当前位置:首页 » 操作系统 » linux驱动接口

linux驱动接口

发布时间: 2022-08-03 06:01:40

linux驱动开发中申请内存的接口有哪些

vmalloc、kmalloc、kzalloc之类的吧,我也不太清楚正在学习,仅供参考。

⑵ linux驱动程序已有,怎么利用接口函数编写程

Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核,顺利通过编译,一切运行正常的时候。那种成就感真是油然而生!而且,对内核的分析,除了出自对技术的狂热追求之外,这种令人生畏的劳动所带来的回报也是非常令人着迷的,这也正是它拥有众多追随者的主要原因: 首先,你可以从中学到很多的计算机的底层知识,如后面将讲到的系统的引导和硬件提供的中断机制等;其它,象虚拟存储的实现机制,多任务机制,系统保护机制等等,这些都是非都源码不能体会的。 同时,你还将从操作系统的整体结构中,体会整体设计在软件设计中的份量和作用,以及一些宏观设计的方法和技巧:Linux的内核为上层应用提供一个与具体硬件不相关的平台;同时在内核内部,它又把代码分为与体系结构和硬件相关的部分,和可移植的部分;再例如,Linux虽然不是微内核的,但他把大部分的设备驱动处理成相对独立的内核模块,这样减小了内核运行的开销,增强了内核代码的模块独立性。 而且你还能从对内核源码的分析中,体会到它在解决某个具体细节问题时,方法的巧妙:如后面将分析到了的Linux通过Botoom_half机制来加快系统对中断的处理。 最重要的是:在源码的分析过程中,你将会被一点一点地、潜移默化地专业化。一个专业的程序员,总是把代码的清晰性,兼容性,可移植性放在很重要的位置。他们总是通过定义大量的宏,来增强代码的清晰度和可读性,而又不增加编译后的代码长度和代码的运行效率;他们总是在编码的同时,就考虑到了以后的代码维护和升级。 甚至,只要分析百分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。而这一点是任何没有真正分析过标准代码的人都无法体会到的。 然而,由于内核代码的冗长,和内核体系结构的庞杂,所以分析内核也是一个很艰难,很需要毅力的事;在缺乏指导和交流的情况下,尤其如此。只有方法正确,才能事半功倍。正是基于这种考虑,作者希望通过此文能给大家一些借鉴和启迪。 由于本人所进行的分析都是基于2.2.5版本的内核;所以,如果没有特别说明,以下分析都是基于i386单处理器的2.2.5版本的Linux内核。所有源文件均是相对于目录/usr/src/linux的。 方法之一:从何入手 要分析Linux内核源码,首先必须找到各个模块的位置,也即要弄懂源码的文件组织形式。虽然对于有经验的高手而言,这个不是很难;但对于很多初级的Linux爱好者,和那些对源码分析很有兴趣但接触不多的人来说,这还是很有必要的。 1、Linux核心源程序通常都安装在/usr/src/linux下,而且它有一个非常简单的编号约定:任何偶数的核心(的二个数为偶数,例如2.0.30)都是一个稳定地发行的核心,而任何奇数的核心(例如2.1.42)都是一个开发中的核心。 2、核心源程序的文件按树形结构进行组织,在源程序树的最上层,即目录/usr/src/linux下有这样一些目录和文件: ◆ COPYING: GPL版权申明。对具有GPL版权的源代码改动而形成的程序,或使用GPL工具产生的程序,具有使用GPL发表的义务,如公开源代码; ◆ CREDITS: 光荣榜。对Linux做出过很大贡献的一些人的信息; ◆ MAINTAINERS: 维护人员列表,对当前版本的内核各部分都有谁负责; ◆ Makefile: 第一个Makefile文件。用来组织内核的各模块,记录了个模块间的相互这间的联系和依托关系,编译时使用;仔细阅读各子目录下的Makefile文件对弄清各个文件这间的联系和依托关系很有帮助; ◆ ReadMe: 核心及其编译配置方法简单介绍; ◆ Rules.make: 各种Makefilemake所使用的一些共同规则; ◆ REPORTING-BUGS:有关报告Bug 的一些内容; ● Arch/ :arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。PC机一般都基于此目录; ● Include/: include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在 include/linux子目录下,与 intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关scsi设备的头文件目录; ● Init/: 这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的好的起点之一。 ● Mm/:这个目录包括所有独立于 cpu 体系结构的内存管理代码,如页式存储管理内存的分配和释放等;而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c; ● Kernel/:主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,其中最重要的文件当属sched.c;同样,和体系结构相关的代码在arch/*/kernel中; ● Drivers/: 放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录:如,/block 下为块设备驱动程序,比如ide(ide.c)。如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()。它不仅初始化硬盘,也初始化网络,因为安装nfs文件系统的时候需要网络; ● Documentation/: 文档目录,没有内核代码,只是一套有用的文档,可惜都是English的,看看应该有用的哦; ● Fs/: 所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统, 例如fat和ext2; ● Ipc/: 这个目录包含核心的进程间通讯的代码; ● Lib/: 放置核心的库代码; ● Net/: 核心与网络相关的代码; ● Moles/: 模块文件目录,是个空目录,用于存放编译时产生的模块目标文件; ● Scripts/: 描述文件,脚本,用于对核心的配置; 一般,在每个子目录下,都有一个 Makefile 和一个Readme 文件,仔细阅读这两个文件,对内核源码的理解很有用。 对Linux内核源码的分析,有几个很好的入口点:一个就是系统的引导和初始化,即从机器加电到系统核心的运行;另外一个就是系统调用,系统调用是用户程序或操作调用核心所提供的功能的接口。对于那些对硬件比较熟悉的爱好者,从系统的引导入手进行分析,可能来的容易一些;而从系统调用下口,则可能更合适于那些在dos或Uinx、Linux下有过C编程经验的高手。

⑶ 嵌入式Linux中如何实现应用程序与驱动程序函数接口问题,以GPIO为例

嵌入式Linux中如何实现应用程序与驱动程序函数接口问题,以GPIO为例
驱动中的函数定义:
static int sbc2440_leds_ioctl(
struct inode *inode,
struct file *file,
unsigned int cmd,
unsigned long arg)
{
switch(cmd) {
case 0:
case 1:
if (arg > 4) {
return -EINVAL;
}
s3c2410_gpio_setpin(led_table[arg], !cmd);
return 0;
default:
return -EINVAL;
}
}

应用程序中的函数定义:
ioctl(fd, on, led_no);
不明白的地方是函数名都不一样,应用程序中的ioctl函数是如何将参数传递到驱动程序sbc2440_leds_ioctl中的?
xicain

⑷ Linux输入设备驱动

输入设备(如按键、键盘、触摸屏、鼠标等)是典型的字符设备,其一般的工作机理是底层在按键、触摸等动作发送时产生一个中断(或驱动通过Timer定时查询),然后CPU通过SPI、I-C或外部存储器总线读取键值、坐标等数据,并将它们放入一个缓冲区,字符设备驱动管理该缓冲区,而驱动的read ()接口让用户可以读取键值、坐标等数据。显然,在这些工作中,只是中断、读键值/坐标值是与设备相关的,而输入事件的缓冲区管理以及字符设备驱动的file operations接口则对输入设备是通用的。基于此,内核设计了输入子系统,由核心层处理公共的工作。drivers/input/keyboardgpio_keys.c基于input架构实现了一个通用的GPIO按键驱动。该驱动是基于platform_driver架构的,名为“gpio-keys”。它将与硬件相关的信息(如使用的GPIO号,按下和抬起时的电平等)屏蔽在板文件platform_device的platform_data中,因此该驱动可应用于各个处理器,具有良好的跨平台性。GPIO按键驱动通过input_event () 、input_sync()这样的函数来汇报按键事件以及同步事件。从底层的GPIO按键驱动可以看出,该驱动中没有任何file_operations的动作,也没有各种IO模型,注册进入系统也用的是input_register_device ()这样的与input相关的API。这是由于与Linux VFS接口的这一部分代码全部都在drivers/input/evdev.c中实现了。

⑸ linux下如何开发sdio设备驱动

以LinuxKernelSdioMx28 / LinuxKernelSdioMx53项目代码为例:

- mole_init(DibBridgeTargetMoleInit)
驱动模块初始化入口

- DibBridgeTargetMoleInit():模块初始化函数。
1.调用sdio_register_driver()注册sdio接口驱动,
2.调用register_chrdev()注册驱动模块为字符设备。

- sdio_register_driver():向系统注册sdio接口驱动,调用以后,系统会触发sdio设备id检测,如果设备id和接口驱动里.id_table里定义的id一致,则系统调用probe函数。
1. 可以在DibBridgeTargetMoleInit()里调用,这样insmod之后,驱动接口即被注册(设备id被注册),有相应设备插入则probe会被调用(此种做法参考LinuxKernelSdioMx28)
2. 也可以在sdio初始化时调用,这样设备插入时,probe不会被调用,只有在sdio初始化,sdio_register_driver()被调用时,系统才会重新检测设备id,并调用probe。(此种做法好处是,模块初始化不涉及何种设备,具有更好的通用性。参考LinuxKernelSdioMx53)

- static struct sdio_driver Dib_sdio_driver
是sdio接口驱动的结构体,包括.id_table, .probe()函数等,如下
static struct sdio_driver Dib_sdio_driver = {
.name = "Dib_sdio",
.id_table = Dib_sdio_ids,
.probe = Dib_sdio_probe,
.remove = __devexit_p(Dib_sdio_remove),
};
其中.id_table很重要,它里面定义了此sdio驱动模块关心的sdio设备id号,只有插入的sdio设备的id号和这里面定义的id对应上,系统才会调用.probe函数。

- register_chrdev()
将驱动模块向系统注册为字符设备,并将操作该设备的接口函数file_operations也一起注册了。
1.可以在DibBridgeTargetMoleInit()里调用。(参考LinuxKernelSdioMx53/LinuxKernelSdioMx28代码)
2.也可以在probe函数里调用,即只有在系统检测到硬件设备时才去注册字符设备(参考sdk8remote代码)

- struct file_operations
包含如下最基本的文件操作函数,
struct file_operations fops =
{
.ioctl = DibBridgeTargetMoleIoctl, //控制命令传输或数据传输
.open = DibBridgeTargetMoleOpen,
.read = DibBridgeTargetMoleReadData, //数据传输
.write = DibBridgeTargetMoleWriteData
.release = DibBridgeTargetMoleRelease,
};

- .ioctl/.read 等等

user space和kernel space的传输通道,通过使用_from_user和_to_user这样的函数来实现数据传递
Linux方面的想相关知识可以网络搜索《Linux就该这么学》进行学习了解

⑹ Linux网络设备驱动的具体结构

Linux网络设备驱动程序的体系结构从上到下可以划分为4层,依次为网络协议接口层、网络设备接口层、提供实际功能的设备驱动功能层以及网络设备与媒介层,这4层的作用如下所示:
1)网络协议接口层向网络层协议提供统一的数据包收发接口,不论上层协议是ARP,还是IP,都通过dev_queue_xmit() 函数发送数据,并通过netif rx ()函数接收数据。这一层的存在使得上层协议独立于具体的设备。
2)网络设备接口层向协议接口层提供统一的用于描述具体网络设备属性和操作的结构体net device,该结构体是设备驱动功能层中各函数的容器。实际上,网络设备接口层从宏观上规划了具体操作硬件的设备驱动功能层的结构。
3)设备驱动功能层的各函数是网络设备接口层net_device数据结构的具体成员,是驱使网络设备硬件完成相应动作的程序,它通过hard_start_ xmit ()函数启动发送操作,并通过网络设备上的中断触发接收操作。
4)网络设备与媒介层是完成数据包发送和接收的物理实体,包括网络适配器和具体的传输媒介,网络适配器被设备驱动功能层中的函数在物理上驱动。对于Linux系统而言,网络设备和媒介都可以是虚拟的。

⑺ Linux设备驱动程序与外界的接口函数有哪些

驱动程序工作在内核空间,由内核来调用 比如某硬件的驱动程序中实现了hd_write()函数,则用户在用户空间打开这硬件的设备文件并调用系统调用函数write()时,内核就调用hd_write()函数。

⑻ Linux 网络设备接口层

Linux 网络设备驱动之网络协议接口层介绍。
网络协议接口层最主要的功能是给上层协议提供透明的数据包发送和接收接口。

⑼ Linux网络设备驱动的结构

Linux网络设备驱动程序的体系结构从上到下可以划分为4层,依次为网络协议接口层、网络设备接口层、提供实际功能的设备驱动功能层以及网络设备与媒介层,这4层的作用如下所示。
1)网络协议接口层向网络层协议提供统一的数据包收发接口,不论上层协议是ARP,还是IP,都通过dev_queue_xmit() 函数发送数据,并通过netif rx ()函数接收数据。这一层的存在使得上层协议独立于具体的设备。
2)网络设备接口层向协议接口层提供统一的用于描述具体网络设备属性和操作的结构体net device,该结构体是设备驱动功能层中各函数的容器。实际上,网络设备接口层从宏观上规划了具体操作硬件的设备驱动功能层的结构。
3)设备驱动功能层的各函数是网络设备接口层net_device数据结构的具体成员,是驱使网络设备硬件完成相应动作的程序,它通过hard_start_ xmit ()函数启动发送操作,并通过网络设备上的中断触发接收操作。
4)网络设备与媒介层是完成数据包发送和接收的物理实体,包括网络适配器和具体的传输媒介,网络适配器被设备驱动功能层中的函数在物理上驱动。对于Linux系统而言,网络设备和媒介都可以是虚拟的。

⑽ linux下应用层怎么调用SD卡驱动接口

一般的驱动程序是不允许应用程序调用的,只有当驱动程序留出这种供外界访问的接口才行,这种接口一般包括read,write,open,ioctl等接口,如果驱动中预留出了这些接口,就可以在应用程序中调用,比如fd=open(设备,参数);或者fd=ioctl(设备,参数);,这样就会调用到这个设备驱动中的open或者ioctl函数。所以一般如果想再应用程序中调试某个驱动程序,常见的方法就是自己建立一个驱动模块,这个模块中预留出对外接口,比如ioctl。然后在你新建的这个驱动模块中完成ioctl函数,如下:
int device_ioctl(fd,argv) {
/* your function; */
}
static struct file_operations device = {
.ioctl = device_ioctl //预留外部接口
};
应用程序如下:
ioctl(device,argv);
上面这句就可以完成你的模块中ioctl中的功能。

热点内容
浏览器打不开服务器通信怎么办 发布:2024-05-18 21:32:22 浏览:960
创建存储空间 发布:2024-05-18 21:20:57 浏览:120
sql日期和时间 发布:2024-05-18 21:16:19 浏览:142
安卓网页怎么截取 发布:2024-05-18 20:53:56 浏览:970
在配置更新的时候没电关机怎么办 发布:2024-05-18 20:36:10 浏览:927
win7访问win2000 发布:2024-05-18 20:27:41 浏览:388
青岛人社局密码多少 发布:2024-05-18 20:19:10 浏览:734
无法存储呼叫转移 发布:2024-05-18 20:18:30 浏览:126
数据库的调优 发布:2024-05-18 20:18:29 浏览:346
sqlserver注册表清理 发布:2024-05-18 20:13:14 浏览:992