当前位置:首页 » 操作系统 » linux驱动设备模型

linux驱动设备模型

发布时间: 2022-09-01 23:23:39

linux内核开发与Linux驱动开发有什么关系

驱动装在系统上,有的会跟内核有交互,但是驱动一般是针对设备

❷ linux的设备驱动一般分为几类各有什么特点

大致分为三类,字符驱动,块设备驱动,网络设备驱动。
字符设备可以看成是用字节流存取的文件

块设备则可以看成是可以任意存取字节数的字符设备,在应用上只是内核管理数据方式不同

网络设备可以是一个硬件设备,或者是软件设备,他没有相应的read write,它是面向流的一种特殊设备。

❸ 如何学习Linux设备驱动

通常,内核的升级对从事linux应用程序开发的人员来说影响较小,因为系统调用基本保持兼容,影响比较大的是驱动开发人员。每次内核的更新都可能导致许多内核函数原型上的变化,其中既有内核本身提供的函数,也有硬件平台代码提供的函数,后者变化的更加频繁。这一点从许多经典书籍就可验证,当你按照手里的经典着作,如:Alessandro的《linux设备驱动程序》,编写驱动时,发现并不能够成功的在你的linux平台上编译通过、或不能正常执行,原因就在于你用的内核和书里的不一致。
本文从两个方面去解释这个问题,一方面是如何写好linux设备驱动,另一方面是如何应对不断升级的内核。
如何写好Linux设备驱动
Linux设备驱动是linux内核的一部分,是用来屏蔽硬件细节,为上层提供标准接口的一种技术手段。为了能够编写出质量比较高的驱动程序,要求工程师必须具备以下几个方面的知识:
● 熟悉处理器的性能
如:处理器的体系结构、汇编语言、工作模式、异常处理等。对于初学者来说,在还不熟悉驱动编写方法的情况下,可以先不把重心放在这一项上,因为可能因为它的枯燥、抽象而影响到你对设备驱动的兴趣。随着你不断地熟悉驱动的编写,你会很自然的意识到此项的重要性。
● 掌握驱动目标的硬件工作原理及通讯协议
如:串口控制器、显卡控制器、硬件编解码、存储卡控制器、I2C通讯、SPI通讯、USB通讯、SDIO通讯、I2S通讯、PCI通讯等。编写设备驱动的前提就是需要了解设备的操作方法,所以这些内容的重要程度不言而喻。但不是说要把所有设备的操作方法都熟悉了以后才可以写驱动,你只需要了解你要驱动的硬件就可以了。
● 掌握硬件的控制方法
如:中断、轮询、DMA 等,通常一个硬件控制器会有多种控制方法,你需要根据系统性能的需要合理的选择操作方法。初学阶段以实现功能为目的,掌握的顺序应该是,轮询->中断->DMA。随着学习的深入,需要综合考虑系统的性能需求,采取合适的方法。
● 良好的GNU C语言编程基础
如:C语言的指针、结构体、内存操作、链表、队列、栈、C和汇编混合编程等。这些编程语法是编写设备驱动的基础,无论对于初学者还是有经验者都非常重要。
● 良好的linux操作系统概念
如:多进程、多线程、进程调度、进程抢占、进程上下文、虚拟内存、原子操作、阻塞、睡眠、同步等概念及它们之间的关系。这些概念及方法在设备驱动里的使用是linux设备驱动区别单片机编程的最大特点,只有理解了它们才会编写出高质量的驱动。
● 掌握linux内核中设备驱动的编写接口
如:字符设备的cdev、块设备的gendisk、网络设备的net_device,以及基于这些基本接口的framebuffer设备的fb_info、mtd设备的mtd_info、tty设备的tty_driver、usb设备的usb_driver、mmc设备的mmc_host等。
Linux内核为设备驱动编写者提供了标准的接口,驱动编写者无需精通内核的各个部分,只需要明确内核提供给我们的接口,并实现此接口就可以了。内核提供的接口采用的是面向对象的思路,即把目标设备抽象成一个对象,通常利用一个结构体来描述这个对象。驱动工程师的任务就是实现这个对象。这个结构体中会包含设备的属性(用变量表示)和操作方法(用函数指针表示)。如:字符设备的cdev
struct cdev {
struct kobject kobj;
struct mole *owner;
const struct file_operations *ops; // 操作方法结合,其它项都是属性
struct list_head list;
dev_t dev;
unsigned int count;
};
开始阶段可以以模仿为主,即套用一些固定的模板、参考例程。
如何应对不断升级的内核
内核升级对驱动的影响主要体现在,(1)驱动接口定义的变化;(2)内核的一些功能函数的名称、参数、头文件、宏定义的变化;(3)平台代码关于硬件操作方面封装的一些函数的变化;(4)设备模型的影响。
● 驱动接口定义的变化
如:2.4内核中字符设备驱动的注册接口是:
int register_chrdev(unsigned int major, const char * name, struct file_operations *fops)
而2.6内核中已经不建议使用这种方法了,改为:
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
这种接口定义及注册方法带来的变化,发生的并不频繁。解决方案是:参考内核中的代码。这种接口定义及注册方法在内核中非常容易找到,如:字符设备驱动的注册方法及接口定义可以参照内核driver/char/目录下的很多实例。
● 内核的一些功能函数的名称、参数、头文件、宏定义的变化
如:中断注册函数的格式及参数在2.4内核、2.6内核低版本和高版本之间都存在差别,在2.6.8中,中断注册函数的定义为:
int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),unsigned long irq_flags, const char * devname, void *dev_id)
irq_flags的取值主要为下面的某一种或组合: SA_INTERRUPT、SA_SAMPLE_RANDOM、SA_SHIRQ
在2.6.26中,中断注册函数的定义为:
int request_irq(unsigned int irq, irq_handler_t handler,unsigned long irqflags, const char *devname, void *dev_id)
typedef irqreturn_t (*irq_handler_t)(int, void *); irq_flags的取值主要为下面的某一种或组合:(功能和2.6.8的对应)IRQF_DISABLED、IRQF_SAMPLE_RANDOM、IRQF_SHARED
当出现这些问题时,编译过程中,编译器会给我们比较明确的错误提示,根据这些提示你可以判断出是否是缺少头文件问题、是否是函数参数定义有误等。解决问题的最好办法还是到你的目标内核中找信息。此时找问题的方法可以借助于搜索,如:你可以在新的内核中搜索request_irq,看新内核中的驱动是如何使用它的,这种方法非常有效。
● 平台代码关于硬件操作方面封装的一些函数的变化
内核中,硬件平台相关的代码在内核更新过程中变化比较频繁,和我们的设备驱动也是息息相关,所以在针对一个新内核编写设备驱动前,一定要熟悉你的平台代码的结构。有时平台虽然提供了内核要求的接口函数,但使用起来功能却并不完善。下面还是先举个例子说明平台代码更新对设备驱动的影响。
如:在linux-2.6.8内核中,调用set_irq_type(IRQ_EINT0,IRQT_FALLING);去设置S3C2410的IRQ_EINT0的中断触发信号类型,你会发现不会有什么效果。跟踪代码发现内核的set_irq_type函数需要平台提供一个针对硬件平台的实现函数
static struct irqchip s3c_irqext_chip = {
.mask = s3c_irqext_mask,
.unmask = s3c_irqext_unmask,
.ack = s3c_irqext_ack,
.type = s3c_irqext_type
};
s3c_irqext_type就是linux内核需要的实现函数,而s3c_irqext_type在2.6.8中的实现为: static int s3c_irqext_type(unsigned int irq, unsigned int type)
{
irqdbf("s3c_irqext_type: called for irq %d, type %d\n", irq, type);
return 0;
}
原来并没有实现。而在较高版本的内核,如2.6.26内核中,这个函数是实现了的。所以你一定要小心。当平台函数不好用时,一定要查查原因,或者直接操作硬件寄存器来达到目的。
● 2.6内核设备模型对驱动的影响
在2.6内核中写设备驱动和在2.4内核中有着很大的不同,主要就是在设备驱动中融入了比设备驱动本身结构还复杂、还难以理解的设备模型。初学驱动时你可以不理会设备模型,但你会发现内核里的驱动代码基本上都是融入了设备模型的了。所以很多时候你不得不面对现实,还是要弄懂它,并且它也的注册方法也会随着内核的升级而发生变化。解决此类问题的最好方法还是参考目标内核驱动代码。

❹ 求教怎么学习linux内核驱动

1.首先要了解为什么要学习内核?下图已表明,如果要从事驱动开发或系统研究,就要学习内核。

2.内核的知识就像下面的绳结一样,一环扣一环,我们要解开它们,就必须要先找到线头也就是内核中的函数接口。初学阶段,我们一般不深入的研究内核代码,会使用内核的接口函数就不错了。

3.下面提供了如何学习这些内核函数的方法,就像解绳子一样

4.学习内核的四步法则,思维导图的设计尤为重要,这也是能否学习好内核的关键

5.语言基础也需要扎实,所以需要把C语言巩固巩固

❺ Linux系统中文件、模块与设备驱动之间的的区别与联系

linux下的文件的操作方式都是相同的,不要求后缀名,普通文件当然没什么好说的了。
模块是由编译后的内核生成的,也可以自己生成,自己加载。比如说系统启动时加载的usb模块有 usbcore.o、usb-uhci.o、usb-ohci.o、 uhci.o、ehci-hcd.o(usb2.0)、hid.o( USB人机界面设备)、usb-storage.o (U盘驱动),最后一个就是具体的设备驱动程序模块,驱动程序也是以模块的方式加载到系统中,然后才工作的。linux的系统加载了非常多的模块,很多模块在不用的时候都是处于挂起状态,是不占用内存和资源的,用的时候才去唤醒。
linux下操作设备是通过设备文件结点来操作的,/dev下面的东西。应用程序操作这些文件结点,就像操作普通文件一样进行来回的读/写,剩下的事情都是由文件结点具体对应的设备驱动模块完成的,文件结点和设备驱动之间的关系由一个链表来记录。

❻ 如何描述linux 字符设备驱动程序的框架

一、Linux device driver 的概念系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口.设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作.设备驱动程序是内核的一部分,它完成以下的功能:
1、对设备初始化和释放;
2、把数据从内核传送到硬件和从硬件读取数据;
3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据;
4、检测和处理设备出现的错误.
在Linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备.字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作.块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待.
已经提到,用户进程是通过设备文件来与实际的硬件打交道.每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们.设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序.
最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度.也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作.如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck.
二、实例剖析
我们来写一个最简单的字符设备驱动程序.虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备驱动程序.
由于用户进程是通过设备文件同硬件打交道,对设备文件的操作方式不外乎就是一些系统调用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系统调用和驱动程序关联起来呢?这需要了解一个非常关键的数据结构:
STruct file_operatiONs {
int (*seek) (struct inode * ,struct file *, off_t ,int);
int (*read) (struct inode * ,struct file *, char ,int);
int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);
int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}
这个结构的每一个成员的名字都对应着一个系统调用.用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数.这是linux的设备驱动程序工作的基本原理.既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域.
下面就开始写子程序.
#include

❼ linux总线驱动模型中,总线也是一种设备,总线与表示它的设备是怎么联系的

设备模型中,关心总线,设备,驱动这三个实体,总线将设备和驱动绑定,在系统每注册一个设备的时候,会寻找与之匹配的驱动。相反,在系统每注册一个驱动的时候,寻找与之匹配的设备,匹配是由总线来完成的。 你还可以看一看链表的信息。它们都是关联的。 有个最牛的函数contain_o
f 非常牛。还有轮询链表的函数。

❽ linux驱动设备为什么有的在/dev 有的在/sys/class

dev下是设备文件,UNIX将设备以文件的文件来访问(以WINDOWS大不同),CLASS下是驱动文件,也可以open,read来访问 ,WRITE也行但会带来严重后果的

热点内容
电脑栏目缓存后变成空白页了 发布:2025-05-14 09:10:30 浏览:738
c语言的软件是什么 发布:2025-05-14 09:09:13 浏览:799
php微信支付教程视频教程 发布:2025-05-14 08:59:59 浏览:203
存储服务器分类 发布:2025-05-14 08:39:01 浏览:646
xz文件解压软件 发布:2025-05-14 08:28:43 浏览:970
lua脚本学习 发布:2025-05-14 08:20:55 浏览:714
python文件删除一行 发布:2025-05-14 08:06:58 浏览:722
如何下载奥特曼高级化3安卓版 发布:2025-05-14 07:47:31 浏览:346
qml文件修改后编译未生效 发布:2025-05-14 07:31:00 浏览:331
内到内算法 发布:2025-05-14 07:29:11 浏览:34