linuxsemaphore
Ⅰ 急!linux下,GCC编译,原程序包含<semaphore.h>头文件,为什么编译时说sem_wait,sem_post等未定义的引用
编译时加上参数:-lpthread
要看报错的阶段,是在编译还是链接阶段.
如果编译时函数没有找到,那是头文件的问题,如果链接时未定义引用,那是c库的问题.
如果你的头文件都正常包含了,那可能你的c库没有使能semaphore的支持.
Ⅱ linux 信号量是什么怎么用
Linux信号量(semaphore)是一种互斥机制。即对某个互斥资源的访问会收到信号量的保护,在访问之前需要获得信号量。
在操作完共享资源后,需释放信号量,以便另外的进程来获得资源。获得和释放应该成对出现。
获得信号量集,需要注意的是,获得的是一个集合,而不是一个单一的信号量。
#include
#include
#include
1: int semget(key_t key,int nsems,int semflg);
key:系统根据这个值来获取信号量集。
nsems:此信号集包括几个信号量。
semflg:创建此信号量的属性。 (IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)
成功则返回该信号量集的ID。
注:
既指定IPC_CREAT又指定IPC_EXCL时,如果系统中该信号量集已经存在,则马上返回。
如果需要获得存在的信号量,则将此参数置0.
2: int semctl(int semid,int senum,int cmd....)
semid:信号量ID。
senum:对信号量集中的第几个信号量进行控制。(从0开始)
cmd:需要进行的操作。(SETVAL是其中的一个)。
根据cmd的不同可能存在第四个参数,cmd=SETVAL时,表示同时信号量可以被获得几次,如第四个参数
num=1表示只能被获得一次,既被信号量保护的资源只能同时被一个程序使用。
该系统调用,是在对信号量初始化时用的。
-3: “3”前面加了"-"表示当需要使用互斥资源时应该做这步。
int semop(int semid,struct sembuf *sem,int num_elements);
struct sembuf {
unsigned short sem_num; //该信号量集中的第几个信号量。
int sem_op;//需要获得还是释放信号量
int sem_flg;//相关动作
};
num_elements:需要对该信号量集中的多少个信号量进行处理。
获得信号量时,将sembuf结构提初始化为:
sem_num = 0; //该信号量集中的首个信号量
sem_op = -1; //获得信号量
sem_flag = IPC_NOWAIT; //如果不能获得信号量,马上返回。
semop(semid,_sem,1);
同理释放信号量时,将sem_op设为1.
以上是对信号量的简单处理
Ⅲ linux进程间信号量的初始信号
分配与初始化信号量是两个相互独立的操作。以 0 为第二参数,以 SETALL 为第三个参数调用 semctl 可以对一个信号量组进行初始化。第四个参数是一个 semun 对象,且它的 array 字段指向一个 unsigned short数组。数组中的每个值均用于初始化该组中的一个信号量。
代码 5.3 展示了初始化一个二元信号量的函数。
代码 5.3 (sem_init.c) 初始化一个二元信号量
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
/* 我们必须自己定义 union semun。*/
union semun
{
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;
};
/* 将一个二元信号量初始化为 1。*/
int binary_semaphore_initialize (int semid)
{
union semun argument;
unsigned short values[1];
values[0] = 1;
argument.array = values;
return semctl (semid, 0, SETALL, argument);
}
Ⅳ linux编程时的信号量问题。 我以前用过的信号量头文件是<semaphore.h>,而现在又发现还有个<sys/sem.h>
semaphore.h 提供的是 POSIX 标准定义的 semaphore 接口 ( sem_open, sem_wait, ...) ,这组接口使用更简单,设计的较好。
而 sys/sem.h 里 提供的是符合 System V 标准的 semaphore接口 (semget, semop, ...),这些接口都比较老了, linux提供主要是为了兼容老代码。
对于 linux 开发来说,新写的代码,都应该考虑采用 POSIX 标准的信号量。
Ⅳ 关于linux下的多线程使用sem信号量的运行问题
不是信号量的问题
printf函数,是先写到输出缓冲,遇到\n时,或者缓冲区满时,或者有强制输出(fflush)时,才会将缓冲区里的内容输出到屏幕上(标准输出设备:stdout)。你的代码里面并没有以上3个触发条件的任意一种,所以printf的内存没有实际输出到屏幕上。
你只要在每个printf函数后面加上fflush(stdout);就可以了。
Ⅵ Linux 中编程的 semaphore结构体在哪个头文件中
semaphore.h定义的是内核里用semaphore,用户态程序用的sem_t也在名叫semaphore.h的文件里定义,不过应该在系统的include目录下,而不是在内核源代码了
Ⅶ 总结:linux进程间通信的几种机制的比较及适
1 管道(Pipe)及有名管道(namedpipe):
管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
2 信号(Signal):
信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
3 报文(Message)队列(消息队列):
消息队列是消息的链接表,包括Posix消息队列systemV消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
4 共享内存:
使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
5 信号量(semaphore):
主要作为进程间以及同一进程不同线程之间的同步手段。
6 套接口(Socket):
更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和SystemV的变种都支持套接字。
Ⅷ linux进程间信号量的等待投递
每个信号量都具有一个非负的值,且信号量支持等待和投递操作。系统调用 semop 实现了这两个操作。它的第一个参数是信号量的标识符,第二个参数是一个包含 struct sembuf 类型元素的数组;这些元素指明了您希望执行的操作。第三个参数是这个数组的长度。结构体sembuf中包含如下字段:
sem_num将要执行操作的信号量组中包含的信号量数量。 sem_op是一个指定了操作类型的整数。 如果sem_op是一个正整数,则这个值会立刻被加到信号量的值上。 [BR]如果 sem_op 为负,则将从信号量值中减去它的绝对值。如果这将使信号量的值小于零,则这个操作会导致进程阻塞,直到信号量的值至少等于操作值的绝对值(由其它进程增加它的值)。 [BR]如果 sem_op 为0,这个操作会导致进程阻塞,直到信号量的值为零才恢复。 sem_flg 是一个符号位。指定 IPC_NOWAIT 以防止操作阻塞;如果该操作本应阻塞,则semop调用会失败。如果为sem_flg指定SEM_UNDO,Linux会在进程退出的时候自动撤销该次操作。 代码 5.4 展示了二元信号量的等待和投递操作。
代码 5.4 (sem_pv.c)二元信号量等待和投递操作
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
/* 等待一个二元信号量。阻塞直到信号量的值为正,然后将其减1 */
int binary_semaphore_wait (int semid)
{
struct sembuf operations[1];
/* 使用(且仅使用)第一个信号量 */
operations[0].sem_num = 0;
/* 减一。 */
operations[0].sem_op = -1;
/* 允许撤销操作 */
operations[0].sem_flg = SEM_UNDO;
return semop (semid, operations, 1);
}
/* 对一个二元信号量执行投递操作:将其值加一。 这个操作会立即返回。*/
int binary_semaphore_post (int semid)
{
struct sembuf operations[1];
/* 使用(且仅使用)第一个信号量 */
operations[0].sem_num = 0;
/* 加一 */
operations[0].sem_op = 1;
/* 允许撤销操作 */
operations[0].sem_flg = SEM_UNDO;
return semop (semid, operations, 1);
}
指定 SEM_UNDO 标志解决当出现一个进程仍然持有信号量资源时被终止这种特殊情况时可能出现的资源泄漏问题。当一个进程被有意识或者无意识地结束的时候,信号量的值会被调整到“撤销”了所有该进程执行过的操作后的状态。例如,如果一个进程在被杀死之前减小了一个信号量的值,则该信号量的值会增长。
Ⅸ Linux进程间通信的方式有哪些
第一种:管道通信
两个进程利用管道进行通信时,发送信息的进程称为写进程;接收信息的进程称为读进程。管道通信方式的中间介质就是文件,通常称这种文件为管道文件,它就像管道一样将一个写进程和一个读进程连接在一起,实现两个进程之间的通信。写进程通过写入端往管道文件中写入信息;读进程通过读出端从管道文件中读取信息。两个进程协调不断地进行写和读,便会构成双方通过管道传递信息的流水线。
第二种:消息缓冲通信
多个独立的进程之间可以通过消息缓冲机制来相互通信。这种通信的实现是以消息缓冲区为中间介质,通信双方的发送和接收操作均以消息为单位。在存储器中,消息缓冲区被组织成队列,通常称之为消息队列。消息队列一旦创建后即可由多进程共享,发送消息的进程可以在任意时刻发送任意个消息到指定的消息队列上,并检查是否有接收进程在等待它所发送的消息。若有则唤醒它,而接收消息的进程可以在需要消息的时候到指定的消息队列上获取消息,如果消息还没有到来,则转入睡眠等待状态。
第三种:共享内存通信
针对消息缓冲需要占用CPU进行消息复制的缺点,OS提供了一种进程间直接进行数据交换的通信方式。共享内存,顾名思义这种通信方式允许多个进程在外部通信协议或同步,互斥机制的支持下使用同一个内存段进行通信,它是一种最有效的数据通信方式,其特点是没有中间环节,直接将共享的内存页面通过附接映射到相互通信的进程各自的虚拟地址空间中,从而使多个进程可以直接访问同一个物理内存页面。