当前位置:首页 » 操作系统 » lpa算法

lpa算法

发布时间: 2022-09-22 06:01:07

① 如何修改aix 中用户名密码限制

1)、修改用户名最大长度为16个字符,需重启服务器才生效
chdev -l sys0 -a max_logname='16'
注意:当用户名长度增加后,应避免再次缩短用户名长度。因为定义的那些超长用户名会在新的设置中失效,系统不能识别,就无法 login 到系统中
2)、突破用户密码为8为长度的限制,使用 chsec 命令可将 smd5 LPA 设置为系统范围的密码加密模块,无需重启
虽然可以设置更长的密码,但是AIX 5L只检查前8位密码,一直以来这都是AIX的一个限制。直到 AIX 5L V5.3 TL7 和 AIX V6.1,引入了 LPA( Loadable PasswordAlgorithm ) ,消除了密码只有8位字符有效的限制,密码长度的最大值根据各种LPA算法的不同而不同,最大可以达到255位。在5307以上系统设置系统加密算法可以实现超过8位的密码长度:
chsec -f /etc/security/login.cfg -s usw -apwd_algorithm=smd5
当使用 chsec 命令来修改 pwd_algorithm 属性时,chsec 命令将检查 /etc/security/pwdalg.cfg 文件以验证指定 LPA。如果该检查失败,那么 chsec 命令也将失败。
也可以使用编辑器直接修改/etc/security/login.cfg 文件,在此文件中添加pwd_algorithm = smd5,确保所指定的LPA值是在 /etc/security/pwdalg.cfg 文件中定义的某个节的名称,此文件包含所有可支持的加密算法。

② 社交网络分析

一个具体的网络可抽象为一个由节点(vertex或node)集合V和边(edge)集合E组成的图 G=(V, E),节点数记为 n=|V|,边数记为 m=|E|。

PageRank的核心思想是,被大量高质量网页引用的网页也是高质量网页,假如某个网页被大量其他网页,特别是其他高质量网页引用,那么它的排名就高。

假定向量

是N个网页的排名,矩阵

是网页之间链接的数目,如 a mn 表示第m个网页指向第n个网页的链接数,我们需要在已知A的情况下求得B。

假设 B i 是第i次迭代的结果,那么

初始假设每个网页的排名都是 1/N,那么通过上式可以求得B 1 ,再不断迭代求得B 2 , B 3 , ...。可以证明最后 B i 会收敛,无限趋近于B,一般需要10次的迭代就可收敛。

由于很多网页间并没有链接,所以矩阵A会比较稀疏,计算需要进行平滑处理,即将上式换为

其中α为一较小常数,I为单位矩阵。

igraph可以用 g.pagerank() 计算PageRank值。

社区是图中的小集团,同一社区内节点之间的连接很紧密,而社区与社区之间的连接比较稀疏。

而所谓社区发现就是在一个图中发现若干个社区

使得各社区的顶点集合构成V的一个 覆盖 。若任意两个社区的顶点集合的交集为空,则称C为非重叠社区,否则为重叠社区。

边介数 :网络中经过每条边的最短路径的数目。igraph可以用 g.edge_betweenness() 计算PageRank值

一种启发式的社区发现算法,先将每一个节点作为一个独立的社区,然后分别计算各个节点加入其他社区后的模块度增量,从中选出模块度最高的一个邻居节点,合并为一个社区。

LPA算法不需要预先知识,而且时间复杂度接近于 O(n),适合处理海量数据下的社区划分。

其中m表示图里的边数;k v 和 k w 分别表示节点v和w的度;δ vw 表示两个节点是否在同一个社区,是则为1不是则为0;A vw 为网络的邻接矩阵,为1表示两个节点在同一社区,为-1则表示不在同一个社区。

模块度的取值范围为 [-1/2, 1),越高说明网络的社区划分得越好。

阻断率用来评估单个社区的紧密程度,越小越好。它的计算公式为

③ pagerank算法和lpa算法的区别

什么是PageRank,PageRank是简称PR.PageRank是谷歌的网页重要性的评估;
PageRank值可以改进,以提高您的网页排名在谷歌搜索引擎,但它并不意味着PR值越高,排名越靠前.有一些网站,PageRank并不高,但相比一些PageRank高的网站排名前也.所以,你应该在网站优化,但也努力提高PR值的网站.提高PR最佳和最简单的方法是:
提供有趣,有价值的内容的网站,所以网站链接主动和你,提高你的外部链接值.
将您的网站提交到主要的搜索引擎,它可以显着提高您的网站排名在谷歌.
可以将网站添加到行业门户站点,网上论坛,留言簿允许添加网址链接.
与其他网站交换链接来提高链接权重.
由谷歌第一您要查看的其他网站与其他网站交换链接被删除,或是否由谷歌,没有被该网站由谷歌索引最好不要做连接.

④ AIX 5300-01 系统,设用户密码的时候,设了12位密码,可是只用前8位就可以登陆,为什么

虽然可以设置更长的密码,但是AIX 5L只检查前8位密码,一直以来这都是AIX的一个限制。直到AIX 5L V5.3 TL7 和 AIX V6.1,引入了 LPA(Loadable Password Algorithm),消除了密码只有8位字符有效的限制,密码长度的最大值根据各种LPA算法的不同而不同,最大可以达到255位。

⑤ github上有没有lpa算法

有的。
int main(int argc, char const *argv[])
{
BSTree<int> bst;
int x = 28; bst.Insert(x);
x = 21; bst.Insert(x);
x = 25; bst.Insert(x);
x = 36; bst.Insert(x);
x = 33; bst.Insert(x);
x = 43; bst.Insert(x);
return 0;
}

⑥ 配送路线优化方法除了节约里程法还有哪些

还有Tabu Search算法、SOM方法和遗传算法。
在配送路线选择中,主要采取模型化方法进行路线确定。
常见的模型有Tabu Search算法、SOM方法、遗传算法、节约里程法等。
节约里程法,又称车辆运行计划法(VSP—VehiclesSchedIlling Program),适用于实际工作中要求得较优解或最优的近似解。而不一定需要求得最优解的情况。它的基本原理是三角形的一边之长必定小于另外两边之和。
当配送中心与用户里三角形关系时,由配送中心P单独向两个用户A和B往返配货的车辆运行距离必须大于以配送中心P巡回向两用户发货的距离。
那么,所计算的结果:2Lpa 2Lpb-(Lp^Lpb Lab)=Lpa Lpb—hb为巡回发货比往返发货的节约里程。

⑦ Neo4j中使用Louvain算法和标签传播算法(LPA)对漫威英雄进行社群分析

在本系列第一篇 在Neo4j中构建漫威世界的社交网络 中我们从英雄到漫画的二分图推导出英雄到英雄的一分图。接着在第二篇 在Neo4j中对漫威社交网络进行初步分析 中得到一些基本的网络信息以帮助我们了解正在处理的网络情况。

在本篇中我将会在漫威英雄的网络上使用Louvain算法和标签传播算法(LPA),发现一些有趣的社群。

本文中的可视化是使用Gephi来进行呈现,关于Gephi的更多信息可以看我之前的文章《Neo4j to Gephi》(https://tbgraph.wordpress.com/2017/04/01/neo4j-to-gephi/)。关于社群可视化还可以使用neovis.js(https://github.com/johnymontana/neovis.js)。

Neo4j图算法一般是在图的子集上进行,而这个子集通常是一个虚拟图,Neo4j图算法加载这种图有两种办法。第一种简单的办法是通过指定结点的标签和关系的类型将其加载到图算法中。

但是,如果我们要运行的逻辑是在一个特定的子图上,而仅使用结点标签和关系类型无法描述出这个子图,同时也不想去修改实体图,这时要怎么办呢?

不用担心,我们还可以使用Cypher语句来指定要加载的子图。使用查询结点的Cypher语句代替结点标签参数,使用查询关系的Cypher语句来代替关系类型参数。

但是注意,在参数中一定要指明  graph:'cypher' 。

如下示例:

CALL algo.unionFind(
//第一个Cypher语句指定了要加载的结点。
    'MATCH (p:User)
WHERE p.property = 'import'
RETURN id(p) as id',
//第二个Cpyher语句指定要加载的关系
    'MATCH (p1:User)-[f:FRIEND]->(p2:User) 
RETURN id(p1) as source, id(p2) as target,f.weight as weight',
{graph:'cypher',write:true})

通过Cypher语句映射和加载子图,可以非常好的描述要运行算法的子图。不仅如此,我们还可以剔除一些关系,间接的映射一个虚拟图用于运行算法,而那些剔除的关系又并不会从实际图中删除。

Cpyher映射使用场景:

 * 过滤结点和关系

 * 加载间接关系

* 映射双向图

* 相似性阈值(后面详情介绍)

在对各种网络的研究过程中,如计算机网络、社交网络以及生物网络,我们发现了许多不同的特征,包括小世界特性,重尾分布以及聚类等等。另外,网络都有一个共同的特征即社群结构,也就是连通和分组。而现实网络世界的连通并不是随机或同质的,而是存在着某种自然的联系。

社群识别算法在一个全连通的图上运行,效果并不会很好。因为大多数据结点都是紧密连接的,他们是属于一个社群的。在这些的图上运行算法,最终结果就是:得到一个覆盖图大部分区域的大社群和一些边边角角小社群。

这时我们可以使用相似性阈值来进行调控,将大于某个值的关系保留,而小于此值的关系将会剔除。而这个虚拟图就可以通过Cypher语句轻松的映射出来了。

在本文中,我会将漫威社交网络中KNOWS的weight作为阈值,将其设置到100,大于100的关系将会保留,小于100的关于将会剔除,这样,得到的社群将会非常紧密。

连通分量或并查集算法都是找到相互连接的结点集,或者称之为岛,而在这个集合中的所有点都是可以相互连通的。

在图论中,无向图的连通分量(或者仅分量)是一个子图,其中此子图任何两个顶点通过路径相互连接。

当我遇到一个新的网络时,我第一时间想知道是:这个网络有多少个连通分量,以及他们每个都包含多少结点。在漫威英雄的网络中,当前我们已经把KNOWS的weight阈值设置到100了,而前一篇文章的阈值是10,因此,本文得到的连接肯定要比前一篇文章()中的连接要少。

在下面的示例中,我们直接使用结点标签和关系类型,所有标签为Hero的结点和所有类型为KNOWS的关系都将被加载到算法中。由于我们将阈值设置到100,所以,当前算法只考虑weight大于100的关系。

CALL algo.unionFind.stream('Hero', 'KNOWS',
{weightProperty:'weight', defaultValue:0.0, threshold:100.0,concurrency:1}) 
YIELD nodeId,setId
RETURN setId as component,count(*) as componentSize
ORDER BY componentSize DESC LIMIT 10;

正如我所料,漫威英雄网络是一个稀疏图,有1个大社群和6小社群组成,大社群有101个英雄,而小社群基本也就2~4个英雄。这表示,在6439个英雄中,有116个英雄至少一个KNOWS关系的weight值是大于100的。

如果想在浏览器中仔细浏览那个包含101英雄的大社群,会很容易发现隐藏在这里面的一些直观的东西以及社群之间的桥梁结点。接下来我们将尝试使用Louvain算法和标签传播算法来看看这个116个英雄的子图的社群结构。

社群就是网络中结点集合,它们彼此之间的连接比其他节点更紧密。Molarity是一种度量刻度,被用于衡量社群发现算法结果的质量,它能够刻画社区的紧密程度。在一个随机的网络中,将一个结点归类到某一个社群,Molarity值就是会生变化,进而给出这种分配后社区的质量。Molarity即量化了此结点与社群中其他结点的连接紧密程度。社群识别的Louvain方法,是一种基于启发式Molarity最大化的网络社群检测算法。

如前所述,我们将通过Cypher查询来仅映射weight大于110的关系到算法中。

CALL algo.louvain.stream(
// load nodes
    'MATCH (u:Hero) RETURN id(u) as id', 
// load relationships
    'MATCH (u1:Hero)-[rel:KNOWS]-(u2:Hero) 
// similarity threshold
WHERE rel.weight > 100
RETURN id(u1) as source,id(u2) as target',
{graph:"cypher"}) 
YIELD nodeId,community
MATCH (n:Hero) WHERE id(n)=nodeId
RETURN community,
count(*) as communitySize,
collect(n.name) as members
order by communitySize desc limit 5

我使用Gephi进行社群结果可视化,因为Gephi的表现力比表格更好,更有洞察力。

我并不是漫威漫画的专家,所以我只能根据数据来做一个简单的解释。我们总共划分出8个社群。最大的社群是紫色的社群,它由以美国队长为首的神盾局和复仇者联盟组成。在左边我们能看到神奇先生和神奇四侠也在紫色社群里。亮兰色是蜘蛛侠团队,蜘蛛侠帕克是他们与外界联系的唯一桥梁,其他人都是内部交流,与外界并无联系。深兰色是阿斯加德人,他们也是比较封闭,他们仅仅和雷神托尔有联系。哦?难以置信,绿巨人也是自己的社群(粉红色),而绿巨人是这个社群唯一与外界有联系的英雄。我们还看到野兽亨利是紫色社群与绿色社群的桥梁,位置特殊,而绿色是X-Men社群。

标签传播算法是由Raghavan等人于2007年首次提出,(译者言:网络显示此算法于2002年由Zhu等人提出)此算法是由每个结点使用其唯一标识作为标签,然后根据大多数邻居结点的标签为基础进行标签传播,每个结点再从他的邻居结点身上取出现次数最多的标签加到自己身上。LPA算法的具体步骤是这样:结点X有一些邻居结点,且每个邻居结点都有一个标签,标明他们所属的社群。然后网络中的每个结点都选择加入其大多数邻居所属的那个社群,同时再随机的断开一些连接。在开始时,每个节点都用唯一标签进行初始化,然后这些标签开始在网络中进行传播,传播的每一步,每个结点都会根据邻居标签的情况更新自己的标签,随着标签的传播,最终连接紧密的结点集合将会达成一个共识,而他们身上的标签也将不再发生变化。

与Louvaint算法类似,我们也采用Cypher语句进行图映射,在映射时仅加载weight值大于KNOWS关系。同时会将对结点进行回写,导出结果到Gephi中进行可视化展示。

CALL algo.labelPropagation(
// supports node-weights and defining
// initial communities using parameter value
    'MATCH (u:Hero) RETURN id(u) as id, 1 as weight,id(u) as value',
// load relationships
    'MATCH (u1:Hero)-[rel:KNOWS]-(u2:Hero) 
// Similarity threshold
WHERE rel.weight > 100
RETURN id(u1) as source,id(u2) as target, rel.weight as weight',
'OUT',{graph:"cypher",partitionProperty:"lpa" }) 
YIELD computeMillis

最终我们得到21个社群,包括单点社群。复仇者联盟(紫色)和神奇四侠(亮兰色)被分为两个社群了。蜘蛛侠(绿色),绿巨人(青绿色)和阿斯加德人(红色)三个社群的结果与Louvain算法一致。我们还发现X-Man被划分成两个社群,加农炮小组比Louvain的结果要稍微大点,同时也显的不那么孤立。

你发现没有?Neo4j图算法库真的很神奇,用起来也简单。通过与Cypher查询语句结合进行虚拟图映射,可以简单有效的对图进行分析和理解。

本来,我打算在本文中介绍中心性算法的使用,但那样本文将会非常长,不便于阅读,所以, 我后续将会再写文章来介绍使用Cypher映射进行中心性算法的示例。敬请期待吧。

⑧ 社交网络的核心推荐算法有哪些

对好友推荐算法非常熟悉,有些积累。好友推荐算法一般可以分为下面几类:
1、基于关系的推荐
基于关系的推荐,最近写了一个专栏文章,具体介绍了常用算法,可以看下有没有帮助,传送门:http://zhuanlan.hu.com/gongwenjia/20533434
简介:
a.社会网络中,三元闭包理论,以及常用推荐算法
b.Facebook中的推荐算法是如何做的
2、基于用户资料的推荐
3、基于兴趣的推荐
剩下两个方面有时间再写。
近来学习聚类,发现聚类中有一个非常有趣的方向—社交网络分析,分享一下我的大致了解。这篇只是一篇概况,并没有太多的公式推导和代码,基本是用人话解释社交网络分析中的常用的几种算法。详细到每个算法的以后有空再把详细的公式和代码补上。
社区发现算法,GN算法,Louvain算法,LPA与SLPA
Louvain算法思想
1.不断遍历网络中的节点,尝试把单个节点加入能使模块度提升最大的社区,直到所有节点不再改变
2.将第一阶段形成的一个个小的社区并为一个节点,重新构造网络。这时边的权重为两个节点内所有原始节点的边权重之和。
3.重复以上两步
LPA算法思想:
1.初始化每个节点,并赋予唯一标签
2.根据邻居节点最常见的标签更新每个节点的标签
3.最终收敛后标签一致的节点属于同一社区
SLPA算法思想:
SLPA是LPA的扩展。
1.给每个节点设置一个list存储历史标签
2.每个speaker节点带概率选择自己标签列表中标签传播给listener节点。(两个节点互为邻居节点)
3.节点将最热门的标签更新到标签列表中
4.使用阀值去除低频标签,产出标签一致的节点为社区。

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:336
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:378
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:612
java用什么软件写 发布:2025-05-18 03:56:19 浏览:32
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:944
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:741
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:803
网卡访问 发布:2025-05-18 03:35:04 浏览:511
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:372