高斯核算法
❶ 高斯核函数和随机森林到底什么关系
首先要清楚,SVM中,对于维度的计算,我们可以用内积的形式,假设函数:
表示一个简单的从二维映射到三维。
则在SVM的计算中,可以表示为:
再来看泰勒展开式:
所以这个无穷多项的式子正是对于的近似,所对应的映射:
再来看高斯核:
将泰勒展开式带入高斯核,我们得到了一个无穷维度的映射:
那么,对于和的内积形式符合在SVM中无穷维度下的内积计算,即高斯核将数据映射到无穷高的维度。
❷ 高斯核函数为什么是把原始空间映射到无穷维空间
首先要清楚,SVM中,对于维度的计算,我们可以用内积的形式,假设函数:
表示一个简单的从二维映射到三维。
则在SVM的计算中,可以表示为:
再来看泰勒展开式:
所以这个无穷多项的式子正是对于的近似,所对应的映射:
再来看高斯核:
将泰勒展开式带入高斯核,我们得到了一个无穷维度的映射:
那么,对于和的内积形式符合在SVM中无穷维度下的内积计算,即高斯核将数据映射到无穷高的维度。
❸ 高斯核函数的计算机视觉中的作用
在计算机视觉中,有时也简称为高斯函数。高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:
(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.
(2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.
(3)高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数傅里叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.
(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.
(5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.
❹ 什么是高斯算法
高斯小时候非常淘气,一次老师去开会他和同学们闹腾。老师回来后大发雷霆,命令他们全班所有人都开始算1+2+3+4+5+6+……+100的得数。全班只有高斯想出来的(1+100)+(2+99)+(3+98)……+(50+51)…………一共有50个101,所以50·101就是1加到一百的得数。后来人们把这种简便算法称作高斯算法。
就是:(首项+末项)*项数/2
❺ 如何用cordic算法实现高斯核函数
核函数一般是为了解决维度过高导致的计算能力不足的缺陷,实质就是特征向量内积的平方。
❻ 什么是核函数常见的核函数有哪些
姓名:贺文琪
学号:19021210758
【嵌牛导读】核函数通常定义为空间中任一点x到某一中心xc之间欧式距离的单调函数 , 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小。核函数不是仅仅在SVM里使用,他是一个工具,把低维数据映射到高维数据的工具。
【嵌牛鼻子】核函数
【嵌牛提问】如何实现核函数
【嵌牛正文】
一、核
1.1 核的介绍
内核方法是一类用于模式分析或识别的算法,其最知名的使用是在支持向量机(SVM)。模式分析的一般任务是在一般类型的数据(例如序列,文本文档,点集,向量,图像等)中找到并研究一般类型的关系(例如聚类,排名,主成分,相关性,分类)图表等)。内核方法将数据映射到更高维的空间,希望在这个更高维的空间中,数据可以变得更容易分离或更好的结构化。对这种映射的形式也没有约束,这甚至可能导致无限维空间。然而,这种映射函数几乎不需要计算的,所以可以说成是在低维空间计算高维空间内积的一个工具。
1.2 核的诀窍
内核技巧是一个非常有趣和强大的工具。 它是强大的,因为它提供了一个从线性到非线性的连接以及任何可以只表示两个向量之间的点积的算法。 它来自如下事实:如果我们首先将我们的输入数据映射到更高维的空间,那么我在这个高维的空间进行操作出的效果,在原来那个空间就表现为非线性。
现在,内核技巧非常有趣,因为不需要计算映射。 如果我们的算法只能根据两个向量之间的内积表示,我们所需要的就是用一些其他合适的空间替换这个内积。 这就是"技巧"的地方:无论使用怎样的点积,它都被内核函数替代。 核函数表示特征空间中的内积,通常表示为:
K(x,y)= <φ(x),φ(y)>
使用内核函数,该算法然后可以被携带到更高维空间中,而不将输入点显式映射到该空间中。 这是非常可取的,因为有时我们的高维特征空间甚至可以是无限维,因此不可能计算。
1.3 核函数的性质
核函数必须是连续的,对称的,并且最优选地应该具有正(半)定Gram矩阵。据说满足Mercer定理的核是正半定数,意味着它们的核矩阵只有非负特征值。使用肯定的内核确保优化问题将是凸的和解决方案将是唯一的。
然而,许多并非严格定义的核函数在实践中表现得很好。一个例子是Sigmoid内核,尽管它广泛使用,但它对于其参数的某些值不是正半定的。 Boughorbel(2005)也实验证明,只有条件正定的内核在某些应用中可能胜过大多数经典内核。
内核还可以分为各向异性静止,各向同性静止,紧凑支撑,局部静止,非稳定或可分离非平稳。此外,内核也可以标记为scale-invariant(规模不变)或scale-dependent(规模依赖),这是一个有趣的属性,因为尺度不变内核驱动训练过程不变的数据的缩放。
补充:Mercer 定理:任何半正定的函数都可以作为核函数。所谓半正定的函数f(xi,xj),是指拥有训练数据集合(x1,x2,...xn),我们定义一个矩阵的元素aij = f(xi,xj),这个矩阵式n*n的,如果这个矩阵是半正定的,那么f(xi,xj)就称为半正定的函数。这个mercer定理不是核函数必要条件,只是一个充分条件,即还有不满足mercer定理的函数也可以是核函数
二、 几种常用的核
2.1 线性核
线性内核是最简单的内核函数。 它由内积<x,y>加上可选的常数c给出。 使用线性内核的内核算法通常等于它们的非内核对应物,即具有线性内核的KPCA与标准PCA相同。
2.2 多项式核函数
多项式核是非固定内核。 多项式内核非常适合于所有训练数据都归一化的问题。我记得一般都会把问题归一化吧?
可调参数是斜率α,常数项c和多项式度d。
2.3 高斯核
高斯核是径向基函数核的一个例子。
可调参数sigma在内核的性能中起着主要作用,并且应该仔细地调整到手头的问题。 如果过高估计,指数将几乎呈线性,高维投影将开始失去其非线性功率。 另一方面,如果低估,该函数将缺乏正则化,并且决策边界将对训练数据中的噪声高度敏感。
2.4指数的内核
指数核与高斯核密切相关,只有正态的平方被忽略。 它也是一个径向基函数内核。
2.5 拉普拉斯算子核
拉普拉斯核心完全等同于指数内核,除了对sigma参数的变化不那么敏感。 作为等价的,它也是一个径向基函数内核。
❼ SVM算法采用高斯核函数,核函数的参数对结果影响大吗
核函数一般是为了解决维度过高导致的计算能力不足的缺陷,实质就是特征向量内积的平方。
为什么会提出核函数:
一般我们在解决一般的分类或者回归问题的时候,给出的那个数据可能在低维空间并不线性可分,但是我们选用的模型却是在特征空间中构造超平面,从而进行分类,如果在低维空间中直接使用模型,很明显,效果必然会大打折扣。
但是!如果我们能够将低纬空间的特征向量映射到高维空间,那么这些映射后的特征线性可分的可能性更大【记住这里只能说是可能性更大,并不能保证映射过去一定线性可分】,由此我们可以构造映射函数,但问题随之而来了,维度扩大,那么随之而言的计算成本就增加了,模型效果好了,但是可用性降低,那也是不行的。
于是有人提出了核函数的概念,可以在低维空间进行高维度映射过后的计算,使得计算花销大为降低,由此,使得映射函数成为了可能。举个简单的例子吧,假设我们的原始样本特征维度为2,将其映射到三维空间,随便假设我们的映射函数为f(x1,x2)
=
(x1^2,
x2^2,
2*x1*x2),那么在三维空间中,样本线性可分更大,但是向量内积的计算开销从4提高到9【如果从10维映射到1000维,那么计算花销就提高了10000倍,而实际情况下,特征维度几万上百万十分常见】,再看对于样本n1=(a1,a2),n2=(b1,b2),映射到三维空间之后,两者的内积I1为:a1^2
*
b1^2
+
a2^2
*
b2^2
+
4
*
a1
*
a2
*
b1
*
b2,此时,又有,n1,n2在二维空间中的内积为:a1b1
+
a2b2,平方之后为I2:a1^2
*
b1^2
+
a2^2
*
b2^2
+
4
*
a1
*
a2
*
b1
*
b2,此时
I1
和
I2
是不是很相似,只要我们将f(x1,x2)调整为:
(x1^2,
x2^2,
根号(2*x1*x2)
)
,那么此时就有I1
=
I2,也就是说,映射到三维空间里的内积,可以通过二维空间的内积的平方进行计算!
个人博客:www.idiotaron.org
里有关于svm核函数的描述~
实际上核函数还是挺难找的,目前常用的有多项式核,高斯核,还有线性核。
希望能帮到你,也希望有更好的想法,在下面分享下哈。
❽ SVM几种核函数的对比分析以及SVM算法的优缺点
SVM核函数的作用
SVM核函数是用来解决数据线性不可分而提出的,把数据从源空间映射到目标空间(线性可分空间)。
SVM中核函数的种类
1、线性核
优点:
方案首选,奥卡姆剃刀定律
简单,可以求解较快一个QP问题
可解释性强:可以轻易知道哪些feature是重要的
可解决非线性问题
可通过主观设置幂数来实现总结的预判
对于大数量级的幂数,不太适用
比较多的参数要选择
可以映射到无限维
决策边界更为多样
只有一个参数,相比多项式核容易选择
可解释性差(无限多维的转换,无法算w)
计算速度比较慢(解一个对偶问题)
容易过拟合(参数选不好时容易overfitting)
特征维数高选择线性核
样本数量可观、特征少选择高斯核(非线性核)
样本数量非常多选择线性核(避免造成庞大的计算量)
限制:只能解决线性可分问题
2、多项式核
基本原理:依靠升维使得原本线性不可分的数据线性可分;
升维的意义:使得原本线性不可分的数据线性可分;
优点:
缺点:
通常只用在已经大概知道一个比较小的幂数的情况
3、高斯核
优点:
缺点:
4、Sigmoid核
采用Sigmoid函数作为核函数时,支持向量机实现的就是一种多层感知器神经网络,应用SVM方法,隐含层节点数目(它确定神经网络的结构)、隐含层节点对输入节点的权值都是在设计(训练)的过程中自动确定的。而且支持向量机的理论基础决定了它最终求得的是全局最优值而不是局部最小值,也保证了它对于未知样本的良好泛化能力而不会出现过学习现象。
在实战中更多的是:
SVM的优缺点
1、SVM算法对大规模训练样本难以实施
SVM的空间消耗主要是存储训练样本和核矩阵,由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法。如果数据量很大,SVM的训练时间就会比较长,如垃圾邮件的分类检测,没有使用SVM分类器,而是使用了简单的naive bayes分类器,或者是使用逻辑回归模型分类。
2、用SVM解决多分类问题存在困难
经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。
3、对缺失数据敏感,对参数和核函数的选择敏感
支持向量机性能的优劣主要取决于核函数的选取,所以对于一个实际问题而言,如何根据实际的数据模型选择合适的核函数从而构造SVM算法。目前比较成熟的核函数及其参数的选择都是人为的,根据经验来选取的,带有一定的随意性.在不同的问题领域,核函数应当具有不同的形式和参数,所以在选取时候应该将领域知识引入进来,但是目前还没有好的方法来解决核函数的选取问题。
❾ 唯一可以和神经网络抗衡的算法SVM
一、线性分类器:
首先给出一个非常非常简单的分类问题(线性可分) ,我们要用一条直线,将下图中黑色的点和白色的点分开,很显然,图上的这条直线就是我们要求的直线之一(可以有无数条这样的直线)
假如说,我们令黑色的点 = -1, 白色的点 = +1,直线f(x) = w.x +
b,这儿的x、w是向量,其实写成这种形式也是等价的f(x) = w1x1 + w2x2 … + wnxn + b,
当向量x的维度=2的时候,f(x) 表示二维空间中的一条直线, 当x的维度=3的时候,f(x) 表示3维空间中的一个平面,当x的维度=n
> 3的时候,表示n维空间中的n-1维超平面。这些都是比较基础的内容,如果不太清楚,可能需要复习一下微积分、线性代数的内容。
刚刚说了,我们令黑色白色两类的点分别为+1,
-1,所以当有一个新的点x需要预测属于哪个分类的时候,我们用sgn(f(x)),就可以预测了,sgn表示符号函数,当f(x) >
0的时候,sgn(f(x)) = +1, 当f(x) < 0的时候sgn(f(x)) = –1。
但是,我们怎样才能取得一个最优的划分直线f(x)呢?下图的直线表示几条可能的f(x)
一个很直观的感受是,让这条直线到给定样本中最近的点最远,这句话读起来比较拗口,下面给出几个图,来说明一下:
第一种分法:
第二种分法:
这两种分法哪种更好呢?从直观上来说,就是分割的间隙越大越好,把两个类别的点分得越开越好。就像我们平时判断一个人是男还是女,就是很难出现分错的情况,这就是男、女两个类别之间的间隙非常的大导致的,让我们可以更准确的进行分类。 在SVM中,称为Maximum Marginal,是SVM的一个理论基础之一。 选择使得间隙最大的函数作为分割平面是由很多道理的,比如说从概率的角度上来说,就是使得置信度最小的点置信度最大(听起来很拗口),从实践的角度来说,这样的效果非常好,等等。这里就不展开讲,作为一个结论就ok了,:)
上图被红色和蓝色的线圈出来的点就是所谓的支持向量(support vector)。
上图就是一个对之前说的类别中的间隙的一个描述。Classifier Boundary就是f(x),红色和蓝色的线(plus
plane与minus plane)就是support vector所在的面,红色、蓝色线之间的间隙就是我们要最大化的分类间的间隙。
这里直接给出M的式子:(从高中的解析几何就可以很容易的得到了,也可以参考后面Moore的ppt)
另外支持向量位于wx + b = 1与wx + b = -1的直线上,我们在前面乘上一个该点所属的类别y(还记得吗?y不是+1就是-1),就可以得到支持向量的表达式为:y(wx + b) = 1,这样就可以更简单的将支持向量表示出来了。
当支持向量确定下来的时候,分割函数就确定下来了,两个问题是等价的。得到支持向量,还有一个作用是,让支持向量后方那些点就不用参与计算了。这点在后面将会更详细的讲讲。
在这个小节的最后,给出我们要优化求解的表达式:
||w||的意思是w的二范数,跟上面的M表达式的分母是一个意思,之前得到,M = 2 / ||w||,最大化这个式子等价于最小化||w||,
另外由于||w||是一个单调函数,我们可以对其加入平方,和前面的系数,熟悉的同学应该很容易就看出来了,这个式子是为了方便求导。
这个式子有还有一些限制条件,完整的写下来,应该是这样的:( 原问题 )
s.t的意思是subject
to,也就是在后面这个限制条件下的意思,这个词在svm的论文里面非常容易见到。这个其实是一个带约束的二次规划(quadratic
programming,
QP)问题,是一个凸问题,凸问题就是指的不会有局部最优解,可以想象一个漏斗,不管我们开始的时候将一个小球放在漏斗的什么位置,这个小球最终一定可以掉出漏斗,也就是得到全局最优解。s.t.后面的限制条件可以看做是一个凸多面体,我们要做的就是在这个凸多面体中找到最优解。这些问题这里不展开,因为展开的话,一本书也写不完。如果有疑问请看看wikipedia。
二、转化为对偶问题,并优化求解:
这个优化问题可以用 拉格朗日乘子法 去解,使用了 KKT条件 的理论,这里直接作出这个式子的拉格朗日目标函数:
求解这个式子的过程需要 拉格朗日对偶性 的相关知识(另外pluskid也有 一篇文章 专门讲这个问题),并且有一定的公式推导,如果不感兴趣, 可以直接跳到后面 用 蓝色公式 表示的结论,该部分推导主要参考自 plukids的文章 。
首先让L关于w,b最小化,分别令L关于w,b的偏导数为0,得到关于 原问题 的一个表达式
将两式带回L(w,b,a)得到对偶问题的表达式
新问题加上其限制条件是( 对偶问题 ):
这个就是我们需要最终优化的式子。至此, 得到了线性可分问题的优化式子 。
求解这个式子,有很多的方法,比如 SMO 等等,个人认为,求解这样的一个带约束的凸优化问题与得到这个凸优化问题是比较独立的两件事情,所以在这篇文章中准备完全不涉及如何求解这个话题,如果之后有时间可以补上一篇文章来谈谈:)。
三、线性不可分的情况(软间隔):
接下来谈谈线性不可分的情况,因为 线性可分这种假设实在是太有局限性 了:
下图就是一个典型的线性不可分的分类图,我们没有办法用一条直线去将其分成两个区域,每个区域只包含一种颜色的点。
要想在这种情况下的分类器,有两种方式, 一种是用曲线 去将其完全分开,曲线就是一种 非线性 的情况,跟之后将谈到的 核函数 有一定的关系:
另外一种还是用直线,不过不用去保证可分性 ,就是包容那些分错的情况,不过我们得加入惩罚函数,使得点分错的情况越合理越好。其实在很多时候,不是在训练的时候分类函数越完美越好,因为训练函数中有些数据本来就是噪声,可能就是在人工加上分类标签的时候加错了,如果我们在训练(学习)的时候把这些错误的点学习到了,那么模型在下次碰到这些错误情况的时候就难免出错了(假如老师给你讲课的时候,某个知识点讲错了,你还信以为真了,那么在考试的时候就难免出错)。这种学习的时候学到了“噪声”的过程就是一个过拟合(over-fitting),这在机器学习中是一个大忌,我们宁愿少学一些内容,也坚决杜绝多学一些错误的知识。还是回到主题,用直线怎么去分割线性不可分的点:
我们可以为分错的点加上一点惩罚,对一个分错的点的 惩罚函数 就是 这个点到其正确位置的距离:
在上图中,蓝色、红色的直线分别为支持向量所在的边界,绿色的线为决策函数,那些紫色的线 表示分错的点到其相应的决策面的距离 ,这样我们可以在原函数上面加上一个惩罚函数,并且带上其限制条件为:
公式中蓝色的部分为在线性可分问题的基础上加上的惩罚函数部分,当xi在正确一边的时候,ε=0,R为全部的点的数目,C是一个由用户去指定的系数,表示对分错的点加入多少的惩罚,当C很大的时候,分错的点就会更少,但是过拟合的情况可能会比较严重,当C很小的时候,分错的点可能会很多,不过可能由此得到的模型也会不太正确,所以如何选择C是有很多学问的,不过在大部分情况下就是通过经验尝试得到的。
接下来就是同样的,求解一个拉格朗日对偶问题,得到一个原问题的对偶问题的表达式:
蓝色的部分是与线性可分的对偶问题表达式的不同之处。在线性不可分情况下得到的对偶问题,不同的地方就是α的范围从[0, +∞),变为了[0, C],增加的惩罚ε没有为对偶问题增加什么复杂度。
四、核函数:
刚刚在谈不可分的情况下,提了一句,如果使用某些非线性的方法,可以得到将两个分类完美划分的曲线,比如接下来将要说的核函数。
我们可以 让空间从原本的线性空间变成一个更高维的空间 , 在这个高维的线性空间下,再用一个超平面进行划分 。这儿举个例子,来理解一下如何利用空间的维度变得更高来帮助我们分类的(例子以及图片来自 pluskid的kernel函数部分 ):
下图是一个典型的线性不可分的情况
但是当我们把这两个类似于椭圆形的点映射到一个高维空间后,映射函数为:
用这个函数可以将上图的平面中的点映射到一个三维空间(z1,z2,z3),并且对映射后的坐标加以旋转之后就可以得到一个线性可分的点集了。
用另外一个哲学例子来说:世界上本来没有两个完全一样的物体,对于所有的两个物体,我们可以通过增加维度来让他们最终有所区别,比如说两本书,从(颜色,内容)两个维度来说,可能是一样的,我们可以加上 作者 这个维度,是在不行我们还可以加入 页码 ,可以加入 拥有者 ,可以加入 购买地点 ,可以加入 笔记内容 等等。 当维度增加到无限维的时候,一定可以让任意的两个物体可分了 。
回忆刚刚得到的对偶问题表达式:
我们可以将红色这个部分进行改造,令:
这个式子所做的事情就是将线性的空间映射到高维的空间,k(x, xj)有很多种,下面是比较典型的两种:
上面这个核称为多项式核,下面这个核称为高斯核,高斯核甚至是将原始空间映射为无穷维空间,另外核函数有一些比较好的性质,比如说不会比线性条件下增加多少额外的计算量,等等,这里也不再深入。一般对于一个问题,不同的核函数可能会带来不同的结果,一般是需要尝试来得到的。
五、一些其他的问题:
1)如何进行多分类问题:
上面所谈到的分类都是2分类的情况,当N分类的情况下,主要有两种方式,一种是1 vs (N – 1)一种是1 vs 1,前一种方法我们需要训练N个分类器,第i个分类器是看看是属于分类i还是属于分类i的补集(出去i的N-1个分类)。
后一种方式我们需要训练N * (N – 1) / 2个分类器,分类器(i,j)能够判断某个点是属于i还是属于j。
这种处理方式不仅在SVM中会用到,在很多其他的分类中也是被广泛用到,从林教授(libsvm的作者)的结论来看,1 vs 1的方式要优于1 vs (N – 1)。
2)SVM会overfitting吗?
SVM避免overfitting,一种是调整之前说的惩罚函数中的C,另一种其实从式子上来看,min
||w||^2这个看起来是不是很眼熟?在最小二乘法回归的时候,我们看到过这个式子,这个式子可以让函数更平滑,所以SVM是一种不太容易over-fitting的方法。
参考文档:
主要的参考文档来自4个地方,wikipedia(在文章中已经给出了超链接了), pluskid关于SVM的博文 , Andrew moore的ppt (文章中不少图片都是引用或者改自Andrew Moore的ppt,以及prml
❿ 如何理解高斯核函数的公式
所谓径向基函数 (Radial Basis Function 简称 RBF), 就是某种沿径向对称的标量函数。 通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 , 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ^2) } 其中xc为核函数中心,σ为函数的宽度参数 , 控制了函数的径向作用范围。