当前位置:首页 » 操作系统 » 邻域搜索算法

邻域搜索算法

发布时间: 2022-11-02 13:27:10

⑴ 剩余矩形填充算法是优化算法吗

是,针对矩形件排样问题提出的一种新的空白矩形填充优化算法.
首先,设计空白矩形填充算法时,提出了消除多余空白矩形的方法,以减小计算时间复杂度.其次,利用邻域搜索算法优化矩形件排放顺序,通过挖掘矩形件排样的问题特征,设计了受限距离的交叉和插入两种邻域算子,并提出了特殊算子执行点选择策略.然后,设计了基于两种邻域算子交替迭代的邻域搜索算法.最后,对文献中的21个经典案例进行试验计算,4个案例的排样利用率达到了100%,绝大多数案例的排样利用率超过了99%,最小排样利用率超过了98%.将其他常用算法和文献中算法进行比较,验证了本文算法的有效性

⑵ 邻域的定义是唯一的吗邻域的定义与搜索效率及结 果有关联吗简要说明你的结

不是。有关联。
邻域:邻域是指集合上的一种基础的拓扑结构。在集合论中,它是以点a为中心的任何开区间,记作:U(a)。在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。有邻域公理(邻域公理是现代数学拓扑结构的基础概念)、开邻域和闭邻域、去心邻域等相关研究的着作。
广义邻域搜索算法的统一结构:
1.对优化过程作两方面分解处理:方面1、基于优化空间的分层(原问题分解为子问题求解,最后将各子问题的解逆向综合为原问题的解)方面2、基于优化进程的分层(进程层次分为若干阶段,各阶段采用不同的搜索算法或邻域函数进行优化)目前混合算法的结构类型主要可归纳为串行、镶嵌、并行及混合结构。
串行结构。
镶嵌结构。
并行结构(又分为同步式并行、异步式并行、网络结构)。
同步式:各子算法相对独立但与主过程的通讯必须同步。
异步式:子算法与主过程的通讯不受其他子算法的限制。
网络结构:各算法分别在独立的存储器上执行独立的搜索,算法间的通信是通过网络相互传递的。

⑶ 优化算法笔记(二十六)和声搜索算法

(以下描述,均不是学术用语,仅供大家快乐的阅读)
和声搜索算法(Harmony Search)是受音乐中的和声启发而提出的启发式算法,其提出(发表)年份为2001年,算是一个比较老的算法了。和声搜索算法放在现在,其性能非常一般,不过它提出了一种领域搜索的具体实现方式,可以和不同的算法融合,提高其他算法的性能。

单独看一个和声意义不大,一个和声的一个维度会根据群体中该维度的所以取值来确定其领域范围,然后再进行领域搜索。

原算法受音乐启发,所以它所解决的目标问题也是离散的问题。
和声搜索算法中的一个个体被称为和声记忆(Harmony Memory,HM),群体中和声记忆的数量为N,每个和声记忆中的音数(维度)为D。每一维的取值范围为 。

原算法中每个维度的取值范围L是一组有序的离散的值,即在指定的变量值中选取一个作为和声记忆的值。
每个和声记忆每次迭代只能变为其领域的值。
和声算法中有两种操作:1.移动到领域,2.变异到领域
其概率分别为Harmony Memory Considering Rate(HMCR)和Pitch Adjusting Rate(PAR)。
其中HMCR取值约为0.95,PAR取值约为0.10。
可以看出该算法的步骤和数值参考了遗传算法,而且两者都是为了处理离散问题。

例子如下:
和声记忆的数量为3,维度为2,其中第1维的取值范围为{A,B,C,D,E,F,G},第2维的取值为{3,4,5,6}。
第1代,三个个体的取值如下

在计算第2代时,每个个体的每一维只能去到该维度的邻域的值。
个体1_2能取到的值为(A,3) (A,4) (B,3) (B,4)
个体2_2能取到的值为(F,4)(F,5)(F,6)(G,4)(G,5)(G,6)
个体3_2能取到的值为(C,3)(C,4)(C,5)(D,3)(D,4)(D,5)(E,3)(E,4)(E,5),

图中标出了这三个个体能够到达的邻域。

变异到邻域到操作也很简单,该操作是对标了遗传算法中的变异操作。
变异到邻域操作时,该维度不会变异到当前已有的值。
如个体1_1变异第1维,由于群体中第1维的取值为{A,D,G}故该维度只能取到{B,C,E,F}。
下图中标有颜色的块出了变异操作无法到达的位置,空白位置为变异操作能够到达的位置。(如果没有空白位置呢?概率非常小,毕竟个体位置远少于解空间位置,如果出现了,不变异或者随机一个位置都行)

迭代过后,如果新的位置更好,则保留该和声记忆,并去除最差的和声记忆。
最后文章给出了判断找到的解是否是最优解的判断函数

其中Hr=HMCR,Hi会在该维度找到更好值时随着迭代次数递增。该公式的作用主要是为了判断何时去结束算法程序,不过在之前我们都是使用的最大迭代次数来结束算法程序,所有好像没多大用处。
算法的流程也挺简单的:

和声搜索的原算法是根据音乐中和声概念提出的,音符是离散的,所有算法也是离散的,对标遗传算法用于处理离散解空间问题,那么如何修改和声搜索算法使其能处理连续数值问题呢?
最关键的点是如何处理“邻域”,在连续解空间上,很难定义出一个点的领域,而且每个维度上的取值数量也是无穷的。
为和声搜索算法定义邻域也有几种思路:
1 . 将所有的个体定义为该个体的邻域,即每次随机从群体中选择一个个体,该维度移动到所选中的个体处。

其中D,E,F分别为AB,AC,BC的中点,A,B,C三个和声记忆的邻域将由DEF这三个点及解空间边界决定,此时的邻域比思路2中的更小,也不会出现重叠部分。
当某一维度的两个领域值相等时,上述(二维)的邻域(面)将会退化成邻域(线),可能会导致该维度快速收敛到该值,故此时需要忽略重复值,将邻域重新展开(成为面)。
在连续算法中,当满足HCMR条件时,算法将根据上面的色块在邻域中随机选择一个值;当满足PAR条件时,由于无法剔除指定值,简单起见,直接移动到随机的和声记忆的该维度。
后续的实验由于是求解连续函数最值,故会选择上述连续算法中的三种思路来进行。

适应度函数 。
实验一 : 思路一

从图像可以看出,思路一的策略与遗传算法非常的相似,移动路线类似于十字架,最终也收敛到了正解附近。前期搜索主要靠邻域移动,后期移动则是靠变异。

从结果也可以看出与遗传算法的差距不大,算法不是很稳定,其策略是飞到相邻的和声记忆上,所以跨越度比较大,精度全靠变异。

实验二 : 思路二

从图像中可以看出,种群的搜索路径不在像实验一中那样直来直去的十字路径,收敛的速度也慢了不少,但是仍能在正解附近收敛。

从结果中可以看出,思路二的结果好了不少,同时也更加稳定(误,运气好,之前实验出现过不好的结果,没能重现)。该思路的邻域搜索面积会更大,且个体之间的邻域存在重叠部分,故会有可能收敛于不好的位置,不过概率也较小。

实验三 : 思路三

图像逐渐贪吃蛇化!前期的图像与思路一相似,后期的图像有点类似遗传算法,可能是邻域的面积逐渐缩小成了长条状所致,不过最终“贪吃蛇”还是吃到了食物。

结果可以看出,思路三的稳定性不太行,当全部个体收敛到了一点后会开始进行思路一的替换操作,但无论如何替换都是相同的值,难以找到更优的位置,于是会出现一个较差的结果。这里也可以增加范围随机来跳出局部最优。

和声搜索算法是根据和声乐理知识提出的算法。由于音符是离散的值,算法也对标了遗传算法,故原算法也是针对离散问题提出的。在解决连续性问题时,需要对其邻域概念进行扩展和修改,最终的效果与遗传算法相差不大。
在现在看来,和声搜索算法的效果属实一般,对于其的针对性研究也不太多,该算法主要提出了其不同于遗传算法的遍历解空间的方式。所以在很多论文中都能看到用和声搜索算法与其他算法融合来进行改进的例子。
与遗传算法相比,和声搜索算法的邻域概念,将遗传算法的基因由线扩展到了面上。这一点有点类似于SVM和卷积神经网络的关系,不过,遗传算法和和声搜索算法的差别并没有那么大,只是搜索方式不同罢了。
参考文献
Geem Z W , Kim J H , Loganathan G V . A New Heuristic Optimization Algorithm: Harmony Search[J]. Simulation, 2001, 2(2):60-68. 提取码:4udl
Omran M , Mahdavi M . Global-best harmony search[J]. Applied Mathematics and Computation, 2008, 198(2):643-656. 提取码:pk3s

以下指标纯属个人yy,仅供参考

目录
上一篇 优化算法笔记(二十五)飞蛾扑火算法
下一篇 优化算法笔记(二十七)蜉蝣算法

⑷ 采用准确优化技术和启发式优化技术解决一个问题会存在什么不同

采用准确优化技术和启发式优化技术解决一个问题会存在的不同之处:

①确定性算法和随机性算法是目前求解优化问题的方法。随机性算法一般是对社会行为和自然现象的模拟,具有对优化函数的解析性质要求低的特点,甚至对无显示解析表达式的问题也可以求解,能较好解决优化中的噪声、不可微、高维等问题。

②启发式算法作为随机性算法的一种,其良好的应用更加快了人们对各种优化方法的探索脚步。 近些年来不断有学者将分形应用于优化中来,试图运用分形思想来处理复杂的优化问题。

③其中,分形算法通过对可行域的分形分割来寻优,是一种新颖的确定性算法,但其局限性较大,只适用于低维简单的问题,对于当今社会中高维复杂问题则几乎无能为力,也使得该算法的影响力微乎其微。

④启发式技术是基于特征值扫描技术上的升级,与传统反病毒特征值扫描技术相比,优点在于对未知病毒的防御.是特征值识别技术质的飞跃。


(4)邻域搜索算法扩展阅读

启发式:简化虚拟机和简化行为判断引擎的结合 Heuristic(启发式技术=启发式扫描+启发式监控) 重点在于特征值识别技术上的更新、解决单一特征码比对的缺陷.目的不在于检测所有的未知病毒,只是对特征值扫描技术的补充.主要针对:木马、间谍、后门、下载者、已知病毒(PE病毒)的变种。

一、启发式发展方向

现代启发式算法的研究,在理论方面还处于不断发展中,新思想和新方法仍不断出现。分析目前的现状和发展方向,其发展方向有如下几个方面:

①整理归纳分散的研究成果,建立统一的算法体系结构。

②在现有的数学方法(模式定理、编码策略、马尔可夫链理论、维数分析理论、复制遗传算法理论、二次动力系统理论、傅立叶分析理论、分离函数理论、Walsh函数分析理论)的基础上寻求新的数学工具。

③开发新的混合式算法及开展现有算法改进方面的研究。

④研究高效并行或分布式优化算法。

二、启发式算法算法机制特点

现代启发式算法在优化机制方面存在一定的差异,但在优化流程上却具有较大的相似性,均是一种“邻域搜索”结构。算法都是从一个(一组)初始解出发,在算法的关键参数的控制下通过邻域函数产生若干邻域解,按准则(确定性、概率性或混沌方式)更新当前状态,而后按关键参数修改准则调整关键参数,一直优化到最优结果。

⑸ 智能优化算法及其应用的目录

第1章绪论1
1.1最优化问题及其分类1
1.1.1函数优化问题1
1.1.2组合优化问题10
1.2优化算法及其分类12
1.3邻域函数与局部搜索13
1.4计算复杂性与NP完全问题14
1.4.1计算复杂性的基本概念14
1.4.2P,NP,NP?C和NP?hard14
第2章模拟退火算法17
2.1模拟退火算法17
2.1.1物理退火过程和Metropolis准则17
2.1.2组合优化与物理退火的相似性18
2.1.3模拟退火算法的基本思想和步骤19
2.2模拟退火算法的马氏链描述20
2.3模拟退火算法的收敛性21
2.3.1时齐算法的收敛性21
2.3.2非时齐算法的收敛性26
2.3.3SA算法渐进性能的逼近26
2.4模拟退火算法关键参数和操作的设计27
2.5模拟退火算法的改进29
2.6并行模拟退火算法31
2.7算法实现与应用32
2.7.1组合优化问题的求解32
2.7.2函数优化问题的求解33
第3章遗传算法36
3.1遗传算法的基本流程36
3.2模式定理和隐含并行性38
3.3遗传算法的马氏链描述及其收敛性40
3.3.1预备知识40
3.3.2标准遗传算法的马氏链描述41
3.3.3标准遗传算法的收敛性42
3.4一般可测状态空间上遗传算法的收敛性44
3.4.1问题描述45
3.4.2算法及其马氏链描述45
3.4.3收敛性分析和收敛速度估计45
3.5算法关键参数与操作的设计47
3.6遗传算法的改进50
3.7免疫遗传算法51
3.7.1引言51
3.7.2免疫遗传算法及其收敛性52
3.7.3免疫算子的机理与构造54
3.7.4TSP问题的免疫遗传算法56
3.8并行遗传算法58
3.9算法实现与应用59
第4章禁忌搜索算法62
4?1禁忌搜索62
4?1?1引言62
4?1?2禁忌搜索示例63
4?1?3禁忌搜索算法流程67
4?2禁忌搜索的收敛性68
4?3禁忌搜索的关键参数和操作70
4?4并行禁忌搜索算法75
4?5禁忌搜索的实现与应用77
4?5?1基于禁忌搜索的组合优化77
4?5?2基于禁忌搜索的函数优化78
第5章神经网络与神经网络优化算法83
5.1神经网络简介83
5.1.1神经网络发展回顾83
5.1.2神经网络的模型84
5.2基于Hopfield反馈网络的优化策略89
5.2.1基于Hopfield模型优化的一般流程89
5.2.2基于Hopfield模型优化的缺陷90
5.2.3基于Hopfield模型优化的改进研究90
5.3动态反馈神经网络的稳定性研究94
5.3.1动态反馈网络的稳定性分析94
5.3.1.1离散对称动态反馈网络的渐近稳定性分析95
5.3.1.2非对称动态反馈网络的全局渐近稳定性分析99
5.3.1.3时延动态反馈网络的全局渐近稳定性分析101
5.3.2动态反馈神经网络的收敛域估计103
5.4基于混沌动态的优化研究概述105
5.4.1基于混沌神经网络的组合优化概述106
5.4.2基于混沌序列的函数优化研究概述108
5.4.3混沌优化的发展性研究109
5.5一类基于混沌神经网络的优化策略110
5.5.1ACNN模型的描述110
5.5.2ACNN模型的优化机制111
5.5.3计算机仿真研究与分析112
5.5.4模型参数对算法性能影响的几点结论116
第6章广义邻域搜索算法及其统一结构118
6.1广义邻域搜索算法118
6.2广义邻域搜索算法的要素119
6.3广义邻域搜索算法的统一结构120
6?4优化算法的性能评价指标123
6?5广义邻域搜索算法研究进展125
6.5.1理论研究概述125
6.5.2应用研究概述128
6.5.3发展性研究129
第7章混合优化策略130
7.1引言130
7.2基于统一结构设计混合优化策略的关键问题131
7.3一类GASA混合优化策略132
7.3.1GASA混合优化策略的构造出发点132
7.3.2GASA混合优化策略的流程和特点133
7.3.3GASA混合优化策略的马氏链描述135
7.3.4GASA混合优化策略的收敛性136
7.3.5GASA混合优化策略的效率定性分析141
第8章混合优化策略的应用143
8.1基于模拟退火?单纯形算法的函数优化143
8.1.1单纯形算法简介143
8.1.2SMSA混合优化策略144
8.1.3算法操作与参数设计145
8.1.4数值仿真与分析146
8.2基于混合策略的控制器参数整定和模型参数估计研究149
8.2.1引言149
8.2.2模型参数估计和PID参数整定149
8.2.3混合策略的操作与参数设计150
8.2.4数值仿真与分析151
8.3基于混合策略的TSP优化研究154
8.3.1TSP的混合优化策略设计154
8.3.2基于典型算例的仿真研究156
8.3.3对TSP的进一步讨论158
8.4基于混合策略的加工调度研究159
8.4.1基于混合策略的Job?shop优化研究159
8.4.1.1引言159
8.4.1.2JSP的析取图描述和编码161
8.4.1.3JSP的混合优化策略设计163
8.4.1.4基于典型算例的仿真研究166
8.4.2基于混合策略的置换Flow?shop优化研究170
8.4.2.1混合优化策略170
8.4.2.2算法操作与参数设计172
8.4.2.3数值仿真与分析172
8.4.3基于混合策略的一类批量可变流水线调度问题的优化研究174
8.4.3.1问题描述及其性质174
8.4.3.2混合优化策略的设计175
8.4.3.3仿真结果和分析177
8.5基于混合策略的神经网络权值学习研究177
8.5.1BPSA混合学习策略178
8.5.2GASA混合学习策略178
8.5.3GATS混合学习策略179
8.5.4编码和优化操作设计180
8.5.5仿真结果与分析180
8.6基于混合策略的神经网络结构学习研究184
8.6.1RBF网络简介184
8.6.2RBF网络结构优化的编码和操作设计184
8.6.3RBF网络结构的混合优化策略186
8.6.4计算机仿真与分析187
8.7基于混合策略的光学仪器设计研究189
8.7.1引言189
8.7.2模型设计190
8.7.3仿真研究和设计结果191
附录Benchmark问题193
A:TSP Benchmark问题193
B: 置换Flow?shop Benchmark问题195
C:Job?shop Benchmark问题211
参考文献217

⑹ 什么是局部搜索算法

局部搜索算法是从爬山法改进而来的。
简单来说,局部搜索算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
在计算机科学中,局部搜索是解决最优化问题的一种元启发式算法。局部搜索从一个初始解出发,然后搜索解的邻域,如有更优的解则移动至该解并继续执行搜索,否则返回当前解。
1、局部搜索算法的基本思想:
在搜索过程中,始终选择当前点的邻居中与离目标最近者的方向搜索。
2、局部搜索的优点:
简单、灵活及易于实现,缺点是容易陷入局部最优且解的质量与初始解和邻域的结构密切相关。常见的改进方法有模拟退火、禁忌搜索等。
3、局部搜索广泛应用:
计算机科学(主要是人工智能)、数学、运筹学、工程学、生物信息学中各种很难找到全局最优解的计算问题。

⑺ LKH(Lin-Kernighan heuristic )一种求TSP的邻域搜索策略

PART I 引入

题主应该指的是1973年的针对TSP的LKH算法。LKH算法类似于k-opt方法,常见的2-opt作为一种local search的思想题主应该是知道的,(2-opt的基本变换2-interchange如下图)。

那么k-opt的过程,也可以element by element,也就可以通过不计顺序的δ-path之间的uv-switch来实现,每个合适的k-opt里面的exchange都是总和为正的增益值,那么其每一个合适的exchange的一部分都可以被uv-switch达到,所以可以令每次的G*都大于0,作为stoppingcriteria,从逻辑上来说是合理的,符合作者的element by element,在启发式所谓的exploitation上也有好的表现力。END

P.S element by element这种思想在其他的算法也有体现,比如遗传算法的改进上也有比如单位点交叉防止收敛解震动。


其他算法效能上的提升考虑,请依次阅读文献[2][1]及其他相关的资料。


综上,LKH是可以认为基于k-opt成功的改进,无论是运行的速度上,还是搜索的精度上。它在解决TSP问题上,速度和精度上仍旧有较好的表现。




水平有限,随缘回答,若有错误,请指出评论,谢谢!

参考文献:

理解算法框架内容,文献[1]是较好的参考资料,理解算法细节、讨论,可以参考文献[2],其指出了backtracking的要求(从数值实验/作者思考的philosophy上指出:应该从最多几层开始backtracking,每层y_1, y_2contenders的数量如何,如何进一步refinements,每一次δ-path 变换中y_i怎么高效选取等问题)

[1] Cook W.J., Cunningham W.H., Pulleyblank W.R., Schrijver A.Combinatorial Optimization

[2] S. Lin, B. W. Kernighan,An effective heuristic algorithm for the traveling salesman problem

⑻ 基于R、SA和ICP的混合邻域搜索算法的TSP-D路径优化问题代码

摘要 还是要说一点,随机产生两点,塞进新排列头部。其余的按顺序往后逐个塞进去。嗯,来看图片~

⑼ 线性规划(LP)基本概念和搜索算法

可以用一个符号描述一系列类似的数量值

一个方程,如果他是关于决策变量的常熟加权求和形式,则该方程式 线性方程(liner) ,佛则该方程为 非线性方程(non-linear)

目标函数 以及约束方程 中均为关于决策变量的线性方程,则该优化模型为 线性规划(linear program, LP) ,其中目标函数可以为满足约束的任意整数或者分数

目标函数 以及约束方程 中存在关于决策变量的线性方程,则该优化模型为 非线性规划(nonlinear program, LP) ,其中目标函数可以为满足约束的任意整数或者分数

一个优化模型,如果他的决策变量中存在离散变量,则该优化模型位 整数规划(integer program, IP) ,如果整数规划的所有决策变量均为离散变量,则该整数规划为 纯整数规划(pure integer program) ;否则为 混合整数规划(mixed integer program)

搜索算法(improving search) 通过检查邻域来寻找比当前更好地解,若有改进则替换当前解,继续迭代,直到邻域中没有更好的解为止。搜索算法又称为 局部改进(local improvement) 爬山算法(hillclimbing) 局部搜索(local search) 邻域搜索(neighborhood search)

倘若一组可行解周围足够小的的邻域内没有优于该解的可行点,则称为 局部最优解(local optimum) ,最小化(最大化)问题存在 局部最小(最大)解

如果在全局范围内不存在目标值优于某可行解的其他可行点,则称为 全局最优解(global optimum) ,最小化(最大化)问题存在 全局最小(最大)解

搜索算法沿 由当前点 向下一个搜索点 移动,其中 是当前点 处的 搜索方向(move direction) , 是沿该方向前进的 步长 , 。

对于所有足够小的 都有 ,则称 是当前解的一个 改进方向(improving direction) ,如果满足所有约束条件,则为 可行改进方向

如果优化模型的目标函数 是光滑的(所有决策变量都是可微的),那么,当 是一个n维向量的函数,当它有一个一阶片倒数,这些导数组成的n维向量称为 梯度

导数(derivative) ,描述函数随参数的变化率,可以看做斜率。 偏导数(partial derivative) ,是保持其他变量恒定时,关于其中一个变量的导数

对于最大化目标函数 ,若 ,搜索方向 是 处的可改进方向,若 ,搜索方向 不是 处的可改进方向。

对于最小化目标函数 ,若 ,搜索方向 是 处的可改进方向,若 ,搜索方向 不是 处的可改进方向。

当目标函数梯度 ,是最大化目标 的一个改进方向, 是最小化目标函数 的一个改进方向

如果可行域内任意两点的连线都在可行域内,则称该可行域为 凸集

离散的可行集总是非凸集

若优化模型的可行集是凸集,那么对任意可行解始终存在指向另一个解的可行方向,意味着,只要存在最优解,可能性不会阻碍局部最优解发展为全局最优解。

线性约束的可行集又称为多面体集。

如果优化模型的所有约束都是线性的,那么该模型的可行域是凸集

两阶段法

大M法

⑽ 禁忌搜索算法浅析

姓名:刘家沐

学号:19011210553

网络来源,有删减

【嵌牛导读】:针对TSP问题等类似的NP-hard 问题,如果能在尽量少的计算量的情况下找到一个最优或者是较优的解成为当前一个热门的讨论话题,禁忌搜索算法便是其中之一

【嵌牛鼻子】:禁忌搜索算法   最优化问题    TSP问题

【嵌牛正文】:

背景:禁忌搜索算法(Tabu Search)是由美国科罗拉多州大学的Fred Glover教授在1986年左右提出来的,是一个用来跳出局部最优的搜寻方法。在解决最优问题上,一般区分为两种方式:一种是传统的方法,另一种方法则是一些启发式搜索算法。

使用传统的方法,我们必须对每一个问题都去设计一套算法,相当不方便,缺乏广泛性,优点在于我们可以证明算法的正确性,我们可以保证找到的答案是最优的;而对于启发式算法,针对不同的问题,我们可以套用同一个架构来寻找答案,在这个过程中,我们只需要设计评价函数以及如何找到下一个可能解的函数等,所以启发式算法的广泛性比较高,但相对在准确度上就不一定能够达到最优,但是在实际问题中启发式算法那有着更广泛的应用。 

禁忌搜索是一种亚启发式随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向。 TS是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中涉及邻域 、禁忌表、禁忌长度、候选解、藐视准则等影响禁忌搜索算法性能的关键因素。迄今为止,TS算法在组合优化等计算机领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。

局域搜索:在一个小的搜索范围里,进行搜索,或者根据结果逐步扩大搜索范围,但是这样会容易陷入局部最优

为了获得好解,可以采用的策略有(1)扩大邻域结构,(2)变邻域结构    ,(3)多初始点。但这些策略依然无法保证算法具备跳出局优的能力。

禁忌搜索:

为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。 禁忌搜索 就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一比较, 珠穆朗玛峰 脱颖而出。

当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。这就是禁忌搜索中“禁忌表(tabu list)”的含义。那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best so far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。

主要思路:

1、在搜索中,构造一个短期循环记忆表-禁忌表,禁忌表中存放刚刚进行过的 |T|(T称为禁忌表)个邻居的移动,这种移动即解的简单变化。

2、禁忌表中的移动称为禁忌移动。对于进入禁忌表中的移动, 在以后的 |T| 次循环内是禁止的,以避免回到原来的解,从而避免陷入循环。|T| 次循环后禁忌解除。

3、禁忌表是一个循环表,在搜索过程中被循环的修改,使禁忌表始终保持 |T| 个移动。

4、即使引入了禁忌表,禁忌搜索仍可能出现循环。因此,必须给定停止准则以避免出现循环。当迭代内所发现的最好解无法改进或无法离开它时,算法停止。

总结:

与传统的优化算法相比,TS算法的主要特点是:

 1.从移动规则看,每次只与最优点比较,而不与经过点比较,故可以爬出局部最优。

 2.选优规则始终保持曾经达到的最优点,所以即使离开了全局最优点也不会失去全局最优性。

 3.终止规则不以达到局部最优为终止规则,而以最大迭代次数、出现频率限制或者目标值偏离成都为终止规则

禁忌搜索是对人类思维过程本身的一种模拟,它通过对一些局部最优解的禁忌(也可以说是记忆)达到接纳一部分较差解,从而跳出局部搜索的目的。因而在计算搜索领域有着广泛应用。

热点内容
python实用代码 发布:2025-05-13 22:19:41 浏览:842
dede数据库的配置文件 发布:2025-05-13 22:19:08 浏览:966
给字符加密 发布:2025-05-13 22:12:32 浏览:972
数据库系统实现答案 发布:2025-05-13 22:11:57 浏览:140
哪个软件可以共存安卓 发布:2025-05-13 22:10:15 浏览:552
上传宦妃天下野泉肉肉 发布:2025-05-13 22:10:10 浏览:408
洗眼睛解压 发布:2025-05-13 21:58:28 浏览:272
c存储指针 发布:2025-05-13 21:49:04 浏览:921
结绳编程软件 发布:2025-05-13 21:49:03 浏览:850
解压体育馆 发布:2025-05-13 21:27:48 浏览:263