领导算法
❶ Raft 算法(详细版)
在分布式系统中,一致性算法至关重要。在所有一致性算法中,Paxos 最负盛名,它由莱斯利·兰伯特(Leslie Lamport)于 1990 年提出,是一种基于消息传递的一致性算法,被认为是类似算法中最有效的。
Paxos 算法虽然很有效,但复杂的原理使它实现起来非常困难,截止目前,实现 Paxos 算法的开源软件很少,比较出名的有 Chubby、LibPaxos。此外,Zookeeper 采用的 ZAB(Zookeeper Atomic Broadcast)协议也是基于 Paxos 算法实现的,不过 ZAB 对 Paxos 进行了很多改进与优化,两者的设计目标也存在差异——ZAB 协议主要用于构建一个高可用的分布式数据主备系统,而 Paxos 算法则是用于构建一个分布式的一致性状态机系统。
由于 Paxos 算法过于复杂、实现困难,极大地制约了其应用,而分布式系统领域又亟需一种高效而易于实现的分布式一致性算法,在此背景下,Raft 算法应运而生。
Raft 算法在斯坦福 Diego Ongaro 和 John Ousterhout 于 2013 年发表的《In Search of an Understandable Consensus Algorithm》中提出。相较于 Paxos,Raft 通过逻辑分离使其更容易理解和实现,目前,已经有十多种语言的 Raft 算法实现框架,较为出名的有 etcd、Consul 。
根据官方文档解释,一个 Raft 集群包含若干节点,Raft 把这些节点分为三种状态:Leader、 Follower、Candidate,每种状态负责的任务也是不一样的。正常情况下,集群中的节点只存在 Leader 与 Follower 两种状态。
• Leader(领导者) :负责日志的同步管理,处理来自客户端的请求,与Follower保持heartBeat的联系;
• Follower(追随者) :响应 Leader 的日志同步请求,响应Candidate的邀票请求,以及把客户端请求到Follower的事务转发(重定向)给Leader;
• Candidate(候选者) :负责选举投票,集群刚启动或者Leader宕机时,状态为Follower的节点将转为Candidate并发起选举,选举胜出(获得超过半数节点的投票)后,从Candidate转为Leader状态。
通常,Raft 集群中只有一个 Leader,其它节点都是 Follower。Follower 都是被动的,不会发送任何请求,只是简单地响应来自 Leader 或者 Candidate 的请求。Leader 负责处理所有的客户端请求(如果一个客户端和 Follower 联系,那么 Follower 会把请求重定向给 Leader)。
为简化逻辑和实现,Raft 将一致性问题分解成了三个相对独立的子问题。
• 选举(Leader Election) :当 Leader 宕机或者集群初创时,一个新的 Leader 需要被选举出来;
• 日志复制(Log Replication) :Leader 接收来自客户端的请求并将其以日志条目的形式复制到集群中的其它节点,并且强制要求其它节点的日志和自己保持一致;
• 安全性(Safety) :如果有任何的服务器节点已经应用了一个确定的日志条目到它的状态机中,那么其它服务器节点不能在同一个日志索引位置应用一个不同的指令。
根据 Raft 协议,一个应用 Raft 协议的集群在刚启动时,所有节点的状态都是 Follower。由于没有 Leader,Followers 无法与 Leader 保持心跳(Heart Beat),因此,Followers 会认为 Leader 已经下线,进而转为 Candidate 状态。然后,Candidate 将向集群中其它节点请求投票,同意自己升级为 Leader。如果 Candidate 收到超过半数节点的投票(N/2 + 1),它将获胜成为 Leader。
第一阶段:所有节点都是 Follower。
上面提到,一个应用 Raft 协议的集群在刚启动(或 Leader 宕机)时,所有节点的状态都是 Follower,初始 Term(任期)为 0。同时启动选举定时器,每个节点的选举定时器超时时间都在 100~500 毫秒之间且并不一致(避免同时发起选举)。
第二阶段:Follower 转为 Candidate 并发起投票。
没有 Leader,Followers 无法与 Leader 保持心跳(Heart Beat),节点启动后在一个选举定时器周期内未收到心跳和投票请求,则状态转为候选者 Candidate 状态,且 Term 自增,并向集群中所有节点发送投票请求并且重置选举定时器。
注意,由于每个节点的选举定时器超时时间都在 100-500 毫秒之间,且彼此不一样,以避免所有 Follower 同时转为 Candidate 并同时发起投票请求。换言之,最先转为 Candidate 并发起投票请求的节点将具有成为 Leader 的“先发优势”。
第三阶段:投票策略。
节点收到投票请求后会根据以下情况决定是否接受投票请求(每个 follower 刚成为 Candidate 的时候会将票投给自己):
请求节点的 Term 大于自己的 Term,且自己尚未投票给其它节点,则接受请求,把票投给它;
请求节点的 Term 小于自己的 Term,且自己尚未投票,则拒绝请求,将票投给自己。
第四阶段:Candidate 转为 Leader。
一轮选举过后,正常情况下,会有一个 Candidate 收到超过半数节点(N/2 + 1)的投票,它将胜出并升级为 Leader。然后定时发送心跳给其它的节点,其它节点会转为 Follower 并与 Leader 保持同步,到此,本轮选举结束。
注意:有可能一轮选举中,没有 Candidate 收到超过半数节点投票,那么将进行下一轮选举。
在一个 Raft 集群中,只有 Leader 节点能够处理客户端的请求(如果客户端的请求发到了 Follower,Follower 将会把请求重定向到 Leader) ,客户端的每一个请求都包含一条被复制状态机执行的指令。Leader 把这条指令作为一条新的日志条目(Entry)附加到日志中去,然后并行得将附加条目发送给 Followers,让它们复制这条日志条目。
当这条日志条目被 Followers 安全复制,Leader 会将这条日志条目应用到它的状态机中,然后把执行的结果返回给客户端。如果 Follower 崩溃或者运行缓慢,再或者网络丢包,Leader 会不断得重复尝试附加日志条目(尽管已经回复了客户端)直到所有的 Follower 都最终存储了所有的日志条目,确保强一致性。
第一阶段:客户端请求提交到 Leader。
如下图所示,Leader 收到客户端的请求,比如存储数据 5。Leader 在收到请求后,会将它作为日志条目(Entry)写入本地日志中。需要注意的是,此时该 Entry 的状态是未提交(Uncommitted),Leader 并不会更新本地数据,因此它是不可读的。
第二阶段:Leader 将 Entry 发送到其它 Follower
Leader 与 Followers 之间保持着心跳联系,随心跳 Leader 将追加的 Entry(AppendEntries)并行地发送给其它的 Follower,并让它们复制这条日志条目,这一过程称为复制(Replicate)。
有几点需要注意:
1. 为什么 Leader 向 Follower 发送的 Entry 是 AppendEntries 呢?
因为 Leader 与 Follower 的心跳是周期性的,而一个周期间 Leader 可能接收到多条客户端的请求,因此,随心跳向 Followers 发送的大概率是多个 Entry,即 AppendEntries。当然,在本例中,我们假设只有一条请求,自然也就是一个Entry了。
2. Leader 向 Followers 发送的不仅仅是追加的 Entry(AppendEntries)。
在发送追加日志条目的时候,Leader 会把新的日志条目紧接着之前条目的索引位置(prevLogIndex), Leader 任期号(Term)也包含在其中。如果 Follower 在它的日志中找不到包含相同索引位置和任期号的条目,那么它就会拒绝接收新的日志条目,因为出现这种情况说明 Follower 和 Leader 不一致。
3. 如何解决 Leader 与 Follower 不一致的问题?
在正常情况下,Leader 和 Follower 的日志保持一致,所以追加日志的一致性检查从来不会失败。然而,Leader 和 Follower 一系列崩溃的情况会使它们的日志处于不一致状态。Follower可能会丢失一些在新的 Leader 中有的日志条目,它也可能拥有一些 Leader 没有的日志条目,或者两者都发生。丢失或者多出日志条目可能会持续多个任期。
要使 Follower 的日志与 Leader 恢复一致,Leader 必须找到最后两者达成一致的地方(说白了就是回溯,找到两者最近的一致点),然后删除从那个点之后的所有日志条目,发送自己的日志给 Follower。所有的这些操作都在进行附加日志的一致性检查时完成。
Leader 为每一个 Follower 维护一个 nextIndex,它表示下一个需要发送给 Follower 的日志条目的索引地址。当一个 Leader 刚获得权力的时候,它初始化所有的 nextIndex 值,为自己的最后一条日志的 index 加 1。如果一个 Follower 的日志和 Leader 不一致,那么在下一次附加日志时一致性检查就会失败。在被 Follower 拒绝之后,Leader 就会减小该 Follower 对应的 nextIndex 值并进行重试。最终 nextIndex 会在某个位置使得 Leader 和 Follower 的日志达成一致。当这种情况发生,附加日志就会成功,这时就会把 Follower 冲突的日志条目全部删除并且加上 Leader 的日志。一旦附加日志成功,那么 Follower 的日志就会和 Leader 保持一致,并且在接下来的任期继续保持一致。
第三阶段:Leader 等待 Followers 回应。
Followers 接收到 Leader 发来的复制请求后,有两种可能的回应:
写入本地日志中,返回 Success;
一致性检查失败,拒绝写入,返回 False,原因和解决办法上面已做了详细说明。
需要注意的是,此时该 Entry 的状态也是未提交(Uncommitted)。完成上述步骤后,Followers 会向 Leader 发出 Success 的回应,当 Leader 收到大多数 Followers 的回应后,会将第一阶段写入的 Entry 标记为提交状态(Committed),并把这条日志条目应用到它的状态机中。
第四阶段:Leader 回应客户端。
完成前三个阶段后,Leader会向客户端回应 OK,表示写操作成功。
第五阶段,Leader 通知 Followers Entry 已提交
Leader 回应客户端后,将随着下一个心跳通知 Followers,Followers 收到通知后也会将 Entry 标记为提交状态。至此,Raft 集群超过半数节点已经达到一致状态,可以确保强一致性。
需要注意的是,由于网络、性能、故障等各种原因导致“反应慢”、“不一致”等问题的节点,最终也会与 Leader 达成一致。
前面描述了 Raft 算法是如何选举 Leader 和复制日志的。然而,到目前为止描述的机制并不能充分地保证每一个状态机会按照相同的顺序执行相同的指令。例如,一个 Follower 可能处于不可用状态,同时 Leader 已经提交了若干的日志条目;然后这个 Follower 恢复(尚未与 Leader 达成一致)而 Leader 故障;如果该 Follower 被选举为 Leader 并且覆盖这些日志条目,就会出现问题,即不同的状态机执行不同的指令序列。
鉴于此,在 Leader 选举的时候需增加一些限制来完善 Raft 算法。这些限制可保证任何的 Leader 对于给定的任期号(Term),都拥有之前任期的所有被提交的日志条目(所谓 Leader 的完整特性)。关于这一选举时的限制,下文将详细说明。
在所有基于 Leader 机制的一致性算法中,Leader 都必须存储所有已经提交的日志条目。为了保障这一点,Raft 使用了一种简单而有效的方法,以保证所有之前的任期号中已经提交的日志条目在选举的时候都会出现在新的 Leader 中。换言之,日志条目的传送是单向的,只从 Leader 传给 Follower,并且 Leader 从不会覆盖自身本地日志中已经存在的条目。
Raft 使用投票的方式来阻止一个 Candidate 赢得选举,除非这个 Candidate 包含了所有已经提交的日志条目。Candidate 为了赢得选举必须联系集群中的大部分节点。这意味着每一个已经提交的日志条目肯定存在于至少一个服务器节点上。如果 Candidate 的日志至少和大多数的服务器节点一样新(这个新的定义会在下面讨论),那么它一定持有了所有已经提交的日志条目(多数派的思想)。投票请求的限制中请求中包含了 Candidate 的日志信息,然后投票人会拒绝那些日志没有自己新的投票请求。
Raft 通过比较两份日志中最后一条日志条目的索引值和任期号,确定谁的日志比较新。如果两份日志最后条目的任期号不同,那么任期号大的日志更加新。如果两份日志最后的条目任期号相同,那么日志比较长的那个就更加新。
如同 4.1 节介绍的那样,Leader 知道一条当前任期内的日志记录是可以被提交的,只要它被复制到了大多数的 Follower 上(多数派的思想)。如果一个 Leader 在提交日志条目之前崩溃了,继任的 Leader 会继续尝试复制这条日志记录。然而,一个 Leader 并不能断定被保存到大多数 Follower 上的一个之前任期里的日志条目 就一定已经提交了。这很明显,从日志复制的过程可以看出。
鉴于上述情况,Raft 算法不会通过计算副本数目的方式去提交一个之前任期内的日志条目。只有 Leader 当前任期里的日志条目通过计算副本数目可以被提交;一旦当前任期的日志条目以这种方式被提交,那么由于日志匹配特性,之前的日志条目也都会被间接的提交。在某些情况下,Leader 可以安全地知道一个老的日志条目是否已经被提交(只需判断该条目是否存储到所有节点上),但是 Raft 为了简化问题使用了一种更加保守的方法。
当 Leader 复制之前任期里的日志时,Raft 会为所有日志保留原始的任期号,这在提交规则上产生了额外的复杂性。但是,这种策略更加容易辨别出日志,即使随着时间和日志的变化,日志仍维护着同一个任期编号。此外,该策略使得新 Leader 只需要发送较少日志条目。
raft 的读写都在 leader 节点中进行,它保证了读的都是最新的值,它是符合强一致性的(线性一致性),raft 除了这个还在【客户端交互】那块也做了一些保证,详情可以参考论文。但是 zookeeper 不同,zookeeper 写在 leader,读可以在 follower 进行,可能会读到了旧值,它不符合强一致性(只考虑写一致性,不考虑读一致性),但是 zookeeper 去 follower 读可以有效提升读取的效率。
对比于 zab、raft,我们发现他们选举、setData 都是需要过半机制才行,所以他们针对网络分区的处理方法都是一样的。
一个集群的节点经过网络分区后,如一共有 A、B、C、D、E 5个节点,如果 A 是 leader,网络分区为 A、B、C 和 D、E,在A、B、C分区还是能正常提供服务的,而在 D、E 分区因为不能得到大多数成员确认(虽然分区了,但是因为配置的原因他们还是能知道所有的成员数量,比如 zk 集群启动前需要配置所有成员地址,raft 也一样),是不能进行选举的,所以保证只会有一个 leader。
如果分区为 A、B 和 C、D、E ,A、B 分区虽然 A 还是 leader,但是却不能提供事务服务(setData),C、D、E 分区能重新选出 leader,还是能正常向外提供服务。
1)我们所说的日志(log)与状态机(state machine)不是一回事,日志指还没有提交到状态机中的数据。
2)新 leader 永远不会通过计算副本数量提交旧日志,他只能复制旧日志都其他 follower 上,对于旧日志的提交,只能是新 leader 接收新的写请求写新日志,顺带着把旧日志提交了。
❷ 在这上班两个月了,老板每次都让我自己算工资,是为什么,算好告诉他以后,还要我告诉他明细,具体的算法
这意思就是让你知道多劳多得,少劳少得,在这里工作每一分钱都要付出!让你自己也要知道自己的价值!混日子,没业绩是拿不了多少钱的!老板是个聪明人!
❸ 98年上班的乡镇事业干部没有职称工资应该是多少,具体算法
事业编,刚上班那就是普通人员,没啥职务。如下详解1、如果提拔成副科级领导职务的话,那就成了公务员了,具体没有什么硬性规定23问题合并回答,事业编制就是和单位签订聘用合同的人员。依据单位性质不同,工资由财政全供或者财政部分供给或者自收自支。公务员编制就是单位工作的正式人员。其工资由财政全供。参照公务员管理就是参照公务员法进行管理,公务员法同样适用,和公务员有同等的待遇和晋升渠道。
❹ 工资如何核算正算还是倒算
设税前为x,个税为y
x-y=税后工资
y=(x-2000)*适用税率-速算扣除数
以下是个税税率表,直接代数就可以了
x-2000的差在500以内税率5%速算扣除数0
500-200010%25
2000-500015%125
5000-2000020%375
❺ 基础工资2000,二月份出勤18天,领导说算9天假工资算法2000/28*27对不如不对应该怎么算
按照劳动法肯定不能那样算,如果应到的工月你实际工比较,基本工资不是你的总工资,真正的基本工资都要给你,考核和出勤可以按照你说的那种方法算。
,
❻ 详解分布式共识(一致性)算法Raft
所谓分布式共识(consensus),与 CAP理论 中的一致性(consistency)其实是异曲同工,就是在分布式系统中,所有节点对同一份数据的认知能够达成一致。保证集群共识的算法就叫共识算法,它与一致性协议这个词也经常互相通用。
当今最着名的共识算法就是Paxos算法。它由Leslie Lamport在1990年提出,很长时间以来都是一致性的事实标准。但是它有两个不小的缺点:难以理解和证明,难以在实际工程中实现。Google Chubby的工程师就曾有以下的评论:
于是2014年,来自斯坦福的两位大佬Diego Ongaro与John Ousterhout通过论文 《In Search of an Understandable Consensus Algorithm》 提出了一个新的共识算法Raft。从题目就可以看出,Raft的特点就是容易理解,在此基础上也容易实现,因此在real world中,它的应用也比Paxos要广泛,比较有名的如etcd、Ku等。
Raft为了达到易懂易用的目标,主要做了两件事:一是分解问题(decomposition),即将复杂的分布式共识问题拆分为 领导选举 (leader election)、 日志复制 (log replication)和 安全性 (safety)三个子问题,并分别解决;二是压缩状态空间(state space rection),相对于Paxos算法而言施加了更合理的限制,减少因为系统状态过多而产生的不确定性。
下面先简要介绍共识算法的基础——复制状态机,然后就来按顺序研究Raft是如何解决三个子问题的。
在共识算法中,所有服务器节点都会包含一个有限状态自动机,名为复制状态机(replicated state machine)。每个节点都维护着一个复制日志(replicated logs)的队列,复制状态机会按序输入并执行该队列中的请求,执行状态转换并输出结果。可见,如果能保证各个节点中日志的一致性,那么所有节点状态机的状态转换和输出也就都一致。共识算法就是为了保障这种一致性的,下图示出简单的复制状态机及其相关架构。
根据分布式系统的 Quorum机制 与NRW算法,集群中半数以上节点可用时,就能正确处理分布式事务,因此Raft集群几乎都使用奇数节点,可以防止脑裂并避免浪费资源。采用ZAB协议的ZooKeeper集群也是如此。
在Raft集群中,任意节点同一时刻只能处于领导者(leader)、跟随者(follower)、候选者(candidate)三种状态之一。下图示出节点状态的转移规则。
可见,集群建立时所有节点都是跟随节点。如果在一定时间过后发现没有领导节点,就会切换到候选状态,发起选举。得到多数票的候选者就会成为领导节点。如果候选节点或当前领导节点发现了更新的领导者,就会主动退回跟随状态。
领导节点全权负责管理复制日志,也就是从客户端接收请求,复制到跟随节点,并告诉跟随节点何时可以处理这些请求。如果领导节点故障或断开连接,就会重新进行选举。可见,领导节点的存在大大简化了共识算法的设计。
在上面的图中出现了任期(term)这个词。领导者并不是一直“在位”的,工作一段时间之后,就会选举出新的领导者来接替它。
由上图可见,蓝色表示选举时间段,绿色表示选举出的领导者在位的时间段,这两者合起来即称作一个任期,其计数值是自增的。任期的值就可以在逻辑上充当时间戳,每个节点都会保存一份自己所见的最新任期值,称为currentTerm。另外,如果因为票数相同,没能选出领导,就会立即再发起新的选举。
如果一个或多个跟随节点在选举超时(election timeout)内没有收到领导节点的心跳(一个名为AppendEntries的RPC消息,本意是做日志复制用途,但此时不携带日志数据),就会发起选举流程:
根据其他节点回复的消息,会出现如下三种结果:
获得多数票的节点只要当选,就会立即给其他所有节点发送AppendEntries,避免再次选举。另外,在同一任期内,每个节点只能投一票,并且先到先得(first-come-first-served),也就是会把票投给RequestVote消息第一个到达的那个节点。
至于上面的第三种情况,也就是所谓“split vote”现象,容易在很多跟随者变成候选者时出现,因为没有节点能得到多数票,选举有可能无限继续下去。所以,Raft设置的选举超时并不是完全一样的,而是有些许随机性,来尽量使得投票能够集中到那些较“快”的节点上。
领导节点选举出来后,集群就可以开始处理客户端请求了。前面已经说过,每个节点都维护着一个复制日志的队列,它们的格式如下图所示。
可见,日志由一个个按序排列的entry组成。每个entry内包含有请求的数据,还有该entry产生时的领导任期值。在论文中,每个节点上的日志队列用一个数组log[]表示。
当客户端发来请求时,领导节点首先将其加入自己的日志队列,再并行地发送AppendEntries RPC消息给所有跟随节点。领导节点收到来自多数跟随者的回复之后,就认为该请求可以提交了(见图中的commited entries)。然后,领导节点将请求应用(apply)到复制状态机,并通知跟随节点也这样做。这两步做完后,就不会再回滚。
这种从提交到应用的方式与最基础的一致性协议——两阶段提交(2PC)有些相似,但Raft只需要多数节点的确认,并不需要全部节点都可用。
注意在上图中,领导节点和4个跟随节点的日志并不完全相同,这可能是由于跟随节点反应慢、网络状况差等原因。领导节点会不断地重试发送AppendEntries,直到所有节点上的日志达到最终一致,而不实现强一致性。这就是CAP理论中在保证P的情况下,C与A无法兼得的体现。
日志复制的过程仍然遗留了一个问题:如果领导或者跟随节点发生异常情况而崩溃,如何保证日志的最终一致性?它属于下面的安全性问题中的一部分,稍后会解答它。
安全性是施加在领导选举、日志复制两个解决方案上的约束,用于保证在异常情况下Raft算法仍然有效,不能破坏一致性,也不能返回错误的结果。所有分布式算法都应保障安全性,在其基础上再保证活性(liveness)。
Raft协议的安全性保障有5种,分别是:选举安全性(election safety)、领导者只追加(leader append-only)、日志匹配(log matching)、领导者完全性(leader completeness)、状态机安全性(state machine safety) 。下面分别来看。
选举安全性是指每个任期内只允许选出最多一个领导。如果集群中有多于一个领导,就发生了脑裂(split brain)。根据“领导选举”一节中的描述,Raft能够保证选举安全,因为:
在讲解日志复制时,我们可以明显地看出,客户端发出的请求都是插入领导者日志队列的尾部,没有修改或删除的操作。这样可以使领导者的行为尽量简单化,使之没有任何不确定的行为,同时也作为下一节要说的日志匹配的基础。
日志匹配的具体描述如下。
如果两个节点的日志队列中,两个entry具有相同的下标和任期值,那么:
第一点自然由上一节的“领导者只追加”特性来保证,而第二点则由AppendEntries RPC消息的一个简单机制来保证:每条AppendEntries都会包含最新entry之前那个entry的下标与任期值,如果跟随节点在对应下标找不到对应任期的日志,就会拒绝接受并告知领导节点。
有了日志匹配特性,就可以解决日志复制中那个遗留问题了。假设由于节点崩溃,跟随节点的日志出现了多种异常情况,如下图。
注意图中不是6个跟随节点,而是6种可能的情况。比如a和b是丢失了entry,c和d是有多余的未提交entry,e和f则是既有丢失又有冗余。这时领导节点就会找到两个日志队列中最近一条匹配的日志点,将该点之后跟随节点的所有日志都删除,然后将自己的这部分日志复制给它。例如对于上图中的情况e来说,最近一条匹配的日志下标为5,那么5之后的所有entry都会被删除,被替换成领导者的日志。
领导者完全性是指,如果有一条日志在某个任期被提交了,那么它一定会出现在所有任期更大的领导者日志里。这也是由两点来决定的:
根据这两个描述,每次选举出的领导节点一定包含有最新的日志,因此只存在跟随节点从领导节点更新日志的情况,而不会反过来,这也使得一致性逻辑更加简化,并且为下面的状态机安全性提供保证。
状态机安全性是说,如果一个节点已经向其复制状态机应用了一条日志中的请求,那么对于其他节点的同一下标的日志,不能应用不同的请求。这句话就很拗口了,因此我们来看一种意外的情况。
这里就有问题了,在时刻c的日志与新领导者的日志发生了冲突,此时状态机是不安全的。
为了解决该问题,Raft不允许领导者在当选后提交“前任”的日志,而是通过日志匹配原则,在处理“现任”日志时将之前的日志一同提交。具体方法是:在领导者任期开始时,立刻提交一条空的日志,所以上图中时刻c的情况不会发生,而是像时刻e一样先提交任期4的日志,连带提交任期2的日志。就算此时S1再崩溃,S5也不会重新被选举了。
如果想要更直观地理解Raft,建议参考 这里 ,是一个用动画来描述该算法的网页,形象生动。
❼ paxos算法是什么
Paxos算法是莱斯利·兰伯特(Leslie Lamport,就是LaTeX中的"La",此人现在在微软研究院)于1990年提出的一种基于消息传递的一致性算法。这个算法被认为是类似算法中最有效的。
兰伯特提出的Paxos算法包含2个部分:
一个是Basic Paxos算法,描述的是多节点之间如何就某个值(提案Value)达成共识;
另一个是Multi-Paxos思想,描述的是执行多个Basic Paxos实例,就一系列值达成共识
可因为兰伯特提到的Multi-Paxos思想,缺少代码实现的必要细节(比如怎么选举领导者),所以在理解上比较难。Basic Paxos是Multi-Paxos思想的核心。
(7)领导算法扩展阅读
背景
Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点执行相同的操作序列,那么他们最后能得到一个一致的状态。
为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”以保证每个节点看到的指令一致。
一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。因此从20世纪80年代起对于一致性算法的研究就没有停止过。节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing)。Paxos算法就是一种基于消息传递模型的一致性算法。
❽ 领导1男1女,员工6男2女,出差3人,1领导2员工,不能全是男的,有多少种算法
一共有72种方法,全男的有21种,所以一共有51种
❾ 领导让我统计一个指标,因计算方法有误,导致出错,出错后领导找他更信任的人补救,我怎么办
首先领导让你统计这个指标的时候,你就应该先问清楚,究竟要用什么样的方法计算,才会保证指标的正确性。现在你已经出错了,领导找了一个他更信任的人来补救,你现在最重要的事情就是配合这个人,把这个工作先做好。
还有就是既然已经做错了事情,那么就要勇于承担责任,向你的领导承认你的错误,并且向他表示你以后一定会更加仔细,更加认真的工作。年轻人出一些错是很正常的,只要这些错误没有给公司造成实质性的伤害就可以了。当然当你犯错以后,你一定要吸取教训,并且勇于承担你应该承担的责任。