当前位置:首页 » 操作系统 » 阶剩算法

阶剩算法

发布时间: 2022-09-11 06:56:27

‘壹’ Google:有100阶楼梯,从底往上爬,每次爬1阶或2阶,编算法说明共有多少走法

设 f(x) = 上x层楼的方法数,那么,显然

f(1) = 1
f(2) = 2

因为只有1层楼的话,只有一种方法可以走完,那就是直接走一阶;
只有2层楼的话,可以走两步一阶,或者走一步2阶,共两种走法;

考虑一般的 x (x >= 3):
假如你现在面对 x 层楼梯,你只有两种选择:

1. 要么走一阶,变成还剩 x-1 层,这种情况下剩下的楼层共有 f(x-1) 种走法。
2. 要么走两阶,变成 x-2 层,这种情况下剩下的楼层共有 f(x-2) 种走法。

所以对于一般的 x 层楼梯,你实际上有 f(x-1) + f(x-2) 种走法。

于是就得到了一个递推公式:

f(1) = 1
f(2) = 2
f(x) = f(x-1) + f(x-2) (x >= 3)

‘贰’ 求算法高手解释一下

因为{ [(3*k+6)!] % (3*k+7) + 1 } / (3*k+7) = m;
而[(3*k+6)!] % (3*k+7)的取值范围是[0,3*k+6];
所以m的取值只有两种可能:
当[(3*k+6)!] % (3*k+7) < 3*k+6 时,m = 0;
当[(3*k+6)!] % (3*k+7) = 3*k+6 时,m = 1;
根据费马小定理:
若一个数是素数P,令 W = (1*2*3***P-1),则 W≡W(mod p) 注释:≡是同余符号。
所以当(3*k+7)为素数的时候,[(3*k+6)!] % (3*k+7) = 3*k+6, m = 1; 此时n可取1。
同理当(3*k+7)不是素数的时候n可取0。
费马小定理网上有很多知识,你可以自己去搜搜看。
下面我给你贴上网络里面的解释:

一、准备知识:
引理1.剩余系定理2
若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m)
证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(mod m)可得a≡b(mod m)
引理2.剩余系定理5
若m为整数且m>1,a[1],a[2],a[3],a[4],…a[m]为m个整数,若在这m个数中任取2个整数对m不同余,则这m个整数对m构成完全剩余系。
证明:构造m的完全剩余系(0,1,2,…m-1),所有的整数必然这些整数中的1个对模m同余。取r[1]=0,r[2]=1,r[3]=2,r[4]=3,…r[i]=i-1,1<i<=m。令(1):a[1]≡r[1](mod m),a[2]≡r[2](mod m),a≡r(mod m)(顺序可以不同),因为只有在这种情况下才能保证集合{a1,a2,a3,a4,…am}中的任意2个数不同余,否则必然有2个数同余。由式(1)自然得到集合{a1,a2,a3,a4,…am}对m构成完全剩余系。
引理3.剩余系定理7
设m是一个整数,且m>1,b是一个整数且(m,b)=1。如果a1,a2,a3,a4,…am是模m的一个完全剩余系,则ba[1],ba[2],ba[3],ba[4],…ba[m]也构成模m的一个完全剩余系。
证明:若存在2个整数ba和ba[j]同余即ba≡ba[j](mod m),根据引理1则有a≡a[j](mod m)。根据完全剩余系的定义和引理4(完全剩余系中任意2个数之间不同余,易证明)可知这是不可能的,因此不存在2个整数ba和ba[j]同余。由引理5可知ba[1],ba[2],ba[3],ba[4],…ba[m]构成模m的一个完全剩余系。
引理4.同余定理6
如果a,b,c,d是四个整数,且a≡b(mod m),c≡d(mod m),则有ac≡bd(mod m)
证明:由题设得ac≡bc(mod m),bc≡bd(mod m),由模运算的传递性可得ac≡bd(mod m)
二、证明过程:
构造素数p的完全剩余系P={1,2,3,4…(p-1)},因为(a,p)=1,由引理3可得A={a,2a,3a,4a,…(p-1)a}也是p的一个完全剩余系。令W=1*2*3*4…*(p-1),显然W≡W(mod p)。令Y=a*2a*3a*4a*…(p-1)a,因为{a,2a,3a,4a,…(p-1)a}是p的完全剩余系,由引理2以及引理4可得a*2a*3a*…(p-1)a≡1*2*3*…(p-1)(mod p)即W*a^(p-1)≡W(modp)。易知(W,p)=1,由引理1可知a^(p-1)≡1(modp)

‘叁’ 关于爱因斯坦的阶梯问题答案不懂如题 谢谢了

因为只有每步上7阶,最后一阶也不剩,所以台阶总数一定是7的倍数, 这应该是个计算机算法吧, X=X+7意思就是在原来的数上加7, 也就是用7的1. 2 . 3 ... 倍数去试, 直到有一个数符合题中的全部条件

‘肆’ 谁知道1×2×3×4×5×6×7×8×9的简便算法 简便算法

这是一个高中的阶剩问题,是没有简便的,靠记.
它可写成9!=363880

‘伍’ 排序算法概述

十大排序算法:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序、希尔排序、计数排序,基数排序,桶排序

稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定 :如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,前一个键排序的结果可以为后一个键排序所用。

算法的复杂度往往取决于数据的规模大小和数据本身分布性质。
时间复杂度 : 一个算法执行所耗费的时间。
空间复杂度 :对一个算法在运行过程中临时占用存储空间大小的量度。
常见复杂度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)

在各种不同算法中,若算法中语句执行次数(占用空间)为一个常数,则复杂度为O(1);
当一个算法的复杂度与以2为底的n的对数成正比时,可表示为O(log n);
当一个算法的复杂度与n成线性比例关系时,可表示为O (n),依次类推。

冒泡、选择、插入排序需要两个for循环,每次只关注一个元素,平均时间复杂度为
(一遍找元素O(n),一遍找位置O(n))
快速、归并、堆基于分治思想,log以2为底,平均时间复杂度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相关
而希尔排序依赖于所取增量序列的性质,但是到目前为止还没有一个最好的增量序列 。例如希尔增量序列时间复杂度为O(n²),而Hibbard增量序列的希尔排序的时间复杂度为 , 有人在大量的实验后得出结论;当n在某个特定的范围后希尔排序的最小时间复杂度大约为n^1.3。

从平均时间来看,快速排序是效率最高的:
快速排序中平均时间复杂度O(nlog n),这个公式中隐含的常数因子很小,比归并排序的O(nlog n)中的要小很多,所以大多数情况下,快速排序总是优于合并排序的。

而堆排序的平均时间复杂度也是O(nlog n),但是堆排序存在着重建堆的过程,它把根节点移除后,把最后的叶子结点拿上来后需要重建堆,但是,拿上的值是要比它的两个叶子结点要差很多的,一般要比较很多次,才能回到合适的位置。堆排序就会有很多的时间耗在堆调整上。

虽然快速排序的最坏情况为排序规模(n)的平方关系,但是这种最坏情况取决于每次选择的基准, 对于这种情况,已经提出了很多优化的方法,比如三取样划分和Dual-Pivot快排。
同时,当排序规模较小时,划分的平衡性容易被打破,而且频繁的方法调用超过了O(nlog n)为
省出的时间,所以一般排序规模较小时,会改用插入排序或者其他排序算法。

一种简单的排序算法。它反复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。这个工作重复地进行直到没有元素再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为元素会经由交换慢慢“浮”到数列的顶端。
1.从数组头开始,比较相邻的元素。如果第一个比第二个大(小),就交换它们两个;
2.对每一对相邻元素作同样的工作,从开始第一对到尾部的最后一对,这样在最后的元素应该会是最大(小)的数;
3.重复步骤1~2,重复次数等于数组的长度,直到排序完成。

首先,找到数组中最大(小)的那个元素;
其次,将它和数组的第一个元素交换位置(如果第一个元素就是最大(小)元素那么它就和自己交换);
再次,在剩下的元素中找到最大(小)的元素,将它与数组的第二个元素交换位置。如此往复,直到将整个数组排序。
这种方法叫做选择排序,因为它在不断地选择剩余元素之中的最大(小)者。

对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
为了给要插入的元素腾出空间,我们需要将插入位置之后的已排序元素在都向后移动一位。
插入排序所需的时间取决于输入中元素的初始顺序。例如,对一个很大且其中的元素已经有序(或接近有序)的数组进行排序将会比对随机顺序的数组或是逆序数组进行排序要快得多。
总的来说,插入排序对于部分有序的数组十分高效,也很适合小规模数组。

一种基于插入排序的快速的排序算法。简单插入排序对于大规模乱序数组很慢,因为元素只能一点一点地从数组的一端移动到另一端。例如,如果主键最小的元素正好在数组的尽头,要将它挪到正确的位置就需要N-1 次移动。
希尔排序为了加快速度简单地改进了插入排序,也称为缩小增量排序,同时该算法是突破O(n^2)的第一批算法之一。
希尔排序是把待排序数组按一定数量的分组,对每组使用直接插入排序算法排序;然后缩小数量继续分组排序,随着数量逐渐减少,每组包含的元素越来越多,当数量减至 1 时,整个数组恰被分成一组,排序便完成了。这个不断缩小的数量,就构成了一个增量序列。

在先前较大的增量下每个子序列的规模都不大,用直接插入排序效率都较高,尽管在随后的增量递减分组中子序列越来越大,由于整个序列的有序性也越来越明显,则排序效率依然较高。
从理论上说,只要一个数组是递减的,并且最后一个值是1,都可以作为增量序列使用。有没有一个步长序列,使得排序过程中所需的比较和移动次数相对较少,并且无论待排序列记录数有多少,算法的时间复杂度都能渐近最佳呢?但是目前从数学上来说,无法证明某个序列是“最好的”。
常用的增量序列
希尔增量序列 :{N/2, (N / 2)/2, ..., 1},其中N为原始数组的长度,这是最常用的序列,但却不是最好的
Hibbard序列:{2^k-1, ..., 3,1}
Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表达式为

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。
对于给定的一组数据,利用递归与分治技术将数据序列划分成为越来越小的半子表,在对半子表排序后,再用递归方法将排好序的半子表合并成为越来越大的有序序列。
为了提升性能,有时我们在半子表的个数小于某个数(比如15)的情况下,对半子表的排序采用其他排序算法,比如插入排序。
若将两个有序表合并成一个有序表,称为2-路归并,与之对应的还有多路归并。

快速排序(Quicksort)是对冒泡排序的一种改进,也是采用分治法的一个典型的应用。
首先任意选取一个数据(比如数组的第一个数)作为关键数据,我们称为基准数(Pivot),然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序,也称为分区(partition)操作。
通过一趟快速排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数组变成有序序列。
为了提升性能,有时我们在分割后独立的两部分的个数小于某个数(比如15)的情况下,会采用其他排序算法,比如插入排序。

基准的选取:最优的情况是基准值刚好取在无序区数值的中位数,这样能够最大效率地让两边排序,同时最大地减少递归划分的次数,但是一般很难做到最优。基准的选取一般有三种方式,选取数组的第一个元素,选取数组的最后一个元素,以及选取第一个、最后一个以及中间的元素的中位数(如4 5 6 7, 第一个4, 最后一个7, 中间的为5, 这三个数的中位数为5, 所以选择5作为基准)。
Dual-Pivot快排:双基准快速排序算法,其实就是用两个基准数, 把整个数组分成三份来进行快速排序,在这种新的算法下面,比经典快排从实验来看节省了10%的时间。

许多应用程序都需要处理有序的元素,但不一定要求他们全部有序,或者不一定要一次就将他们排序,很多时候,我们每次只需要操作数据中的最大元素(最小元素),那么有一种基于二叉堆的数据结构可以提供支持。
所谓二叉堆,是一个完全二叉树的结构,同时满足堆的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。在一个二叉堆中,根节点总是最大(或者最小)节点。
堆排序算法就是抓住了这一特点,每次都取堆顶的元素,然后将剩余的元素重新调整为最大(最小)堆,依次类推,最终得到排序的序列。

推论1:对于位置为K的结点 左子结点=2 k+1 右子结点=2 (k+1)
验证:C:2 2 2+1=5 2 (2+1)=6
推论2:最后一个非叶节点的位置为 (N/2)-1,N为数组长度。
验证:数组长度为6,(6/2)-1=2

计数排序对一定范围内的整数排序时候的速度非常快,一般快于其他排序算法。但计数排序局限性比较大,只限于对整数进行排序,而且待排序元素值分布较连续、跨度小的情况。
计数排序是一个排序时不比较元素大小的排序算法。
如果一个数组里所有元素都是整数,而且都在0-K以内。对于数组里每个元素来说,如果能知道数组里有多少项小于或等于该元素,就能准确地给出该元素在排序后的数组的位置。

桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,利用某种函数的映射关系将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序)。
桶排序利用函数的映射关系,减少了几乎所有的比较工作。实际上,桶排序的f(k)值的计算,其作用就相当于快排中划分,已经把大量数据分割成了基本有序的数据块(桶)。然后只需要对桶中的少量数据做排序即可。

常见的数据元素一般是由若干位组成的,比如字符串由若干字符组成,整数由若干位0~9数字组成。基数排序按照从右往左的顺序,依次将每一位都当做一次关键字,然后按照该关键字对数组排序,同时每一轮排序都基于上轮排序后的结果;当我们将所有的位排序后,整个数组就达到有序状态。基数排序不是基于比较的算法。
基数是什么意思?对于十进制整数,每一位都只可能是0~9中的某一个,总共10种可能。那10就是它的基,同理二进制数字的基为2;对于字符串,如果它使用的是8位的扩展ASCII字符集,那么它的基就是256。

基数排序 vs 计数排序 vs 桶排序

基数排序有两种方法:
MSD 从高位开始进行排序
LSD 从低位开始进行排序
这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
基数排序:根据键值的每位数字来分配桶
计数排序:每个桶只存储单一键值
桶排序:每个桶存储一定范围的数值

有时,待排序的文件很大,计算机内存不能容纳整个文件,这时候对文件就不能使用内部排序了(我们一般的排序都是在内存中做的,所以称之为内部排序,而外部排序是指待排序的内容不能在内存中一下子完成,它需要做内外存的内容交换),外部排序常采用的排序方法也是归并排序,这种归并方法由两个不同的阶段组成:
采用适当的内部排序方法对输入文件的每个片段进行排序,将排好序的片段(成为归并段)写到外部存储器中(通常由一个可用的磁盘作为临时缓冲区),这样临时缓冲区中的每个归并段的内容是有序的。
利用归并算法,归并第一阶段生成的归并段,直到只剩下一个归并段为止。

例如要对外存中4500个记录进行归并,而内存大小只能容纳750个记录,在第一阶段,我们可以每次读取750个记录进行排序,这样可以分六次读取,进行排序,可以得到六个有序的归并段
每个归并段的大小是750个记录,并将这些归并段全部写到临时缓冲区(由一个可用的磁盘充当)内了,这是第一步的排序结果。
完成第二步该怎么做呢?这时候归并算法就有用处了。

‘陆’ 求助C语言 “爱因斯坦数学”问题

爱因斯坦的数学题
爱因斯坦出了一道这样的数学题:有一条长阶梯,若每步跨2阶,则最最后剩一阶,若每步跨3
阶,则最后剩2阶,若每步跨5阶,则最后剩4阶,若每步跨6阶则最后剩5阶。只有每次跨7阶,最后才正好一阶不剩。请问这条阶梯共有多少阶?
*题目分析与算法设计
根据题意,阶梯数满足下面一组同余式:
x≡1
(mod2)
x≡2
(mod3)
x≡4
(mod5)
x≡5
(mod6)
x≡0
(mod7)
*程序说明与注释
#include<stdio.h>
void
main()
{
int
i=1;
/*i为所设的阶梯数*/
while(!((i%2==1)&&(i%3==2)&&(i%5==4)&&(i%6==5)&&(i%7==0)))
++i;
/*满足一组同余式的判别*/
printf("Staris_number=%d\n",i);
}
*运行结果
Staris_number=119
*问题的进一步讨论
此题算法还可考虑求1、2、4、5的最小公倍数n,然后判t(t为n-1)≡0(mod7)是否成立,若不成立则t=t+n,再进行判别,直至选出满足条件的t值。

‘柒’ 时间复杂度

算法复杂度分为时间复杂度和空间复杂度,一个好的算法应该具体执行时间短,所需空间少的特点。

随着计算机硬件和软件的提升,一个算法的执行时间是算不太精确的。只能依据统计方法对算法进行估算。

我们抛开硬件和软件的因素,算法的好坏直接影响程序的运行时间。

我们看一下小例子:

     int value = 0;                         // 执行了1次

     for (int i = 0; i < n; i++) {       // 执行了n次

          value += i;

     }

     这个算法执行了 1 + n 次,如果n无限大,我们可以把前边的1忽略,也就是说这个算法执行了n次

     时间复杂度常用大O符号表示,这个算法的时间复杂度就是O(n).

     概念: 一般情况下,算法的基本操作重复执行的次数是模块n的某一函数f(n),因此,算法的时间复杂度记做 T(n) = O(f(n))。 随着模块n的增大,算法执行的时间增长率f(n)的增长率成正比,所以f(n)越小,算法 的时间复杂度越低,算法的效率越高。

计算时间复杂度

     1.去掉运行时间中的所有加法常数。

     2.只保留最高阶项。

     3.如果最高阶项存在且不是1,去掉与这个最高阶相乘的常数得到时间复杂度

我们看一个例子

     for (int i = 0; i < n; i++) {

          for (int j = i; j < n; j++) {

               // do .....

          }

     }

当 i = 0 时 里面的fo循环执行了n次,当i等待1时里面的for循环执行了n -  1次,当i 等于2里里面的fro执行了n - 2次........所以执行的次数是

根据我们上边的时间复杂度算法

1.去掉运行时间中的所有加法常数: 没有加法常数不用考虑

2.只保留最高阶项:只保留

3. 去掉与这个最高阶相乘的常数:  去掉

只剩下

最终这个算法的时间复杂度为

再看一个线性的

      for ( int i = 0; i < n; i++) {

          // do .....

     }

     因为循环要执行n次所以时间复杂度为O(n)

其它的我也就不一个一个算了,下面给出了常用的时间复杂度

‘捌’ 常见算法1——递归算法

递归算法就是通过自身不断反复调用自身以解决问题,其中最经典的也就是汉诺达和斐波纳契数列的问题了。
1.汉诺塔问题
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,一次只移动一片,不管在哪根针上,小片必在大片上面。当所有的金片都从梵天穿好的那根针上移到另外一概针上时,世界就将在一声霹雳中消灭,梵塔、庙宇和众生都将同归于尽。

分析:挪到C的金片也是从下到上由大到小的顺序排列,那么A之剩下最下面的金片移动到C的时候,C上面是不可以有金片的,这个时候A上面只有第n个金片,B上面有n-1个金片,C上面没有金片,然后这个情况就和刚开始情况相同了,只不过A和B颠倒了位置而已。
(1)n-1个金片从A通过C移动到B,n-1个金片从A通过C移动到B也是不断调用自身逐步缩小范围。通过递归调用后,就完成了A上面仅剩下最大的金片,C上面没有金片,B上面有n-1个金片。
(2)最大的那个金片从A移动到C
(3)调用自身重复刚开始的情况,只不过现在有金片的是B,即B通过A把金片移动到C。

2.斐波纳契数列
2.1生兔子问题
古典问题:3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?下面先从小到大分析下这个情况
分析:假设将兔子分为小中大三种,兔子从出生后从第三个月开始每个月就会生出一对兔子,也就是一旦兔子变为大兔子那么他就生了一对兔子
分析情况图如下

很明显这个是一个为斐波那契数列,即如果用f(n)表示第n个月的兔子的对数,那么f(n)=f(n-1)+f(n-2)

2.2走台阶问题
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。求总共有多少总跳法,并分析算法的时间复杂度。
分析:假设我们现在还有最后一步要走,可能的情况有哪些?
(1)我们站在第9级上,一步1级后到达顶端;
(2)我们站在第8级上,一步2级后到达顶端;
所以,最后一步可以走1级或者2级,不外乎两种情况。
再假设,已知从0级到9级的走法有M种,从0级到8级的走法有N种,那么从0到10级的走法和M、N有什么关系呢?从0到10级的走法一共是多少种呢?答案是M+N。
所以逐步递归,说白了,这还是个Fibnacci数列。即f(n)=f(n-1)+f(n-2),事件复杂度是2^n

台阶问题的变种:
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级.....也可以跳n级。求总共有多少总跳法

分析:用Fib(n)表示跳上n阶台阶的跳法数。如果按照定义,Fib(0)肯定需要为0,否则没有意义。但是我们设定Fib(0) = 1;n = 0是特殊情况,通过下面的分析就会知道,强制令Fib(0) = 1很有好处。因为Fib(0)等于几都不影响我们解题,但是会影响我们下面的分析理解。

当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;

当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = 2;

到这里为止,和普通跳台阶是一样的。

当n = 3 时,有三种跳的方式,第一次跳出一阶后,对应Fib(3-1)种跳法; 第一次跳出二阶后,对应Fib(3-2)种跳法;第一次跳出三阶后,只有这一种跳法。Fib(3) = Fib(2) + Fib(1)+ 1 = Fib(2) + Fib(1) + Fib(0) = 4;

当n = 4时,有四种方式:第一次跳出一阶,对应Fib(4-1)种跳法;第一次跳出二阶,对应Fib(4-2)种跳法;第一次跳出三阶,对应Fib(4-3)种跳法;第一次跳出四阶,只有这一种跳法。所以,Fib(4) = Fib(4-1) + Fib(4-2) + Fib(4-3) + 1 = Fib(4-1) + Fib(4-2) + Fib(4-3) + Fib(4-4) 种跳法。

当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法..........................第一次跳出n阶后,后面还有 Fib(n-n)中跳法。Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+..........+Fib(n-n) = Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-1)。

通过上述分析,我们就得到了通项公式:

因此,有 Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-2)

两式相减得:Fib(n)-Fib(n-1) = Fib(n-1) =====》 Fib(n) = 2*Fib(n-1) n >= 3

这就是我们需要的递推公式:Fib(n) = 2*Fib(n-1) n >= 3

‘玖’ 矩阵乘法如何计算详细步骤!

回答:

此题2行2列矩阵乘以2行3列矩阵。

所得的矩阵是:2行3列矩阵

最后结果为: |1 3 5|

|0 4 6|

拓展资料

1、确认矩阵是否可以相乘。只有第一个矩阵的列的个数等于第二个矩阵的行的个数,这样的两个矩阵才能相乘。

图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。


6、检查相应的数字是否出现在正确的位置。19在左下角,-34在右下角,-2在左上角,-12在右上角。

热点内容
按键脚本优化 发布:2024-05-19 04:59:57 浏览:750
怎么下载压缩包 发布:2024-05-19 04:47:47 浏览:9
二嫂水仙ftp 发布:2024-05-19 04:47:42 浏览:160
云隙服务器下载 发布:2024-05-19 04:33:22 浏览:315
德国C语言 发布:2024-05-19 04:13:40 浏览:963
音频管理器没有文件夹 发布:2024-05-19 04:13:36 浏览:667
qq邮箱端口993服务器怎么填 发布:2024-05-19 04:07:05 浏览:204
javaapi框架 发布:2024-05-19 04:06:59 浏览:363
与存储结构无关的术语 发布:2024-05-19 04:05:41 浏览:500
编译路由器固件选择 发布:2024-05-19 03:56:28 浏览:42