
except KeyError:
myDict[char] = 1
print(myDict)
在两种方法中输出结果都是一样的。区别在于输出是如何获得的。跳出常规的思维模式,创建新的编程技巧能使你的应用更有效率。

窍门六:交叉编译你的应用

开发者有时会忘记计算机其实并不理解用来创建现代应用程序的编程语言。计算机理解的是机器语言。为了运行你的应用,你借助一个应用将你所编的人类可读的代码转换成机器可读的代码。有时,你用一种诸如Python这样的语言编写应用,再以C++这样的语言运行你的应用,这在运行的角度来说,是可行的。关键在于,你想你的应用完成什么事情,而你的主机系统能提供什么样的资源。

Nuitka是一款有趣的交叉编译器,能将你的Python代码转化成C++代码。这样,你就可以在native模式下执行自己的应用,而无需依赖于解释器程序。你会发现自己的应用运行效率有了较大的提高,但是这会因平台和任务的差异而有所不同。

(注意:Nuitka现在还处在测试阶段,所以在实际应用中请多加注意。实际上,当下最好还是把它用于实验。此外,关于交叉编译是否为提高运行效率的最佳方法还存在讨论的空间。开发者已经使用交叉编译多年,用来提高应用的速度。记住,每一种解决办法都有利有弊,在把它用于生产环境之前请仔细权衡。)

在使用交叉编译器时,记得确保它支持你所用的Python版本。Nuitka支持Python2.6, 2.7, 3.2和3.3。为了让解决方案生效,你需要一个Python解释器和一个C++编译器。Nuitka支持许多C++编译器,其中包括Microsoft Visual Studio,MinGW 和 Clang/LLVM。

交叉编译可能造成一些严重问题。比如,在使用Nuitka时,你会发现即便是一个小程序也会消耗巨大的驱动空间。因为Nuitka借助一系列的动态链接库(DDLs)来执行Python的功能。因此,如果你用的是一个资源很有限的系统,这种方法或许不太可行。

热点内容
不用internet打开ftp 发布:2025-05-15 23:06:00 浏览:153
sql字符串取数字 发布:2025-05-15 22:57:45 浏览:124
推荐编程课 发布:2025-05-15 22:34:12 浏览:618
表拒绝访问 发布:2025-05-15 22:29:37 浏览:978
电脑怎样解压文件 发布:2025-05-15 22:25:32 浏览:439
dns服务器怎么看 发布:2025-05-15 22:17:27 浏览:151
3dm的压缩包 发布:2025-05-15 22:09:23 浏览:662
和存储字长 发布:2025-05-15 21:54:09 浏览:515
用什么写c语言 发布:2025-05-15 21:35:56 浏览:418
linux读取u盘 发布:2025-05-15 21:32:13 浏览:508