当前位置:首页 » 操作系统 » 系统分页算法

系统分页算法

发布时间: 2022-09-04 06:08:05

A. 计算机操作系统分页问题

与分页有关的工作

操作系统在四段时间里做与分页有关的工作:进程创建时,进程执行时,缺页中断时和进程终止时。

当在分页系统中创建一个一个新进程时,操作系统需要确定该进程的程序和数据在初始时有多大,并为它们创建一个页表。操作系统还要在内存中为页表分配空间并对其进行初始化。当进程被换出时,页表不需要驻留在内存中,但当进程运行时,页表必须在内存中。

另外,操作系统要在磁盘交换区中分配空间,以便在一个进程换出时在磁盘上有放置此进程的空间。操作系统还要用程序正文和数据对交换区进程初始化,这样当新进程发生缺页中断时,可以调入需要的页面。某些操作系统直接从磁盘上的可执行文件对程序正文进行分页,以节省磁盘空间和初始化时间。

最后,操作系统必须把有关页表和磁盘交换区的信息存储在进程表中。

当调度一个进程执行时,必须为新进程重置MMU,刷新TLB,以清除以前的进程遗留下的痕迹。

当缺页中断发生时,操作系统必须通过读硬件寄存器来确定是哪个虚拟地址造成的缺页中断。并计算出需要的页面以及要替换的老的页面。最后,还要备份程序计数器,使其指向引起缺页终端的指令,并重新执行该指令。

当进程退出的时候,操作系统需要释放进程的页表,页面和页面在硬盘上所占用的空间。但如果有些页面是被共享的,那只有当所有使用共享页面的进程终止时,该共享页面才会被释放。

2. 缺页中断处理

缺页中断时,发生的的事件顺序如下:

硬件陷入内核,在堆栈中保存程序计数器。大多数机器将当前指令的各种状态信息保存在特殊的CPU寄存器中。

启动一个汇编代码例程保存通用寄存器和其他易失的消息,以免被操作系统破坏。

当操作系统发现一个缺页中断时,尝试发现需要哪个虚拟页面。通常一个硬件寄存器包含了这以信息,如果没有的话,操作系统必须检索程序计数器,取出这条指令,用软件分析这条指令,看看它在缺页中断时正在做什么。

一旦知道了发生缺页中断的虚拟地址,操作系统检查这个地址是否有效,并检查存取与保护是否一致。如果不一致,向进程发出一个信号或杀掉该进程。如果地址有效且没有保护错误发生,系统则检查是否有空闲页框。如果没有空闲页框,执行页面置换算法寻找一个页面来淘汰。

如果选择的页框被修改过了,安排该页写回磁盘,并发生一次上下文切换,挂起产生缺页中断的进程,让其他进程运行直至磁盘传输结束。无论如何,该页框被标记为忙,以免因为其他原因而被其他进程占用。

一旦页框干净后,操作系统查找所需页面的在磁盘上的地址,通过磁盘操作将其装入。该页面被装入后,产生缺页中断的进程仍然被挂起,并且如果有其他可运行的用户进程,则选择另一个用户进程运行。

当磁盘中断发生时,表明该页已经被装入,页表已经更新可以反映它的位置,页框也被标记为正常状态。

恢复发生缺页中断指令以前的状态,程序计数器重新指向这条指令。

调度引发缺页中断的进程,操作系统返回调用它的汇编语言例程。

该例程恢复寄存器和其他状态信息,返回到用户空间继续执行,就好像缺页中断没有发生过一样。

B. sql的几种分页算法

利用SQL语句分页要看你用的什么数据库
Oracle数据库可以使用ROWNUM或row_number(),例如:Select * from (select ROWNUM rn, t.* from table t) where rn between 11 and 20;
Select * from (select row_number() over (ORDER BY col1) rn, t.* from table t) where rn between 11 and 20;
SQLServer数据库可以用Top或者row_number()函数,道理同上。
利用SQL分页有局限性,就是针对不同的数据库有不同的写法,所以通常会在应用程序里面做分页通用性比较强。但是对于数据量非常庞大的应用来说,还是用SQL分页比较适合。

C. 请教一个分页逻辑

对于分页,其实只需要总记录数totalCount、每页显示记录数(一般是一个常量)pageRecords、当前浏览到的页数curPage就可以完成对其余分页相关的属性的计算。
totalCount:select count(*) from tableName where ...
总页数:totalCont/pageRecords,此时需要做一个判断,如果余数大于零,需要在商的结果上+1
起始记录索引:pageRecoords*(curPage-1)+1
终止记录索引:pageRecoords*curPage
注:上述的起止索引是以从1开始的算法,根据数据库实际情况进行调整。

相信有了上述几个数据,其余的功能也就是把这些数据汇总利用一下的事情了。

D. 操作系统中什么是分页过程

3.请求分页系统(1)请求分页对页表的扩充
在请求分页系统中所使用的主要数据结构仍然是页表。它对页式系统中的页表机制进行了扩充但其基本作用是实现由用户地址空间到物理内存空间的映射。由于只将应用程序的一部分装入内存,还有一部分仍在磁盘上,故需在页表中增加若干项,供操作系统实现虚拟存储器功能时参考。常见的系统中,一般对页表的表项进行如下扩充:除了页号对应的物理块号,还增加了状态位、修改位、外存地址和访问字段等。
·状态位,用于指示该页是否已经调入了内存。该位一般由操作系统软件来管理,每当操作系统把一页调人物理内存中时,置位。相反,当操作系统把该页从物理内存调出时,复位。CPU对内存进行引用时,根据该位判断要访问的页是否在内存中,若不在内存之中,则产生缺页中断。
·修改位,表示该页调入内存后是否被修改过。当CPU以写的方式访问页面时,对该页表项中的修改位置位。该位也可由操作系统软件来修改,例如,当操作系统将修改过页面保存在磁盘上后,可将该位复位。
·外存地址,用于指出该页在外存上的地址,供调人该页时使用。
·访问宇段,用于记录本页在一定时间内被访问的次数,或最近已经有多长时间未被访问。提供给相应的置换算法在选择换出页面时参考。
(2)对缺页中断的支持
在请求分页系统中,CPU硬件一定要提供对缺页中断的支持,根据页表项中的状态位判断是否产生缺页中断。缺页中断是一个比较特殊的中断,这主要体现在如下两点:
·在指令的执行期间产生和处理缺页信号。通常的CPU外部中断,是在每条指令执行完毕后检查是否有中断请求到达。而缺页中断,是在一条指令的执行期间,发现要访问的指令和数据不在内存时产生和处理的。
·一条指令可以产生多个缺页中断。例如,一条双操作数的指令,每个操作数都不在内存中,这条指令执行时,将产生两个中断。CPU提供的硬件支持,还要体现在当从中断处理程序返回时,能够正确执行产生缺页中断的指令。
(3)页面调度策略
虚拟存储器系统通常定义三种策略来规定如何(或何时)进行页面调度:调入策略、置页策略和置换策略。
(4)置换算法(replacementalgorithm)决定在需要调入页面时,选择内存中哪个物理页面被置换。置换算法的出发点应该是,把未来不再使用的或短期内较少使用的页面调出。而未来的实际情况是不确定的,通常只能在局部性原理指导下依据过去的统计数据进行预测。常用的算法有以下几种:
·最佳算法(optimal,OPT)。选择“未来不再使用的”或“在离当前最远位置上出现的”页面被置换。这是一种理想情况,是实际执行中无法预知的,因而不能实现,只能用作性能评价的依据。
·最近最久未使用算法(LeastRecentlyUsed,LRU)。选择内存中最久未使用的页面被置换,这是局部性原理的合理近似,性能接近最佳算法。但由于需要记录页面使用时间的先后关系,硬件开销太大。LRU可用如下的硬件机构帮助实现:
一个特殊的栈:把被访问的页面移到栈顶,于是栈底的是最久未使用页面。每个页面设立移位寄存器:被访问时左边最高位置1,定期右移并且最高位补0,于是寄存器数值最小的是最久未使用页面。
·先进先出算法(FIFO)。选择装入最早的页面置换。可以通过链表来表示各页的装入时间先后。FIFO的性能较差,因为较早调入的页往往是经常被访问的页,这些页在FIFO算法下被反复调入和调出,并且有Belady现象。所谓Belady现象是指:采用FIFO算法时,如果对—个进程未分配它所要求的全部页面,有时就会出现分配的页面数增多但缺页率反而提高的异常现象。Belady现象可形式化地描述为:一个进程户要访问M个页,OS分配舻个内存页面给进程P;对一个访问序列S,发生缺页次数为PE(占,N)。当N增大时,PE(S,N)时而增大时而减小。Belady现象的原因是FIFO算法的置换特征与进程访问内存的动态特征是矛盾的,即被置换的页面并不是进程不会访问的。
·时钟(clock)算法。也称最近未使用算法(NotRecentlyUsed,NRU),它是LRU和FIFO的折中。每页有一个使用标志位(usebit),若该页被访问则置userbit=l,这是由CPU的硬件自动完成的。置换时采用一个指针,从当前指针位置开始按地址先后检查各页,寻找usebit=0的面作为被置换页。指针经过的userbit=l的页都修改userbit=O,这个修改的过程是操作系统完成的,最后指针停留在被置换页的下一个页。
·最不常用算法(LeastFrequentlyUsed,LFU)。选择到当前时间为止被访问次数最少的页面被置换。每页设置访问计数器,每当页面被访问时,该页面的访问计数器加1。发生缺页中断时,淘汰计数值最小的页面,并将所有计数清零。
·页面缓冲算法(pagebuffering)。它是对FIFO算法的发展,通过建立置换页面的缓冲,这样就有机会找回刚被置换的页面,从而减少系统I/0的开销。页面缓冲算法用FIFO算法选择被置换页,把被置换的页面放人两个链表之一。即是如果页面未被修改,就将其归人到空闲页面链表的末尾,否则将其归人到已修改页面链表。空闲页面和已修改页面,仍停留在内存中一段时间,如果这些页面被再次访问,只需较小开销,被访问的页面就可以返还作为进程的内存页。需要调入新的物理页面时,将新页面内容读人到空闲页面链表的第一项所指的页面,然后将第一项删除。当已修改页面达到一定数目后,再将它们一起调出到外存,然后将它们归人空闲页面链表。这样能大大减少I/O操作的次数。

E. 在请求分页系统中,常采用哪几种页面置换算法

理想页面置换算法、先进先出页面置换算法、最近最少使用页面置换算法。

F. 操作系统页面置换算法:第二次机会算法是什么

第二次机会算法:

与FIFO、OPT、LRU、NRU等同为操作系统中请求分页式管理方式的页面置换算法。

第二次机会算法的基本思想是与FIFO相同的,但是有所改进,避免把经常使用的页面置换出去。当选择置换页面时,依然和FIFO一样,选择最早置入内存的页面。但是二次机会法还设置了一个访问状态位。所以还要检查页面的的访问位。如果是0,就淘汰这页;如果访问位是1,就给它第二次机会,并选择下一个FIFO页面。当一个页面得到第二次机会时,它的访问位就清为0,它的到达时间就置为当前时间。如果该页在此期间被访问过,则访问位置为1。这样给了第二次机会的页面将不被淘汰,直至所有其他页面被淘汰过(或者也给了第二次机会)。因此,如果一个页面经常使用,它的访问位总保持为1,它就从来不会被淘汰出去。

第二次机会算法可视为一个环形队列。用一个指针指示哪一页是下面要淘汰的。当需要一个存储块时,指针就前进,直至找到访问位是0的页。随着指针的前进,把访问位就清为0。在最坏的情况下,所有的访问位都是1,指针要通过整个队列一周,每个页都给第二次机会。这时就退化成FIFO算法了。

G. 在请求分页系统中,LRU算法是指( )。

B这个算法 ,就是类似于LRU算法。选择B

H. php 分页算法

这是我以前用的分页,你看看吧,希望能帮到你。

<html>
<head>
<title>分页</title>
</head>
<body>
<table align="center" border="1" width="500">
<tr>
<td>编号</td>
<td>用户名</td>
<td>密码</td>
<td>邮箱</td>
</tr>

<?php
$conn=mysql_connect("localhost","root","");
mysql_set_charset("utf8",$conn);
$db = mysql_select_db("bbs",$conn);
$rs = mysql_query("select * from userInfo");

$totalRow = mysql_num_rows($rs);//总记录数
$currentPage = $_GET["currentPage"];//当前页
if($currentPage == null){
$currentPage = 1;
}
$pageSize = 3;//每页显示的记录数
$first = ($currentPage-1)*$pageSize;//起始值
$last = $first + $pageSize;//结束值
$totalPage = ceil($totalRow / $pageSize);//总页数

if($last > $totalRow)
{
$last = $totalRow;
}
for($i=$first;$i<$last;$i++)
{
mysql_data_seek($rs,$i);//定位游标
$row = mysql_fetch_array($rs);
echo "<tr>";
echo " <td>{$row[0]}</td>";
echo " <td>{$row[1]}</td>";
echo " <td>{$row[2]}</td>";
echo " <td>{$row[3]}</td>";
echo "</tr>";
}
mysql_free_result($rs);
mysql_close($conn);
?>

<tr>
<td colspan="4" align="center">
<?php
if($currentPage == 1)
{
echo "首页上一页";
}
else
{
?>
<a href="fenye.php?currentPage=1">首页</a>
<a href="fenye.php?currentPage=<?php echo $currentPage-1 ?>">上一页</a>
<?php
}
if($currentPage == $totalPage)
{
echo "下一页尾页";
}
else
{
?>
<a href="fenye.php?currentPage=<?php echo $currentPage+1 ?>">下一页</a>
<a href="fenye.php?currentPage=<?php echo $totalPage ?>">尾页</a>
<?php
}
?>

<td>
</tr>
</table>
</body>
</html>

I. 关于Java的分页算法,急!

你想效率高 你就直接使用jdbc连接数据库,然后自己封装一个标签,结合servlet做自己的分页标签

J. 分页存储管理的实现原理

采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下:

1、 页框:物理地址分成大小相等的许多区,每个区称为一块;
2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。
3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。

4、页表和地址转换:如何保证程序正确执行呢?
采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式
A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面

B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理

热点内容
jsoupjava 发布:2025-05-14 14:38:00 浏览:884
影豹选哪个配置最好 发布:2025-05-14 14:28:50 浏览:255
定期预算法的 发布:2025-05-14 14:24:08 浏览:894
interbase数据库 发布:2025-05-14 13:49:50 浏览:691
微商海报源码 发布:2025-05-14 13:49:42 浏览:347
分布式缓存部署步骤 发布:2025-05-14 13:24:51 浏览:611
php获取上一月 发布:2025-05-14 13:22:52 浏览:90
购买云服务器并搭建自己网站 发布:2025-05-14 13:20:31 浏览:689
sqlserver建立视图 发布:2025-05-14 13:11:56 浏览:486
搭建httpsgit服务器搭建 发布:2025-05-14 13:09:47 浏览:256