当前位置:首页 » 操作系统 » 鱼群算法解析

鱼群算法解析

发布时间: 2022-09-24 02:51:52

Ⅰ 谁能简单介绍一下鱼群算法

artifical fish-warm algorithm
xp(v1,v2……vn)个体的当前位置,d(p,q)=(1/n)*{[v(p,1)-v(q,1)]^2+……[v

(p,n)-v(q,n)]^2},两个体的距离,(不知道为什么用1/n而不是开平方);visual

一只鱼的感知距离。@拥挤度因子。
第一步:觅食人工鱼当前位置为Xi,在可见域内随机选择一个位置Xj(d(ij)

<=visual),如xj优于xi向xj前进一步,否则随机移动一步。如出现不满足约束则

剪去。X(j+1,k)={if x(i,k)=x(j,k) 不变,else x(j+1,k)=随机(0,1)}。
第二步:聚群:
xi可见域内共有nf1条鱼。形成集合KJi,KJi={Xj|Dij<=visual},if KJi不为空,

then
X(center)=(xj1+xj2+.....xjn)/nf1(xjk属于kji)
X(center,k)=0,X(center,k)<0.5 1,X(center,k)>=0.5
若:FCc/nf1>@FCi(FCc为中心食物浓度,FCi为Xi点食物浓度)
则:向中心移动:X(i+1,k)=不变,当Xik=X(center,k)时;Xik=随机(0,1),当

Xik!=X(center,k)时;
若:FCc/nf1<@FCi
则:进行觅食
第三步:追尾
在visual范围内,某一个体食物浓度最大则称为Xmax,若:FCmax>@FCi,则向它移动

:X(i+1,k)=当X(i,k)=X(max,k)时,X(i,k)不变,当X(i,k)!=X(max,k)时,X(i,k)=

随机(0,1)
第四步:公告板
在运算过程中,用公告板始终记录下最优FCi

Ⅱ 可用能力名词解释

可用传输能力:

利用改进人工鱼群算法构造了可用传输能力问题的优化模型。首先采用潮流校验法解决了人工鱼群算法的初始值敏感问题;然后引入遗传算法,解决了人工鱼群算法的早熟问题;最后运用IEEE30节点算例系统验证了所提算法的准确性和有效性,同时分析了人工鱼群算法在电网可用传输能力研究中尚需解决的问题。

Ⅲ 鱼群算法是什么

和蚁群算法其实是一样的,生物那方面不说了,主要是生成随机数,经过数次迭代,一次次计算目标函数值从而优化答案,最后看答案分布,这样就能计算解决全局最优,因为鱼群算法能够跳出局部最优,所以应用于目标函数的最大值最小值是很有用的,希望能帮到你

Ⅳ 蚁群算法的优缺点是什么人工鱼群算法的优缺点是什么

针对不同的研究方向,它所体现出来的优缺点是不一样的,不能一概而论的。

Ⅳ 什么是鱼群算法

artifical fish-warm algorithm
xp(v1,v2……vn)个体的当前位置,d(p,q)=(1/n)*{[v(p,1)-v(q,1)]^2+……[v

(p,n)-v(q,n)]^2},两个体的距离,(不知道为什么用1/n而不是开平方);visual

一只鱼的感知距离。@拥挤度因子。
第一步:觅食人工鱼当前位置为Xi,在可见域内随机选择一个位置Xj(d(ij)

<=visual),如xj优于xi向xj前进一步,否则随机移动一步。如出现不满足约束则

剪去。X(j+1,k)={if x(i,k)=x(j,k) 不变,else x(j+1,k)=随机(0,1)}。
第二步:聚群:
xi可见域内共有nf1条鱼。形成集合KJi,KJi={Xj|Dij<=visual},if KJi不为空,

then
X(center)=(xj1+xj2+.....xjn)/nf1(xjk属于kji)
X(center,k)=0,X(center,k)<0.5 1,X(center,k)>=0.5
若:FCc/nf1>@FCi(FCc为中心食物浓度,FCi为Xi点食物浓度)
则:向中心移动:X(i+1,k)=不变,当Xik=X(center,k)时;Xik=随机(0,1),当

Xik!=X(center,k)时;
若:FCc/nf1<@FCi
则:进行觅食
第三步:追尾
在visual范围内,某一个体食物浓度最大则称为Xmax,若:FCmax>@FCi,则向它移动

:X(i+1,k)=当X(i,k)=X(max,k)时,X(i,k)不变,当X(i,k)!=X(max,k)时,X(i,k)=

随机(0,1)
第四步:公告板
在运算过程中,用公告板始终记录下最优FCi

Ⅵ 哪位大神,有没有人工鱼群算法的仿真程序,matlab的,不胜感激!!!!

tic
figure(1);hold on
ezplot('x*sin(10*pi*x)+2',[-1,2]);
%% 参数设置
fishnum=50; %生成50只人工鱼
MAXGEN=50; %最多迭代次数
try_number=100;%最多试探次数
visual=1; %感知距离
delta=0.618; %拥挤度因子
step=0.1; %步长
%% 初始化鱼群
lb_ub=[-1,2,1];
X=AF_init(fishnum,lb_ub);
LBUB=[];
for i=1:size(lb_ub,1)
LBUB=[LBUB;repmat(lb_ub(i,1:2),lb_ub(i,3),1)];
end
gen=1;
BestY=-1*ones(1,MAXGEN); %每步中最优的函数值
BestX=-1*ones(1,MAXGEN); %每步中最优的自变量
besty=-100; %最优函数值
Y=AF_foodconsistence(X);
while gen<=MAXGEN
fprintf(1,'%d\n',gen)
for i=1:fishnum
%% 聚群行为
[Xi1,Yi1]=AF_swarm(X,i,visual,step,delta,try_number,LBUB,Y);
%% 追尾行为
[Xi2,Yi2]=AF_follow(X,i,visual,step,delta,try_number,LBUB,Y);
if Yi1>Yi2
X(:,i)=Xi1;
Y(1,i)=Yi1;
else
X(:,i)=Xi2;
Y(1,i)=Yi2;
end
end
[Ymax,index]=max(Y);
figure(1);
plot(X(1,index),Ymax,'.','color',[gen/MAXGEN,0,0])
if Ymax>besty
besty=Ymax;
bestx=X(:,index);
BestY(gen)=Ymax;
[BestX(:,gen)]=X(:,index);
else
BestY(gen)=BestY(gen-1);
[BestX(:,gen)]=BestX(:,gen-1);
end
gen=gen+1;
end
plot(bestx(1),besty,'ro','MarkerSize',100)
xlabel('x')
ylabel('y')
title('鱼群算法迭代过程中最优坐标移动')

%% 优化过程图
figure
plot(1:MAXGEN,BestY)
xlabel('迭代次数')
ylabel('优化值')
title('鱼群算法迭代过程')
disp(['最优解X:',num2str(bestx,'%1.5f')])
disp(['最优解Y:',num2str(besty,'%1.5f')])
toc

Ⅶ 初三数学问题(请说明理由)

1.因为直线过(2,8),所以带入直线方程,可得8=2*2+b
算得b=4 即原解析式为y=2x+4 与X轴交于A点,则纵坐标等于0
再次带入解析式,0=2x+4 此时x=-2即A(-2,0)
沿B点做垂线垂直于X轴于C则构成Rt△ABC,A距Y轴2个单位,C也距2个
则AC=4,BC=8 根据勾股定理 AB=4根号5 则sina=BC/AB=2/5根号5

2.可以顺势延长楼顶的视线到地面,则与地面的夹角为30
设电视塔底到与地面的夹角顶点处为X 由tan30=√3/3=(150+50√3)/X
X=150(√3+1) 由于塔顶与楼底俯角为45,则视线的夹角也为45
可算得塔底到楼底的距离为150+50√3 楼底与视线与地面夹角的距离为
150(√3+1)-150-50√3=100√3
根据相似三角形可列出比例式 楼高:塔高=楼底与视线与地面夹角的距离:塔底与视线与地面夹角的距离
楼高得100m

3.沿C做垂线垂直于船的路线,就可以构成2个直角三角形,用2题的方法完全可以解决了.
要注意北偏东是该点与目标地连线与竖直方向上的夹角.

Ⅷ 用人工鱼群算法求函数最小值

人工鱼群算法:
在一片水域中,鱼往往能自行或尾随其他鱼找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方,人工鱼群算法就是根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群及追尾行为,从而实现寻优,以下是鱼的几种典型行为:

(1)觅食行为:一般情况下鱼在水中随机地自由游动,当发现食物时,则会向食物逐渐增多的方向快速游去。
(2)聚群行为:鱼在游动过程中为了保证自身的生存和躲避危害会自然地聚集成群,鱼聚群时所遵守的规则有三条:分隔规则:尽量避免与临近伙伴过于拥挤;对准规则:尽量与临近伙伴的平均方向一致;内聚规则:尽量朝临近伙伴的中心移动。
(3)追尾行为:当鱼群中的一条或几条鱼发现食物时,其临近的伙伴会尾随其快速到达食物点。
(4)随机行为:单独的鱼在水中通常都是随机游动的,这是为了更大范围地寻找食物点或身边的伙伴。

Ⅸ 人工鱼群算法的特点

1)具有较快的收敛速度,可以用于解决有实时性要求的问题;
2)对于一些精度要求不高的场合,可以用它快速的得到一个可行解;
3)不需要问题的严格机理模型,甚至不需要问题的精确描述,这使得它的应用范围得以延伸。

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:335
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:378
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:612
java用什么软件写 发布:2025-05-18 03:56:19 浏览:32
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:943
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:739
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:803
网卡访问 发布:2025-05-18 03:35:04 浏览:511
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:371