当前位置:首页 » 操作系统 » a星算法优化

a星算法优化

发布时间: 2022-08-19 09:20:46

‘壹’ 游戏中为什么用启发式a星算法

首先,A* 是启发式算法,在寻路过程中搜索的范围相比 Dijsktra 一般要小得多(当然,有时也可能一样)
其次,A* 算法的搜索速度和效率可控,可以通过控制代价函数来权衡搜索的速度和精度之间的关系

‘贰’ 计算机求百钱买百鸡问题采用的算法是

算法如下:

int main()

{

int x, y, z;

for (int k = 1; k <= 3; k++)

{

x = 4 * k;

y = 25 - 7 * k;

z = 75 + 3 * k;

printf("公鸡:%d只,母鸡:%d只,小鸡:%d只 ", x, y, z);

(2)a星算法优化扩展阅读:

A*搜寻算法

俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。

Beam Search

束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。

束搜索于20 世纪70年代中期首先被应用于人工智能领域,1976 年Lowerre在其称为HARPY的语音识别系统中第一次使用了束搜索方法。他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。

二分取中查找算法

一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;

如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。

‘叁’ 深度优先搜索和广度优先搜索、A星算法三种算法的区别和联系

在说它之前先提提状态空间搜索。状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。通俗点说,就是 在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦)。由于求解问题的过程中分枝有很多,主要是求解过程中求解条件的不确 定性,不完备性造成的,使得求解的路径很多这就构成了一个图,我们说这个图就是状态空间。问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。 这个寻找的过程就是状态空间搜索。 常用的状态空间搜索有深度优先和广度优先。广度优先是从初始状态一层一层向下找,直到找到目标为止。深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。 前面说的广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。他的效率实在太低,甚至不可完成。在这里就要用到启发式搜索了。 启发中的估价是用估价函数表示的,如: f(n) = g(n) + h(n) 其中f(n) 是节点n的估价函数,g(n)实在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。在这里主要是h(n)体现了搜 索的启发信息,因为g(n)是已知的。如果说详细点,g(n)代表了搜索的广度的优先趋势。但是当h(n) >> g(n)时,可以省略g(n),而提高效率。这些就深了,不懂也不影响啦!我们继续看看何谓A*算法。 2、初识A*算法 启发式搜索其实有很多的算法,比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的 策略不同。象局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了 其他的节点,可能也把最好的节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,便没有舍弃节点 (除非该节点是死节点),在每一步的估价中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么 A*算法又是一种什么样的算法呢?其实A*算法也是一种最好优先的算法。只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空 间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A* 算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为: f'(n) = g'(n) + h'(n) 这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值,h'(n)是n到目标的最断路经的启发值。由于这个f'(n)其实是无法预先知道 的,所以我们用前面的估价函数f(n)做近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可(这一点特别 的重要)。可以证明应用这样的估价函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。哈。你懂了吗?肯定没 懂。接着看。 举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h'(n),所以由前述可知广度优先算法是一种可采纳的。实际也是。当然它是一种最臭的A*算法。 再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除 的节点就越多,估价函数越好或说这个算法越好。这就是为什么广度优先算法的那么臭的原因了,谁叫它的h(n)=0,一点启发信息都没有。但在游戏开发中由 于实时性的问题,h(n)的信息越多,它的计算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这 里就有一个平衡的问题。可难了,这就看你的了! 好了我的话也说得差不多了,我想你肯定是一头的雾水了,其实这是写给懂A*算法的同志看的。哈哈。你还是找一本人工智能的书仔细看看吧!我这几百字是不足以将A*算法讲清楚的。只是起到抛砖引玉的作用希望大家热情参与吗。

‘肆’ lua语言a星寻路算法路径怎么平滑

在项目中遇到了自动寻路的需求,于是决定开始学习一下A星,对于A星我也没有深究,只能说是勉强搞定了需求,在这和大家分享一下,相互进步,

A星有个公式 f(x) = g(x) + h(x)
,搞清楚这个公式就好办了,f(x)就是当前位置到下一个位置的总价值,g(x)表示实际价,这是说这一部分代价是确定的,h(x)表示估价值,就是说我
从下一个位置到到终点的代价是未知的,所以叫估价值,如图中所示,黑色格子表示当前位置,绿色格子表示下一步可能到达的位置,即上、下、左、右这几个方
向,红色格子表示终点,褐色表示障碍物,现在要从黑色格子到达红色格子,那么黑色格子的下一步肯定是绿色格子当中的一个,黑色格子到绿色格子之间是相挨着
的,所以我们可以很明确的知道它的实际代价为1(移动一步的代价)即g(x),绿色格子到红色格子之间隔着很长的距离,中间还有障碍物,所以这个代价是未
知的,即h(x),所以总的代价就为f(x) = g(x) +
h(x),我们看到周围有4个绿色的格子,到底走那一步比较好呢,所以我们要把这4个格子的f(x)值都求出来,然后进行排序,选择f(x)值最小的,即
总代价最少的那个格子,以此方法继续下去,直到到达终点 或者 地图上没有绿色格子了

下面来看一下这个工具类,g(x)和h(x)要选的比较合适,一般就是采用的曼哈顿算法,即两点在x方向和y方向的距离之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 寻路

mole("PathUtil", package.seeall)

local _map_data -- 地图数据
local _open_list -- 开放节点
local _open_map -- 开放节点,为了提高性能而加
local _close_map -- 关闭节点
local _deleget -- 代理
local _dest_point -- 目标点
local _start_point -- 起点
local _path -- 路径

-- 寻找路径
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回点point1到点point2的实际代价
end
h = function(point1, point2)
-- add your code
-- 返回点point1到点point2的估算代价
end
getValue = function(j, i)
-- 返回地图中第i行,第j列的数据 1为障碍物,0为非障碍物
end
width -- 地图宽度
height -- 地图高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end

function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end

function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end

-- 得到下一个可以移动的点
-- @param point 当前所在点
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end

-- 得到路径
-- @param end_point 目标点
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end

-- 两个点的代价比较器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end

-- 是否是障碍物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end

-- 两个点是否是同一个点
function isEqual(point1, point2)
return point1.key == point2.key
end

-- 根据点得到点的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end

下面是工具类PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows

local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)

_path就是我们找到的路径,起点为最后一个元素,终点为第一个元素

‘伍’ 如何利用矩阵对a*算法进行优化

如果A确实能完全存入一级缓存,那么把B按列分块,一块一块乘就行了.
一般来讲矩阵乘法并不是像你说的那样做的,而要把A,B,C都分块,对于每一级存贮器而言,应该至少分成5个部分来管理.比如说,A的某一块常驻于这一级存贮,然后余下的部分分为四块:
(1)上一步已经运算完成的C块——写入低一级存贮
(2)下一步将参与运算的B块——从低一级存贮读入
(3),正在参与运算的B和C块
(4)然后对于这一级存贮器上的小矩阵块运算C=AB仍然按照同样的管理方式递交给上一级存贮来计算.一般来讲A块选得略小一点,具体的分配方式取决于运算和I/O的速度,尽量保持计算单元忙碌.

‘陆’ cocos2dx 什么是a星算法

您好,我来为您解答:
A*搜寻算法俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。
如果我的回答没能帮助您,请继续追问。

‘柒’ 游戏中的A星算法怎么写

首先A星算法占内存和CPU简直要命,之前用AS3写的代码90*90格仅6个敌人每次同时寻路都得卡上几秒,还经常找不到路,反正我目前还没想到好的优化方法。

‘捌’ A星寻路算法和Unity自带的寻路相比有什么优势

在理解Navigation的时候,首先要明确两个知识点:

AStar:AStar是路点寻路算法中的一种,同时AStar不属于贪婪算法,贪婪算法适合动态规划,寻找局部最优解,不保证最优解。AStar是静态网格中求解最短路最有效的方法。也是耗时的算法,不宜寻路频繁的场合。一般来说适合需求精确的场合。

性能和内存占用率都还行,和启发式的搜索一样,能够根据改变网格密度、网格耗散来进行调整精确度。

A Star一般使用场景:

  • 策略游戏的策略搜索

  • 方块格子游戏中的格子寻路

Navigation:网格寻路算法,严格意义上它属于”拐角点算法”,效率是比较高的,但是不保证最优解算法。Navigation相对来说消耗内存更大,性能的话还不错。

Navigation一般使用场景:

  • 游戏场景的怪物寻路

  • 动态规避障碍

它们二者事件的实现方式和原理都不同。


AStar的话,

‘玖’ 算法过程是什么

‘拾’ A*搜寻算法的算法描述

f(x) = g(x) + h(x)
function A*(start,goal)
var closed := the empty set
var q := make_queue(path(start))
while q is not empty
var p := remove_first(q)
var x := the last node of p
if x in closed
continue
if x = goal
return p
add x to closed
foreach y in successors(x)
enqueue(q, p, y)
return failure A*改变它自己行为的能力基于启发式代价函数,启发式函数在游戏中非常有用。在速度和精确度之间取得折衷将会让你的游戏运行得更快。在很多游戏中,你并不真正需要得到最好的路径,仅需要近似的就足够了。而你需要什么则取决于游戏中发生着什么,或者运行游戏的机器有多快。假设你的游戏有两种地形,平原和山地,在平原中的移动代价是1而在山地的是3,那么A星算法就会认为在平地上可以进行三倍于山地的距离进行等价搜寻。 这是因为有可能有一条沿着平原到山地的路径。把两个邻接点之间的评估距离设为1.5可以加速A*的搜索过程。然后A*会将3和1.5比较,这并不比把3和1比较差。然而,在山地上行动有时可能会优于绕过山脚下进行行动。所以花费更多时间寻找一个绕过山的算法并不经常是可靠的。 同样的,想要达成这样的目标,你可以通过减少在山脚下的搜索行为来打到提高A星算法的运行速率。弱项如此可以将A星算法的山地行动耗费从3调整为2即可。这两种方法都会给出可靠地行动策略 。

热点内容
帆布压缩袋 发布:2025-05-17 13:26:27 浏览:456
c语言16进制表示方法 发布:2025-05-17 13:11:25 浏览:479
ftp单位 发布:2025-05-17 13:10:03 浏览:141
c语言编写n的阶乘 发布:2025-05-17 13:10:02 浏览:684
lockjava 发布:2025-05-17 13:02:08 浏览:310
只狼和看门狗哪个配置高 发布:2025-05-17 12:50:21 浏览:205
扁桃玩的服务器地址 发布:2025-05-17 12:18:25 浏览:511
u盘上传歌 发布:2025-05-17 12:14:51 浏览:615
入门c语言设计 发布:2025-05-17 12:08:31 浏览:42
c3算法 发布:2025-05-17 12:04:19 浏览:365