当前位置:首页 » 操作系统 » 顺序法算法

顺序法算法

发布时间: 2022-09-27 15:48:04

1. 顺序查找算法的时间复杂度是多少吖

顺序查找法的平均比较次数为(n+1)/2次,则其时间复杂度就是(n+1)/2,当n->无穷大时,该表达式与n为同阶无穷大,记为O(n),这是高等数学里就有的表示法 。

拓展:
顺序查找法定义为假定要从n个整数中查找x的值是否存在,从头到尾逐个查找,其代码实现方法可参考网络:http://ke..com/link?url=ADQC6d-aG44ewQH55e1ip96IYHussYf_-n11y4CM6iZaHyz9VTma

2. 如何用传统流程图表示将四个数按从大到小顺序排序的算法

可以用冒泡排序法:定义一个数组a[n],将n个数或更多的数存进去。
然后将a[i]和a[i+1]比较,小的往后移,如此下去,就得到了排序结果。程序段如下:
for(j=n;j>0;j--)
{
for(i=0;i<n;i++)
{
if(a[i]<a[i+1])
{
k=a[i];a[i]=a[i+1];a[i+1]=k;
}

}
}

还可以有其他的算法,因为只有4个数,所以你可以先取出两个数比较大小,并排序,然后用第3个数与排好的两个数分别比较,然后插入到排序队伍中,然后是第4个,这样也很容易。

3. 利用选择法,描述将 N 个数按从小到大顺序排列的基本思路与算法流程。

把未排序的数放在右边,已排序的放左边,算法就是,不断地从右边选取最小者放到左边。

选择排序法是一种不稳定的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到全部待排序的数据元素排完。

选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量。

接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换。

(3)顺序法算法扩展阅读:

选择法的稳定性

选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。

那么,在一趟选择,如果一个元素比当前元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。

比较拗口,举例如下,序列5、8、5、2、9,知道第一遍选择第1个元素5会和2交换,那么原序列中两个5的相对前后顺序就被破坏了,所以选择排序是一个不稳定的排序算法。

4. 最好的排序算法是什么算法呀

拿钱让别人替你排!
事实上各种排序方法个有优缺点适用于不同的场合:
排序(Sorting)
插入排序(insertion
sort):直接插入排序
希尔排序(shell's
sort)(缩小增量排序Diminishing
increment
sort)
交换排序:冒泡排序(bubble
sort)快速排序(quick
sort)
选择排序:直接选择排序(straight
selection
sort),堆排序;
归并排序(merge
sort):
分配排序:箱排序(Bin
sort),基数排序(radix
sort)
更多的自己研究一下。
排序方法的选取主要考虑算法的性能与资源占用。也就是速度和占用的存储空间。

5. 顺序表的排序算法

给你举一些比较常用的排序法:

交换排序法
冒泡排序 | 鸡尾酒排序 | 奇偶排序 | 梳排序 | 侏儒排序 | 快速排序 |臭皮匠算法 | Bogo排序
选择排序法
选择排序 | 堆排序 | Smooth排序 | 笛卡尔树排序 | 锦标赛排序 | 循环排序
插入排序法
插入排序 | 希尔排序 | 二叉查找树排序 | 图书馆排序 | Patience排序
归并排序法
归并排序 | 多相归并排序 | Strand排序
分布排序法
美国旗帜排序 | 珠排序 | 桶排序 | 爆炸排序 | 计数排序 | 鸽巢排序 | 相邻图排序 | 基数排序 | 闪电排序
混合排序法
Tim排序 | 内省排序 | Spread排序 | 反移排序 | J排序
其他
双调排序器 | Batcher归并网络 | 两两排序网络

6. 常用的数据排序算法有哪些,各有什么特点举例结合一种排序算法并应用数组进行数据排序。

排序简介
排序是数据处理中经常使用的一种重要运算,在计算机及其应用系统中,花费在排序上的时间在系统运行时间中占有很大比重;并且排序本身对推动算法分析的发展也起很大作用。目前已有上百种排序方法,但尚未有一个最理想的尽如人意的方法,本章介绍常用的如下排序方法,并对它们进行分析和比较。

1、插入排序(直接插入排序、折半插入排序、希尔排序);
2、交换排序(起泡排序、快速排序);
3、选择排序(直接选择排序、堆排序);
4、归并排序;
5、基数排序;

学习重点
1、掌握排序的基本概念和各种排序方法的特点,并能加以灵活应用;
2、掌握插入排序(直接插入排序、折半插入排序、希尔排序)、交换排序(起泡排序、快速排序)、选择排序(直接选择排序、堆排序)、二路归并排序的方法及其性能分析方法;
3、了解基数排序方法及其性能分析方法。

排序(sort)或分类

所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下:
输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。
输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。

1.被排序对象--文件
被排序的对象--文件由一组记录组成。
记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。
注意:
在不易产生混淆时,将关键字项简称为关键字。

2.排序运算的依据--关键字
用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。
关键字的选取应根据问题的要求而定。
【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。

排序的稳定性

当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。
在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。
注意:
排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。

排序方法的分类

1.按是否涉及数据的内、外存交换分
在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。
注意:
① 内排序适用于记录个数不很多的小文件
② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。

2.按策略划分内部排序方法
可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。

排序算法分析

1.排序算法的基本操作
大多数排序算法都有两个基本的操作:
(1) 比较两个关键字的大小;
(2) 改变指向记录的指针或移动记录本身。
注意:
第(2)种基本操作的实现依赖于待排序记录的存储方式。

2.待排文件的常用存储方式
(1) 以顺序表(或直接用向量)作为存储结构
排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置)

(2) 以链表作为存储结构
排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序;

(3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表)
排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。

3.排序算法性能评价
(1) 评价排序算法好坏的标准
评价排序算法好坏的标准主要有两条:
① 执行时间和所需的辅助空间
② 算法本身的复杂程度

(2) 排序算法的空间复杂度
若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。
非就地排序一般要求的辅助空间为O(n)。

(3) 排序算法的时间开销
大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。

文件的顺序存储结构表示

#define n l00 //假设的文件长度,即待排序的记录数目
typedef int KeyType; //假设的关键字类型
typedef struct{ //记录类型
KeyType key; //关键字项
InfoType otherinfo;//其它数据项,类型InfoType依赖于具体应用而定义
}RecType;
typedef RecType SeqList[n+1];//SeqList为顺序表类型,表中第0个单元一般用作哨兵
注意:
若关键字类型没有比较算符,则可事先定义宏或函数来表示比较运算。
【例】关键字为字符串时,可定义宏"#define LT(a,b)(Stromp((a),(b))<0)"。那么算法中"a<b"可用"LT(a,b)"取代。若使用C++,则定义重载的算符"<"更为方便。

按平均时间将排序分为四类:

(1)平方阶(O(n2))排序
一般称为简单排序,例如直接插入、直接选择和冒泡排序;

(2)线性对数阶(O(nlgn))排序
如快速、堆和归并排序;

(3)O(n1+£)阶排序
£是介于0和1之间的常数,即0<£<1,如希尔排序;

(4)线性阶(O(n))排序
如桶、箱和基数排序。

各种排序方法比较

简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。

影响排序效果的因素

因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法应综合考虑下列因素:
①待排序的记录数目n;
②记录的大小(规模);
③关键字的结构及其初始状态;
④对稳定性的要求;
⑤语言工具的条件;
⑥存储结构;
⑦时间和辅助空间复杂度等。

不同条件下,排序方法的选择

(1)若n较小(如n≤50),可采用直接插入或直接选择排序。
当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
(2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
(3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。
若要求排序稳定,则可选用归并排序。但本章介绍的从单个记录起进行两两归并的 排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

4)在基于比较的排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程。
当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlgn)的时间。
箱排序和基数排序只需一步就会引起m种可能的转移,即把一个记录装入m个箱子之一,因此在一般情况下,箱排序和基数排序可能在O(n)时间内完成对n个记录的排序。但是,箱排序和基数排序只适用于像字符串和整数这类有明显结构特征的关键字,而当关键字的取值范围属于某个无穷集合(例如实数型关键字)时,无法使用箱排序和基数排序,这时只有借助于"比较"的方法来排序。
若n很大,记录的关键字位数较少且可以分解时,采用基数排序较好。虽然桶排序对关键字的结构无要求,但它也只有在关键字是随机分布时才能使平均时间达到线性阶,否则为平方阶。同时要注意,箱、桶、基数这三种分配排序均假定了关键字若为数字时,则其值均是非负的,否则将其映射到箱(桶)号时,又要增加相应的时间。
(5)有的语言(如Fortran,Cobol或Basic等)没有提供指针及递归,导致实现归并、快速(它们用递归实现较简单)和基数(使用了指针)等排序算法变得复杂。此时可考虑用其它排序。
(6)本章给出的排序算法,输人数据均是存储在一个向量中。当记录的规模较大时,为避免耗费大量的时间去移动记录,可以用链表作为存储结构。譬如插入排序、归并排序、基数排序都易于在链表上实现,使之减少记录的移动次数。但有的排序方法,如快速排序和堆排序,在链表上却难于实现,在这种情况下,可以提取关键字建立索引表,然后对索引表进行排序。然而更为简单的方法是:引人一个整型向量t作为辅助表,排序前令t[i]=i(0≤i<n),若排序算法中要求交换R[i]和R[j],则只需交换t[i]和t[j]即可;排序结束后,向量t就指示了记录之间的顺序关系:
R[t[0]].key≤R[t[1]].key≤…≤R[t[n-1]].key
若要求最终结果是:
R[0].key≤R[1].key≤…≤R[n-1].key
则可以在排序结束后,再按辅助表所规定的次序重排各记录,完成这种重排的时间是O(n)。

7. 排序法都有哪些

一、插入排序(InsertionSort)
1.基本思想:
每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。
2.排序过程:
【示例】:
[初始关键字][49]38659776132749
J=2(38)[3849]659776132749
J=3(65)[384965]9776132749
J=4(97)[38496597]76132749
J=5(76)[3849657697]132749
J=6(13)[133849657697]2749
J=7(27)[13273849657697]49
J=8(49)[1327384949657697]

  1. ProcereInsertSort(VarR:FileType);
  2. //对R[1..N]按递增序进行插入排序,R[0]是监视哨//
  3. Begin
  4. forI:=2ToNDo//依次插入R[2],...,R[n]//
  5. begin
  6. R[0]:=R;J:=I-1;
  7. WhileR[0]<R[J]Do//查找R的插入位置//
  8. begin
  9. R[J+1]:=R[J];//将大于R的元素后移//
  10. J:=J-1
  11. end
  12. R[J+1]:=R[0];//插入R//
  13. end
  14. End;//InsertSort//
复制代码二、选择排序
1.基本思想:
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
2.排序过程:
【示例】:
初始关键字[4938659776132749]
第一趟排序后13[38659776492749]
第二趟排序后1327[659776493849]
第三趟排序后132738[9776496549]
第四趟排序后13273849[49976576]
第五趟排序后1327384949[979776]
第六趟排序后132738494976[7697]
第七趟排序后13273849497676[97]
最后排序结果1327384949767697
  1. ProcereSelectSort(VarR:FileType);//对R[1..N]进行直接选择排序//
  2. Begin
  3. forI:=1ToN-1Do//做N-1趟选择排序//
  4. begin
  5. K:=I;
  6. ForJ:=I+1ToNDo//在当前无序区R[I..N]中选最小的元素R[K]//
  7. begin
  8. IfR[J]<R[K]ThenK:=J
  9. end;
  10. IfK<>IThen//交换R和R[K]//
  11. beginTemp:=R;R:=R[K];R[K]:=Temp;end;
  12. end
  13. End;//SelectSort//
复制代码三、冒泡排序(BubbleSort)
1.基本思想:
两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。
2.排序过程:
设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
【示例】:
4913131313131313
3849272727272727
6538493838383838
9765384949494949
7697654949494949
1376976565656565
2727769776767676
4949497697979797
  1. ProcereBubbleSort(VarR:FileType)//从下往上扫描的起泡排序//
  2. Begin
  3. ForI:=1ToN-1Do//做N-1趟排序//
  4. begin
  5. NoSwap:=True;//置未排序的标志//
  6. ForJ:=N-1DownTo1Do//从底部往上扫描//
  7. begin
  8. IfR[J+1]<R[J]Then//交换元素//
  9. begin
  10. Temp:=R[J+1];R[J+1:=R[J];R[J]:=Temp;
  11. NoSwap:=False
  12. end;
  13. end;
  14. IfNoSwapThenReturn//本趟排序中未发生交换,则终止算法//
  15. end
  16. End;//BubbleSort//
复制代码四、快速排序(QuickSort)
1.基本思想:
在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。
2.排序过程:
【示例】:
初始关键字[4938659776132749]
第一次交换后
[2738659776134949]
第二次交换后
[2738499776136549]
J向左扫描,位置不变,第三次交换后
[2738139776496549]
I向右扫描,位置不变,第四次交换后
[2738134976976549]
J向左扫描
[2738134976976549]
(一次划分过程)

初始关键字
[4938659776132749]
一趟排序之后
[273813]49[76976549]
二趟排序之后
[13]27[38]49[4965]76[97]
三趟排序之后1327384949[65]7697
最后的排序结果1327384949657697
各趟排序之后的状态
  1. ProcereParttion(VarR:FileType;L,H:Integer;VarI:Integer);
  2. //对无序区R[1,H]做划分,I给以出本次划分后已被定位的基准元素的位置//
  3. Begin
  4. I:=1;J:=H;X:=R;//初始化,X为基准//
  5. Repeat
  6. While(R[J]>=X)And(I<J)Do
  7. begin
  8. J:=J-1//从右向左扫描,查找第1个小于X的元素//
  9. IfI<JThen//已找到R[J]〈X//
  10. begin
  11. R:=R[J];//相当于交换R和R[J]//
  12. I:=I+1
  13. end;
  14. While(R<=X)And(I<J)Do
  15. I:=I+1//从左向右扫描,查找第1个大于X的元素///
  16. end;
  17. IfI<JThen//已找到R>X//
  18. begin R[J]:=R;//相当于交换R和R[J]//
  19. J:=J-1
  20. end
  21. UntilI=J;
  22. R:=X//基准X已被最终定位//
  23. End;//Parttion//
复制代码
  1. ProcereQuickSort(VarR:FileType;S,T:Integer);//对R[S..T]快速排序//
  2. Begin
  3. IfS<TThen//当R[S..T]为空或只有一个元素是无需排序//
  4. begin
  5. Partion(R,S,T,I);//对R[S..T]做划分//
  6. QuickSort(R,S,I-1);//递归处理左区间R[S,I-1]//
  7. QuickSort(R,I+1,T);//递归处理右区间R[I+1..T]//
  8. end;
  9. End;//QuickSort//
复制代码五、堆排序(HeapSort)
1.基本思想:
堆排序是一树形选择排序,在排序过程中,将R[1..N]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
2.堆的定义:N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2iKi≤K2i+1(1≤I≤[N/2])


堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
3.排序过程:
堆排序正是利用小根堆(或大根堆)来选取当前无序区中关键字小(或最大)的记录实现排序的。我们不妨利用大根堆来排序。每一趟排序的基本操作是:将当前无序区调整为一个大根堆,选取关键字最大的堆顶记录,将它和无序区中的最后一个记录交换。这样,正好和直接选择排序相反,有序区是在原记录区的尾部形成并逐步向前扩大到整个记录区。
【示例】:对关键字序列42,13,91,23,24,16,05,88建堆
  1. ProcereSift(VarR:FileType;I,M:Integer);
  2. //在数组R[I..M]中调用R,使得以它为完全二叉树构成堆。事先已知其左、右子树(2I+1<=M时)均是堆//
  3. Begin
  4. X:=R;J:=2*I;//若J<=M,R[J]是R的左孩子//
  5. WhileJ<=MDo//若当前被调整结点R有左孩子R[J]//
  6. begin
  7. If(J<M)AndR[J].Key<R[J+1].KeyThen
  8. J:=J+1//令J指向关键字较大的右孩子//
  9. //J指向R的左、右孩子中关键字较大者//
  10. IfX.Key<R[J].KeyThen//孩子结点关键字较大//
  11. begin
  12. R:=R[J];//将R[J]换到双亲位置上//
  13. I:=J;J:=2*I//继续以R[J]为当前被调整结点往下层调整//
  14. end;
  15. Else
  16. Exit//调整完毕,退出循环//
  17. end
  18. R:=X;//将最初被调整的结点放入正确位置//
  19. End;//Sift//
复制代码
  1. ProcereHeapSort(VarR:FileType);//对R[1..N]进行堆排序//
  2. Begin
  3. ForI:=NDivDownto1Do//建立初始堆//
  4. Sift(R,I,N)
  5. ForI:=NDownto2do//进行N-1趟排序//
  6. begin
  7. T:=R[1];R[1]:=R;R:=T;//将当前堆顶记录和堆中最后一个记录交换//
  8. Sift(R,1,I-1)//将R[1..I-1]重成堆//
  9. end
  10. End;//HeapSort//
复制代码六、几种排序算法的比较和选择
1.选取排序方法需要考虑的因素:
(1)待排序的元素数目n;
(2)元素本身信息量的大小;
(3)关键字的结构及其分布情况;
(4)语言工具的条件,辅助空间的大小等。
2.小结:
(1)若n较小(n<=50),则可以采用直接插入排序或直接选择排序。由于直接插入排序所需的记录移动操作较直接选择排序多,因而当记录本身信息量较大时,用直接选择排序较好。
(2)若文件的初始状态已按关键字基本有序,则选用直接插入或冒泡排序为宜。
(3)若n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序。
快速排序是目前基于比较的内部排序法中被认为是最好的方法。
(4)在基于比较排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程,由此可以证明:当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlog2n)的时间。

这句话很重要它告诉我们自己写的算法是有改进到最优当然没有必要一直追求最优
(5)当记录本身信息量较大时,为避免耗费大量时间移动记录,可以用链表作为存储结构。

8. 排序算法有多少种

排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
排序就是把集合中的元素按照一定的次序排序在一起。一般来说有升序排列和降序排列2种排序,在算法中有8中基本排序:
(1)冒泡排序;
(2)选择排序;
(3)插入排序;
(4)希尔排序;
(5)归并排序;
(6)快速排序;
(7)基数排序;
(8)堆排序;
(9)计数排序;
(10)桶排序。
插入排序
插入排序算法是基于某序列已经有序排列的情况下,通过一次插入一个元素的方式按照原有排序方式增加元素。这种比较是从该有序序列的最末端开始执行,即要插入序列中的元素最先和有序序列中最大的元素比较,若其大于该最大元素,则可直接插入最大元素的后面即可,否则再向前一位比较查找直至找到应该插入的位置为止。插入排序的基本思想是,每次将1个待排序的记录按其关键字大小插入到前面已经排好序的子序列中,寻找最适当的位置,直至全部记录插入完毕。执行过程中,若遇到和插入元素相等的位置,则将要插人的元素放在该相等元素的后面,因此插入该元素后并未改变原序列的前后顺序。我们认为插入排序也是一种稳定的排序方法。插入排序分直接插入排序、折半插入排序和希尔排序3类。
冒泡排序
冒泡排序算法是把较小的元素往前调或者把较大的元素往后调。这种方法主要是通过对相邻两个元素进行大小的比较,根据比较结果和算法规则对该二元素的位置进行交换,这样逐个依次进行比较和交换,就能达到排序目的。冒泡排序的基本思想是,首先将第1个和第2个记录的关键字比较大小,如果是逆序的,就将这两个记录进行交换,再对第2个和第3个记录的关键字进行比较,依次类推,重复进行上述计算,直至完成第(n一1)个和第n个记录的关键字之间的比较,此后,再按照上述过程进行第2次、第3次排序,直至整个序列有序为止。排序过程中要特别注意的是,当相邻两个元素大小一致时,这一步操作就不需要交换位置,因此也说明冒泡排序是一种严格的稳定排序算法,它不改变序列中相同元素之间的相对位置关系。
选择排序
选择排序算法的基本思路是为每一个位置选择当前最小的元素。选择排序的基本思想是,基于直接选择排序和堆排序这两种基本的简单排序方法。首先从第1个位置开始对全部元素进行选择,选出全部元素中最小的给该位置,再对第2个位置进行选择,在剩余元素中选择最小的给该位置即可;以此类推,重复进行“最小元素”的选择,直至完成第(n-1)个位置的元素选择,则第n个位置就只剩唯一的最大元素,此时不需再进行选择。使用这种排序时,要注意其中一个不同于冒泡法的细节。举例说明:序列58539.我们知道第一遍选择第1个元素“5”会和元素“3”交换,那么原序列中的两个相同元素“5”之间的前后相对顺序就发生了改变。因此,我们说选择排序不是稳定的排序算法,它在计算过程中会破坏稳定性。
快速排序
快速排序的基本思想是:通过一趟排序算法把所需要排序的序列的元素分割成两大块,其中,一部分的元素都要小于或等于另外一部分的序列元素,然后仍根据该种方法对划分后的这两块序列的元素分别再次实行快速排序算法,排序实现的整个过程可以是递归的来进行调用,最终能够实现将所需排序的无序序列元素变为一个有序的序列。
归并排序
归并排序算法就是把序列递归划分成为一个个短序列,以其中只有1个元素的直接序列或者只有2个元素的序列作为短序列的递归出口,再将全部有序的短序列按照一定的规则进行排序为长序列。归并排序融合了分治策略,即将含有n个记录的初始序列中的每个记录均视为长度为1的子序列,再将这n个子序列两两合并得到n/2个长度为2(当凡为奇数时会出现长度为l的情况)的有序子序列;将上述步骤重复操作,直至得到1个长度为n的有序长序列。需要注意的是,在进行元素比较和交换时,若两个元素大小相等则不必刻意交换位置,因此该算法不会破坏序列的稳定性,即归并排序也是稳定的排序算法。

9. 排序法的排序法的基本步骤

排序法是根据一些特定的标准(例如工作的复杂程度、对组织的贡献大小等对各个职位的相对价值)进行整体比较,进而将职位按照相对价值的高低排列出一个次序。其基本步骤是:
1、对排序的标准达成共识。虽然排序法是对岗位的整体价值进行评价而排序,但也需要参与评估的人员对什么样的“整体价值”更高达成共识,如责任更大,知识技能更高,工作更加复杂,环境因素恶劣等。
2、选定参与排序的职位。如果公司较小可以选取全部职位进行排序。
3、评定人员根据事先确定评判标准,对公司同类岗位的重要性逐一作出评判,最重要的排在第一位,次要的、再次要的顺次往下排列。
4、将经过所有评定人员评定的每个岗位的结果加以汇总,得到序号和。然后将序号和除以评定人数,得到每一岗位的平均序数。最后,按平均序数的大小,由小到大评定出各岗位的相对价值的次序。

10. 数据结构 java开发中常用的排序算法有哪些

排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序

一、冒泡(Bubble)排序

----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。

二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次扫描选择最小项
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。

三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low < high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。

七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j<=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1>kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kj>temp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。

堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。

八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;i<G.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。

热点内容
pythontkinter大小 发布:2024-04-27 14:51:22 浏览:114
pc端好用的c语言编译器 发布:2024-04-27 14:50:22 浏览:502
爬虫脚本如何运行在服务器 发布:2024-04-27 14:50:22 浏览:1
dropzone上传 发布:2024-04-27 14:39:31 浏览:880
ins安卓版快拍为什么没有特效 发布:2024-04-27 14:33:41 浏览:592
cs服务器ip在哪里 发布:2024-04-27 14:25:58 浏览:37
华为安卓怎么上脸书 发布:2024-04-27 14:24:20 浏览:841
我的世界手机版服务器冷知识 发布:2024-04-27 14:11:10 浏览:790
文件横向加密 发布:2024-04-27 14:06:38 浏览:497
python列表推导 发布:2024-04-27 14:01:46 浏览:357