当前位置:首页 » 操作系统 » 椭圆密钥算法

椭圆密钥算法

发布时间: 2022-10-28 18:16:46

❶ 椭圆加密算法的方程

椭圆曲线密码体制来源于对椭圆曲线的研究,所谓椭圆曲线指的是由韦尔斯特拉斯(Weierstrass)方程:
y2+a1xy+a3y=x3+a2x2+a4x+a6 (1)
所确定的平面曲线。其中系数ai(I=1,2,…,6)定义在某个域上,可以是有理数域、实数域、复数域,还可以是有限域GF(pr),椭圆曲线密码体制中用到的椭圆曲线都是定义在有限域上的。
椭圆曲线上所有的点外加一个叫做无穷远点的特殊点构成的集合连同一个定义的加法运算构成一个Abel群。在等式
mP=P+P+…+P=Q (2)
中,已知m和点P求点Q比较容易,反之已知点Q和点P求m却是相当困难的,这个问题称为椭圆曲线上点群的离散对数问题。椭圆曲线密码体制正是利用这个困难问题设计而来。椭圆曲线应用到密码学上最早是由Neal Koblitz 和Victor Miller在1985年分别独立提出的。
椭圆曲线密码体制是目前已知的公钥体制中,对每比特所提供加密强度最高的一种体制。解椭圆曲线上的离散对数问题的最好算法是Pollard rho方法,其时间复杂度为,是完全指数阶的。其中n为等式(2)中m的二进制表示的位数。当n=234, 约为2117,需要1.6x1023 MIPS 年的时间。而我们熟知的RSA所利用的是大整数分解的困难问题,目前对于一般情况下的因数分解的最好算法的时间复杂度是子指数阶的,当n=2048时,需要2x1020MIPS年的时间。也就是说当RSA的密钥使用2048位时,ECC的密钥使用234位所获得的安全强度还高出许多。它们之间的密钥长度却相差达9倍,当ECC的密钥更大时它们之间差距将更大。更ECC密钥短的优点是非常明显的,随加密强度的提高,密钥长度变化不大。
德国、日本、法国、美国、加拿大等国的很多密码学研究小组及一些公司实现了椭圆曲线密码体制,我国也有一些密码学者
做了这方面的工作。许多标准化组织已经或正在制定关于椭圆曲线的标准,同时也有许多的厂商已经或正在开发基于椭圆曲线的产品。对于椭圆曲线密码的研究也是方兴未艾,从ASIACRYPTO’98上专门开辟了ECC的栏目可见一斑。
在椭圆曲线密码体制的标准化方面,IEEE、ANSI、ISO、IETF、ATM等都作了大量的工作,它们所开发的椭圆曲线标准的文档有:IEEE P1363 P1363a、ANSI X9.62 X9.63、 ISO/IEC14888等。
2003年5月12日中国颁布的无线局域网国家标准 GB15629.11 中,包含了全新的WAPI(WLAN Authentication and Privacy Infrastructure)安全机制,能为用户的WLAN系统提供全面的安全保护。这种安全机制由 WAI和WPI两部分组成,分别实现对用户身份的鉴别和对传输的数据加密。WAI采用公开密钥密码体制,利用证书来对WLAN系统中的用户和AP进行认证。证书里面包含有证书颁发者(ASU)的公钥和签名以及证书持有者的公钥和签名,这里的签名采用的就是椭圆曲线ECC算法。
加拿大Certicom公司是国际上最着名的ECC密码技术公司,已授权300多家企业使用ECC密码技术,包括Cisco 系统有限公司、摩托罗拉、Palm等企业。Microsoft将Certicom公司的VPN嵌入微软视窗移动2003系统中。
以下资料摘自:http://www.hids.com.cn/data.asp

❷ 椭圆加密算法的优点

与经典的RSA,DSA等公钥密码体制相比,椭圆密码体制有以下优点: 在私钥的加密解密速度上,ecc算法比RSA、DSA速度更快。
存储空间占用小。
带宽要求低.

❸ 科普:国产密码算法


密码学(cryptography): 通过将信息编码使其不可读,从而达到安全性。

算法 :取一个输入文本,产生一个输出文本。

加密算法 :发送方进行加密的算法。

解密算法 :接收方进行解密的算法。

对称密钥加密 (Symmetric Key Cryptography):加密与解密使用相同密钥。

非对称密钥加密 (Asymmetric Key Cryptography):加密与解密使用不同密钥。

密钥对 :在非对称加密技术中,有两种密钥,分为私钥和公钥,私钥是密钥对所有者持有,不可公布,公钥是密钥对持有者公布给他人的。

公钥 :公钥用来给数据加密,用公钥加密的数据只能使用私钥解密。

私钥 :如上,用来解密公钥加密的数据。

摘要 :对需要传输的文本,做一个HASH计算。

签名 :使用私钥对需要传输的文本的摘要进行加密,得到的密文即被称为该次传输过程的签名。

密码协议是指两个或两个以上的参与者为了达到某种特定目的而采取的一系列步骤。规定了一系列有序执行的步骤,必须依次执行。必须有两个或两个以上的参与者,有明确的目的。参与者都必须了解、同意并遵循这些步骤。

常见的密码协议包括IPSEC VPN 协议、SSL VPN 协议、密钥交换协议等。

密码是指描述密码处理过程的一组运算规则或规程,一般是指基于复杂数学问题设计的一组运算,其基本原理基于数学难题、可证明计算、计算复杂度等。主要包括:对称密码、公钥密码、杂凑算法、随机数生成。

在对称加密算法中,加密使用的密钥和解密使用的密钥是相同的,加密和解密都是使用同一个密钥,不区分公钥和私钥。

通信双方采用相同的密钥来加解密会话内容,即一段待加密内容,经过同一个密钥的两次对称加密后,与原来的结果一样,具有加解密速度快和安全强度高的优点。

国际算法:DES、AES。

国产算法:SM1、SM4、SM7。

非对称加解密算法又称为 公钥密码 ,其密钥是成对出现的。双方通信时,首先要将密钥对中的一个密钥传给对方,这个密钥可以在不安全的信道中传输;传输数据时,先使用自己持有的密钥做加密,对方用自己传输过去的密钥解密。

国际算法:RSA

国产算法:SM2

优点:

密钥分发数目与参与者数目相同,在有大量参与者的情况下易于密钥管理。

支持数字签名和不可否认性。

无需事先与对方建立关系,交换密钥。

缺点:

速度相对较慢。

可能比同等强度的对称密码算法慢10倍到100倍。

加密后,密文变长。

密码杂凑算法 :又称为散列算法或哈希函数,一种单向函数,要由散列函数输出的结果,回推输入的资料是什么,是非常困难的。

散列函数的输出结果,被称为讯息摘要(message digest)或是 摘要(digest) ,也被称为 数字指纹

杂凑函数用于验证消息的完整性, 在数字签名中,非对称算法对数据签名的速度较慢,一般会先将消息进行杂凑运算,生成较短的固定长度的摘要值。然后对摘要值进行签名,会大大提高计算效率 。

国际算法:MD5、SHA1、SHA2、SHA3

国产算法:SM3

2009年国家密码管理局发布的《信息安全等级保护商用密码技术实施要求》中明确规定,一、二、三、四级信息系统应使用商用密码技术来实施等级保护的基本要求和应用要求,一到四级的密码配用策略要求采用国家密码管理部门批准使用的算法。

2010年年底,国家密码管理局公开了SM2、SM3等国产密码算法。

2011年2月28日,国家密码管理局印发的【2011】145号文中明确指出,1024位RSA算法正在面临日益严重的安全威胁,并要求各相关企业在2012年6月30日前必须使用SM2密码算法

国家密码管理局在《关于做好公钥密码算法升级工作的函》中要求2011年7月1日以后建立并使用公钥密码的信息系统,应使用SM2算法;已经建设完成的系统,应尽快进行系统升级,使用SM2算法。

2014年底,国家密码管理局启动《重要信息系统密码应用推进总体研究课题》,确定十三五密码 科技 专项。

2017年11月底,国家密码管理局下发了《政务云密码支撑方案及应用方案设计要点》。

2017年国家密码管理局发布了42项金融和重要领域国产密码应用试点任务。

2018年,中共中央办公厅、国务院办公厅印发《金融和重要领域密码应用与创新发展工作规划(2018-2022年)。

2018年,为指导当时即将启动的商用密码应用安全性评估试点工作,国家密码管理局发布了密码行业标准GM/T0054-2018《信息系统密码应用 基本要求》。

2021年3月,国家市场监管总局、国家标准化管理委员会发布公告,正式发布国家标准GB/T39786-2021《信息安全技术信息系统密码应用基本要求》,该标准于2021年10月1日起实施。

SM1 算法是分组密码算法,分组长度为 128 位,密钥长度都为 128 比特,算法安全保密强度及相关软硬件实现性能与AES相当,算法不公开,仅以IP核的形式存在于芯片中。

算法集成于加密芯片、智能 IC 卡、智能密码钥匙、加密卡、加密机等安全产品,广泛应用于电子政务、电子商务及国民经济的各个应用领域(包括政务通、警务通等重要领域)。

SM2椭圆曲线公钥密码算法是我国自主设计的公钥密码算法,是一种基于ECC算法的 非对称密钥算法, 其加密强度为256位,其安全性与目前使用的RSA1024相比具有明显的优势。

包括SM2-1椭圆曲线数字签名算法,SM2-2椭圆曲线密钥交换协议,SM2-3椭圆曲线公钥加密算法,分别用于实现 数字签名密钥协商 数据加密 等功能。

SM3杂凑算法是我国自主设计的密码杂凑算法,属于哈希(摘要)算法的一种,杂凑值为256位,安全性要远高于MD5算法和SHA-1算法。

适用于商用密码应用中的 数字签名 验证消息认证码的生成与验证 以及 随机数 的生成,可满足多种密码应用的安全需求。

SM4 分组密码算法 是我国自主设计的分组对称密码算法,SM4算法与AES算法具有相同的密钥长度分组长度128比特,因此在安全性上高于3DES算法。

用于实现数据的加密/解密运算,以保证数据和信息的机密性。软件和硬件加密卡均可实现此算法。


商用密码技术框架包括 密码资源、密码支撑、密码服务、密码应用 等四个层次,以及提供管理服务的密码管理基础设施。

密码资源层: 主要是提供基础性的密码算法资源。

密码支撑层: 主要提供密码资源调用,由安全芯片、密码模块、智能IC卡、密码卡、服务器密码机、签名验签服务器、IPSCE/SSL VPN 等商密产品组成。

密码服务层: 提供密码应用接口,分为对称和公钥密码服务以及其他三大类。

密码应用层: 调用密码服务层提供的密码应用程序接口,实现数据的加解密、数字签名验签等服务。如应用 于 安全邮件、电子印章系统、安全公文传输、移动办公平台、可信时间戳等系统。

密码管理基础设施: 独立组件,为以上四层提供运维管理、信任管理、设备管理、密钥管理等功能。


完整的PKI系统必须具有权威认证机构(CA)、数字证书库、密钥备份及恢复系统(KMC)、证书作废系统(CRL)、应用接口(API)等基本构成部分,构建PKI也将围绕着这五大系统来着手构建。

CA 系统:Ca系统整个PKI的核心,负责证书的签发。CA首先产生自身的私钥和公钥(密钥长度至少为1024位),然后生成数字证书,并且将数字证书传输给安全服务器。、CA还负责为操作员、安全服务器以及注册机构服务器生成数字证书。安全服务器的数字证书和私钥也需要传输给安全服务器。

CA服务器是整个结构中最为重要的部分,存有CA的私钥以及发行证书的脚本文件,出于安全的考虑,应将CA服务器与其他服务器隔离,任何通信采用人工干预的方式,确保认证中心的安全。


(1)甲使用乙的公钥对明文进行加密,生成密文信息。

(2)甲使用HASH算法对明文进行HASH运算,生成数字指纹。

(3)甲使用自己的私钥对数字指纹进行加密,生成数字签名。

(4)甲将密文信息和数字签名一起发送给乙。

(5)乙使用甲的公钥对数字签名进行解密,得到数字指纹。

(6)乙接收到甲的加密信息后,使用自己的私钥对密文信息进行解密,得到最初的明文。

(7)乙使用HASH算法对还原出的明文用与甲所使用的相同HASH算法进行HASH运算,生成数字指纹。然后乙将生成的数字指纹与从甲得到的数字指纹进行比较,如果一致,乙接受明文;如果不一致,乙丢弃明文。


SSL 协议建立在可靠的传输协议(如 TCP)之上,为高层协议提供数据封装,压缩,加密等基本功能。

即可以协商加密算法实现加密传输,防止数据防窃听和修改,还可以实现对端设备身份验证、在这个过程中,使用国密算法进行加密、签名证书进行身份验证、加密证书用于密钥交换

SSL协商过程:

(1)客户端发出会话请求。

(2)服务端发送X.509证书(包含服务端的公钥)。

(3)客户端用已知Ca列表认证证书。

(4)客户端生成随机对称密钥,并利用服务端的公钥进行加密。

(5)双方协商完毕对称密钥,随后用其加密会话期间的用户最终数据。

利用SSL卸载技术及负载均衡机制,在保障通讯数据安全传输的同时,减少后台应用服务器的性能消耗,并实现服务器集群的冗余高可用,大幅度提升整个业务应用系统的安全性和稳定性。此外,借助多重性能优化技术更可缩短了业务访问的响应等待时间,明显提升用户的业务体验。


基于 数字证书 实现终端身份认证,给予密码运算实现本地数据的加密存储,数字证书硬件存储和密码运算由移动终端内置的密码部件提供。

移动应用管理系统服务器采用签名证书对移动应用软件安装包进行签名,移动应用管理系统客户端对签名信息进行验签,保障移动应用软件安装包的真实性和完整性。

移动办公应用系统采用签名证书对关键访问请求进行签名验证。

采用加密证书对关键传输数据和业务操作指令,以及移动终端本地存储的重要数据进行加密保护。

移动办公系统使用商用密码,基于数字证书认证系统,构建覆盖移动终端、网络、移动政务应用的安全保障体系,实现政务移动终端安全、接入安全、传输安全和移动应用安全 。

❹ 首次将椭圆曲线用于密码学,建立公开密钥加密的算法是在那一年

椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为 ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。

椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。

椭圆曲线密码学:

椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。

ECC的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA加密算法——提供相当的或更高等级的安全。ECC的另一个优势是可以定义群之间的双线性映射。

基于Weil对或是Tate对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。其缺点是同长度密钥下加密和解密操作的实现比其他机制花费的时间长。

但由于可以使用更短的密钥达到同级的安全程度,所以同级安全程度下速度相对更快。一般认为160比特的椭圆曲线密钥提供的安全强度与1024比特RSA密钥相当。

❺ 椭圆曲线加密算法

这需要自己设计,如果明文空间为M,则需要构造一个映射,将M中的元素(一般为二进制序列)映射到椭圆曲线上的点。
一种可能的做法是:将M转化为十进制整数m,然后令椭圆曲线中点的横坐标为m,根据曲线方程计算出纵坐标,便得到了一个点。

❻ 椭圆曲线算法的加密算法

在椭圆曲线加密(ECC)中,利用了某种特殊形式的椭圆曲线,即定义在有限域上的椭圆曲线。其方程如下:
y²=x³+ax+b(mod p)
这里p是素数,a和b为两个小于p的非负整数,它们满足:
4a³+27b²(mod p)≠0 其中,x,y,a,b ∈Fp,则满足式(2)的点(x,y)和一个无穷点O就组成了椭圆曲线E。
椭圆曲线离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对 Q=kP,在已知P,Q的情况下求出小于p的正整数k。可以证明,已知k和P计算Q比较容易,而由Q和P计算k则比较困难,至今没有有效的方法来解决这个问题,这就是椭圆曲线加密算法原理之所在。

❼ 理解椭圆曲线加密算法

椭圆曲线加密算法,即:Elliptic Curve Cryptography,简称ECC,是基于椭圆曲线数学理论实现的一种非对称加密算法。相比RSA,ECC优势是可以使用更短的密钥,来实现与RSA相当或更高的安全。据研究,160位ECC加密安全性相当于1024位RSA加密,210位ECC加密安全性相当于2048位RSA加密。

一般椭圆曲线方程式表示为:(其中a,b,c,d为系数)
> y2=ax3+ bx2+cx+d
典型的椭圆曲线如:y2=x3−4x2+16

先摆一个栗子:

小米很难算到的那个数,就是公钥密码算法中的私钥(一个公钥密码算法安全的必要条件(非充分)是“由公钥不能反推出私钥”),公钥密码算法最根本的原理是利用信息的不对称性:即掌握私钥的人在整个通信过程中掌握最多的信息。
椭圆曲线加密算法是一个基于加法阶数难求问题的密码方案。 对于椭圆曲线来讲,椭圆曲线的基点就是例子里面的5,而私钥就是基点的加法阶数(例子里面的11),公钥是基点(5)进行对应阶数的加法(11次)得到的结果(55)。

简单描述就是:G * k = K (G,K公开,k保密)

上述例子相对简单,椭圆曲线加密算法里的加法建立在 “有限域上的二元三次曲线上的点”上 ,组成一个“有限加法循环群”。具体的说,这个加法的几何定义如下图,两个点的加法结果是指这两点的连线和曲线的交点关于x轴的镜像。

如果我们从某一点出发(所谓的单位元,比如正整数域的1,代表一个空间里的最基本单元),不停做自增操作(所谓群操作,比如++),枚举出整个空间的集合元素。如图:

因此给定椭圆曲线的某一点G,从G出发,不停做切线,找对称点,依次得到-2G,2G,-4G,4G,-8G,8G... 。即:当给定G点时,已知x,求xG点并不困难。反之,已知xG点,求x则非常困难。即Q = NG,N就是我们的私钥,Q就是我们的公钥。

现在我们知道了公钥(Q)和私钥(N)的生成的原理,我们在看看椭圆曲线数字签名算法(ECDSA)的过程,椭圆曲线数字签名算法(ECDSA)是使用椭圆曲线密码(ECC)对数字签名算法(DSA)的模拟。ECDSA于1999年成为ANSI标准,并于2000年成为IEEE和NIST标准。

私钥主要用于 签名,解密 ;公钥主要用于 验签,加密 ,可以通过私钥可以计算出公钥,反之则不行。
公钥加密:公钥加密的内容可以用私钥来解密——只有私钥持有者才能解密。
私钥签名:私钥签名的内容可以用公钥验证。公钥能验证的签名均可视为私钥持有人所签署。

通常需要六个参数来描叙一个特定的椭圆曲线:T = (p, a, b, G, n, h).
p: 代表有限域Fp的那个质数 a,b:椭圆方程的参数 G: 椭圆曲线上的一个基点G = (xG, yG) n:G在Fp中规定的序号,一个质数。 h:余因数(cofactor),控制选取点的密度。h = #E(Fp) / n。

这里以secp256k1曲线(比特币签名所使用的曲线)为例介绍一下公私钥对的产生的过成。
secp256k1的参数为:

本质上ECDSA的私钥就是一个随机数满足在曲线G的n阶里及k∈(0,n),根据Q=kG可以计算出公钥,生成的私钥一般为32字节大小,公钥通常为64个字节大小。如:

ECDSA签名算法的输入是数据的哈希值,而不是数据的本身,我们假设用户的密钥对:(d, Q);(d为私钥,Q为公钥) 待签名的信息:M; e = Hash(M);签名:Signature(e) = ( r, s)。

签名接口:

验证接口:

一个例子:

❽ ECDSA(椭圆曲线数字签名算法)

ECDSA(Elliptic Curve Digital Signature Algorithm)

在现实工作和生活中,我们使用签名的方式表达对一份文件的认可,其他人可以识别出你的签名并且无法伪造你的签名。数字签名就是对显示签名的一种电子实现,它不仅可以完全达到现实签名的特点,甚至能够做的更好。
常用的数字签名算法有RSA(Rivest-Shamir-Adleman Scheme)、DSS(Digital Signature Standard)等。 比特币使用ECDSA来生成账户的公私钥以及对交易和区块进行验证。

1.Alice(密码学中常用A到Z开头的人名代替甲乙丙丁等,字母越靠后出现频率越低)生成一对密钥,一个是sk(signing key),是非公开的;另一个是vk(verification key),是公开的。
这一对密钥同时生成,并且在数学上是相互关联的,同时,根据vk无法推测出关于sk的任何信息。
2.数字签名算法接收两个输出:信息M和sk,生成一个数字签名Sm
3.验证函数接收信息M、Sm以及vk作为输入,,返回结果是yes或者no。这一步的目的是为了验证你看到的针对信息M的数字签名确实是由Alice的sk来签发的,用于确认信息与签名是否相符。
与手写签名不同,手写签名基本都是相似的,但是数字签名却受输入影响很大。对输入轻微的改变都会产生一个完全不同的数字签名。一般不会对信息直接进行数字签名,而是对信息的哈希值进行签名。由加密哈希函数的无碰撞性可知,这样和对原信息进行签名一样安全。

在数学上,任何满足以下方程的点所形成的曲线称为随机椭圆曲线: 并且 ,a和b可以为任意值。下面展示几个随机椭圆函数的示例:

在了解如何通过基于secp256k1椭圆曲线的ECDSA算法生成公私钥之前,我们需要了解在随机椭圆曲线里,点的加法是如何实现的。
首先定义椭圆曲线上点的加法。设椭圆曲线上有两点,A和B点,那么作过这两点的直线与该曲线相交于第三点(C点),然后关于X轴对称得到D点,则D为这两个点的和,记作D=A+BD=A+BD=A+B。很明显,D点也在该曲线上。所以椭圆曲线上两点之和也是曲线上的点。

特例:
1.如果两点重合,则做该点的切线,与曲线相交点的对称点为和,即A+A=C
如图:

有了加法以后,乘法实现是不过是进行多次加法运算。有了一个基准点P以后,我们可以对其进行乘法运算,最后可以得到曲线上的另外一个点。
设PPP是椭圆曲线上的一个点,那么正整数kkk乘以点PPP的结果由下面的式子定义,注意式子中的加法是上面提到的椭圆曲线上点的加法:




点的运算满足结合律:

很显然,通过累加 的方式计算 是一种很笨的办法,其时间复杂度是线性的。上面我们提到过,椭圆曲线上点的加法是满足结合律的,即 ,扩展一下,就有

于是就有这么一种骚操作,比如计算 ,我们可以先计算 ;然后计算 ;再计算 ;最后计算 。这里我们把15次加法减少到了4次。

当然,k的值不可能总是2的幂。实际上上面的操作可以推广到k为任意正整数的情况。比如计算23P,首先计算 ,然后



因为 ,所以 。总共只需要7次加法。

分析一下,对于任意正整数k,我们都可以利用这个方法将计算k∗P所需的加法计算次数降低到

也就是说,从时间复杂度的角度来看,这个算法是一个 的算法。

这个方法被称为快速幂算法,原本常用于快速计算某个数的k次幂,这里将其推广到椭圆曲线点乘的快速计算中。

为什么要在介绍了椭圆曲线上点的乘法后突然冒出一个快速幂算法?快速幂算法对于椭圆曲线加密有什么意义?因为数学家/密码学家发现,利用快速幂算法计算 的时间复杂度是对数级的,但是要在知道 和 的前提下,倒推出 的值,没有比挨个尝试 的值快太多的算法。于是椭圆曲线加密依赖的数学难题就这么诞生了。

如果我们改一种记法,把椭圆曲线上点的加法记作乘法,原来的乘法就变成了幂运算,那么上述难题的形式跟离散对数问题应该是一致的。即:

所以这个难题叫椭圆曲线上的离散对数问题。

尽管两者形式一致,但是他们并不等价。实际上这个问题比大整数质因子分解(RSA)和离散对数(DH)难题都要难得多,目前还没有出现亚指数级时间复杂度的算法(大整数质因子分解和离散对数问题都有),以致于同样的安全强度下,椭圆曲线加密的密钥比RSA和DH的短不少,这是椭圆曲线加密的一大优势。

假设随机取一个 ~ 位之间的值x,计算 ,最后的结果一定会落在曲线上的一点。假设该点为 ,在公开 以及具体曲线的方程的情况下,能否反推出最初的随机值 ?
证:寻找 的过程只能通过暴力计算, 的可能值为 ~ 中的一个,平均来说需要计算 次能够找到一次 值。那么问题来了,运行一次 的计算需要多长的时间呢?
假设我们使用的是超级计算机,主频为 (一秒钟可以进行一万亿次运算),从宇宙诞生的那一刻开始计算,到现在也就进行了 次。找到 值的概率为 。这个概率和下一秒地球被巨型陨石撞击而毁灭的概率接近,既然我们读到了这里,那么说明这件事没有发生。
在上面的案例中, 是 ~ 位的一个随机数,可以作为私钥。 是随机椭圆曲线上的一个点,也就是由私钥生成的公钥,因此优点可以1得证。

但是密码学中,并不能使用上面介绍的实数域上的椭圆曲线。因为

所以我们需要引入有限域上的椭圆曲线。
要证明优点2,还需要将随机椭圆曲线做一些改动:为了保证最后计算出来的点的坐标值相加是512位,secp256k1引入了一个对质数取模的机制。具体来说,随机椭圆曲线从
变为了 其中 ,是小于 的最大质数。
此时的随机椭圆曲线函数图如下:

具体来说,就是向别人证明我知道 ,但不暴露 的任何信息。(有些类似于零知识证明)
证:前面介绍过结合律: 添加一个hash函数,简单修改可以得出: 使 ,那么可知 为 。此时方程为: 为了简单起见,我们记 和 。此时方程化简为: 上面这个方程是什么意思呢?
可以这样假设:在已知 的情况下,如果能够提供一个 和 满足上面的方程,就可以证明一个人拥有 。这个假设有一个前提,如果一个人不知道x,那么他就无法提供 和 满足上面的等式。
详细探讨这个前提:如果一个人不知道x,又想计算出 和 ,能够办到吗?结论是不能,首先我们无法从 计算出 (在有限时间内)。
还有一个问题:在已知 和 的情况下,能否计算出关于 的任何信息?
根据公式: 只要解出 就可以了。
要想计算出x,就需要知道r,但是在r没有公开的情况下,有什么办法可以计算r吗?我们知道R=r*P;但是根据这个公式无法倒推出r(刚才介绍的那个数学难题),所以x也是安全的。
至此,可以证明算法的第二个优点。

❾ 椭圆加密算法的介绍

椭圆加密算法(ECC)是一种公钥加密体制,最初由Koblitz和Miller两人于1985年提出,其数学基础是利用椭圆曲线上的有理点构成Abel加法群上椭圆离散对数的计算困难性。

❿ 椭圆曲线数字签名算法(ECDSA)密钥K中p的作用是什么

你说的p大概是素数有限域,p为一大素数,椭圆曲线的点都在p素数域空间求模计算。另外还有多项式域F(a^m),这个多项式域大约可以理解为多项式里头的素性多项式,不能分解。

热点内容
openvpn搭建vpn服务器搭建 发布:2025-05-14 02:47:52 浏览:997
密码忘了从哪里找 发布:2025-05-14 02:39:09 浏览:548
我的世界什么服务器有前途 发布:2025-05-14 02:30:31 浏览:528
java程序反编译 发布:2025-05-14 02:18:46 浏览:458
蛤蟆编程 发布:2025-05-14 02:17:12 浏览:643
解压缩文件后缀 发布:2025-05-14 02:14:07 浏览:304
阅章娱乐系统清理数据密码是多少 发布:2025-05-14 02:09:10 浏览:973
米家的密码锁初始密码是多少 发布:2025-05-14 01:58:51 浏览:37
存储空间和内存的区别 发布:2025-05-14 01:57:20 浏览:952
市里煤炭资源配置是什么意思 发布:2025-05-14 01:52:23 浏览:308