当前位置:首页 » 操作系统 » fft算法matlab

fft算法matlab

发布时间: 2022-11-05 11:09:15

⑴ matlab中为什么fft算法要基于2

的确不基于2^n也能算
作为用户,我们可以通过命令fft(xn,m)计算任意m点(m大于等于xn的长度)的fft。你可以通过
help
fft
发现fft还有很多附加参数。
matlab的内核算法到底是否基于2^n,我们不需要知道。

⑵ matlab中fft()函数是什么意思

FFT(快速傅里叶变换)是一种实现DFT(离散傅里叶变换)的快速算法,是利用复数形式的离散傅里叶变换来计算实数形式的离散傅里叶变换,matlab中的fft()函数是实现该算法的实现。

MATLAB它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

快速傅里叶变换, 即利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称,简称FFT。快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显着。

(2)fft算法matlab扩展阅读:

matlab优势特点:

1、高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;

2、具有完备的图形处理功能,实现计算结果和编程的可视化;

3、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;

4、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

参考资料来源:

网络-快速傅里叶变换

网络-MATLAB

⑶ Matlab如何对实验数据进行FFT运算

这个很简单,FFT 是Z 变换和离散序列傅立叶变换上的单位圆上等间隔取点,而傅立叶和Z变换均包含周期为2pi的特性。那么你在单位圆上取点,根据三角函数的特性他们相位相差一百八十度只需要在前面加一个负号(sinx)或者直接不用加(cosx),而我们得到的FFT是幅频特性曲线,高低只代表幅度大小,重点来了:我们在单位原上取的点是一个复数(s域或者z域),复数的大小是实部的平方加虚部的平方再开根号,根据刚刚我们推得的三角函数特性,如果相位差180度,也就是一个pi,他们之间的幅度应该是完全一样的! 现在你再看Matlab画的图,是不是对称点是(pi,0)啊?我讲得够明白透彻了吧,希望能帮上忙。

⑷ 如何应用matlab进行fft分析

FFT是离散傅立叶变换的快速算法,可以将一个信号变换
到频域。有些信号在时域上是很难看出什么特征的,但是如
果变换到频域之后,就很容易看出特征了。这就是很多信号
分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱
提取出来,这在频谱分析方面也是经常用的。
虽然很多人都知道FFT是什么,可以用来做什么,怎么去
做,但是却不知道FFT之后的结果是什意思、如何决定要使用
多少点来做FFT。

现在圈圈就根据实际经验来说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。采样
定理告诉我们,采样频率要大于信号频率的两倍,这些我就
不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。N个采样点,
经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT
运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。那么FFT
之后结果就是一个为N点的复数。每一个点就对应着一个频率
点。这个点的模值,就是该频率值下的幅度特性。具体跟原始
信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT
的结果的每个点(除了第一个点直流分量之外)的模值就是A
的N/2倍。而第一个点就是直流分量,它的模值就是直流分量
的N倍。而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个
点(实际上这个点是不存在的,这里是假设的第N+1个点,也
可以看做是将第一个点分做两半分,另一半移到最后)则表示
采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率
依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果
采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒
时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时
间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率
分辨力,则必须增加采样点数,也即采样时间。频率分辨率和
采样时间是倒数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是
An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,
就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。
由于FFT结果的对称性,通常我们只使用前半部分的结果,
即小于采样频率一半的结果。

好了,说了半天,看着公式也晕,下面圈圈以一个实际的
信号来做说明。

假设我们有一个信号,它含有2V的直流分量,频率为50Hz、
相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、
相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)

式中cos参数为弧度,所以-30度和90度要分别换算成弧度。
我们以256Hz的采样率对这个信号进行采样,总共采样256点。
按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个
点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号
有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、
第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。

图1 FFT结果
从图中我们可以看到,在第1点、第51点、和第76点附近有
比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i
3点: -2.8586E-14 - 1.1898E-13i

50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i

很明显,1点、51点、76点的值都比较大,它附近的点值
都很小,可以认为是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。分别计算这三个点的模值,
结果如下:
1点: 512
51点:384
76点:192
按照公式,可以计算出直流分量为:512/N=512/256=2;
50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的
幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来
的幅度是正确的。
然后再来计算相位信息。直流信号没有相位可言,不用管
它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,
结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再
计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,
换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达
式了,它就是我们开始提供的信号。

总结:假设采样频率为Fs,采样点数为N,做FFT之后,某
一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以
N);该点的相位即是对应该频率下的信号的相位。相位的计算
可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角
度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒
的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,
这在一些实际的应用中是不现实的,需要在较短的时间内完成
分析。解决这个问题的方法有频率细分法,比较简单的方法是
采样比较短时间的信号,然后在后面补充一定数量的0,使其长度
达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
具体的频率细分法可参考相关文献。

[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2; %直流分量幅度
A1=3; %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50; %信号1频率(Hz)
F2=75; %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90; %信号相位(度)
N=256; %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻

%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title('原始信号');

figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title('FFT 模值');

figure;
Ayy=Ayy/(N/2); %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果
title('幅度-频率曲线图');

figure;
Pyy=[1:N/2];
for i="1:N/2"
Pyy(i)=phase(Y(i)); %计算相位
Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2)); %显示相位图
title('相位-频率曲线图');

看完这个你就明白谐波分析了。

⑸ matlab 如何进行复数的 fft运算

默认,刚刚开始,在没有给i定义情况下,
i代表虚数的。
比如 5-i4
matlab里输入,5+(-i*4)或者5-i*4
matlab里FFT函数可以直接运用,如,b=fft(a);
如果,想看代码,打开fft.m文件看看。

⑹ Matlab的时间抽取基2FFT算法

基于Matlab的时间抽取基2FFT算法
function y=myditfft(x)
%本程序对输入序列实现DIT-FFT基2算法,点数取大于等于长度的2的幂次
%------------------------------------
% Leo's fft program(改编网上的一个程序)
%------------------------------------
m=log2(2^nextpow2(length(x))); %求的x长度对应的2的最低幂次m
N=2^m;
if length(x)<N
x=[x,zeros(1,N-length(x))]; %若长度不是2的幂,补0到2的整数幂
end
x;
%--------------------------------------------------------------------------
%对输入序列进行倒序
%如果输入序列的自然顺序号I用二进制数(例如n2n1n0)表示
%则其倒位序J对应的二进制数就是(n0n1n2),这样,在原来自然顺序时应该放x(I)的
%单元,现在倒位序后应放x(J)。
%--------------------------------------------------------------------------
%以下程序相当于以下程序:
%nxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1; %求1:2^m数列的倒序
%y=x(nxd); %将倒序排列作为初始值
%--------------------------------------------------------------------------
NV2=N/2;
NM1=N-1;
I=0;
J=0;
while I<NM1
if I<J
T=x(J+1);
x(J+1)=x(I+1);
x(I+1)=T;
end
K=NV2;

while K<=J
J=J-K;
K=K/2;
end
J=J+K;
I=I+1;
end
x;
%--------------------------------------------------------------------------
%以下程序解释:
%第一级从x(0)开始,跨接一阶蝶形,再取每条对称
%第二级从x(0)开始,跨接两阶蝶形,再取每条对称
%第m级从x(0)开始,跨接2^(m-1)阶蝶形,再取每条对称....
%--------------------------------------------------------------------------
for mm=1:m %将DFT做m次基2分解,从左到右,对每次分解作DFT运算
Nmr=2^mm;
u=1; %旋转因子u初始化
WN=exp(-j*2*pi/Nmr); %本次分解的基本DFT因子WN=exp(-i*2*pi/Nmr)
for n=1:Nmr/2 %本次跨越间隔内的各次碟形运算
for k=n:Nmr:N %本次碟形运算的跨越间隔为Nmr=2^mm
kp=k+Nmr/2; %确定碟形运算的对应单元下标(对称性)
t=x(kp)*u; %碟形运算的乘积项
x(kp)=x(k)-t; %碟形运算的加法项
x(k)=x(k)+t;
end
u=u*WN; %修改旋转因子,多乘一个基本DFT因子WN
end
end
y=x; %输出

⑺ 用matlab如何实现fft变换

Matlab中FFT有1D和2D的,FFT得到的是信号的频谱即t-》f

clear
%编写骆遥
fs=1000
t=0:1/fs:0.6;
f1=100;
f2=300;
x=sin(2*pi*f1*t)+sin(2*pi*f2*t);
subplot(711)
plot(x);
title('f1(100Hz)\f2(300Hz)的正弦信号,初相0')
xlabel('序列(n)')
gridon
number=512
y=fft(x,number);
n=0:length(y)-1;
f=fs*n/length(y);
subplot(713)
plot(f,abs(y));
title('f1\f2的正弦信号的FFT(512点)')
xlabel('频率Hz')
gridon
x=x+randn(1,length(x));
subplot(715)
plot(x);
title('原f1\f2的正弦信号(含随机噪声)')
xlabel('序列(n)')
gridon
y=fft(x,number);
n=0:length(y)-1;
f=fs*n/length(y);
subplot(717)
plot(f,abs(y));
title('原f1\f2的正弦信号(含随机噪声)的FFT(512点)')
xlabel('频率Hz')
gridon

⑻ matlab如何用fft

matlab自带的fft函数是快速傅里叶变换函数。主要用于降噪处理,通过使用傅里叶变换求噪声中隐藏的信号的频率分量。

该函数使用方法:

方法一:

Y= fft(X)用快速傅里叶变换 (FFT) 算法计算X的离散傅里叶变换(DFT)。

  • 如果X是向量,则fft(X)返回该向量的傅里叶变换。

  • 如果X是矩阵,则fft(X)将X的各列视为向量,并返回每列的傅里叶变换。

  • 如果X是一个多维数组,则fft(X)将沿大小不等于 1 的第一个数组维度的值视为向量,并返回每个向量的傅里叶变换。

  • 方法二:

  • Y= fft(X,n)返回n点 DFT。如果未指定任何值,则Y的大小与X相同。

  • 如果X是向量且X的长度小于n,则为X补上尾零以达到长度n。

  • 如果X是向量且X的长度大于n,则对X进行截断以达到长度n。

  • 如果X是矩阵,则每列的处理与在向量情况下相同。

  • 如果X为多维数组,则大小不等于 1 的第一个数组维度的处理与在向量情况下相同。

我们通过下例,来了解fft函数使用过程:

第一步、指定信号的参数,采样频率为 1 kHz,信号持续时间为 1.5 秒。

Fs=1000;%采样频率

T=1/Fs;%采样周期

L=1500;%信号长度

t=(0:L-1)*T;%时间向量

第二步、构造一个信号,其中包含幅值为 0.7 的 50 Hz 正弦量和幅值为 1 的 120 Hz 正弦量。

S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

第三步、用均值为零、方差为 4 的白噪声扰乱该信号。

X = S + 2*randn(size(t));

第四步、在时域中绘制含噪信号。通过查看信号 X(t) 很难确定频率分量。

plot(1000*t(1:50),X(1:50))

title('Signal Corrupted with Zero-Mean Random Noise')

xlabel('t (milliseconds)'),ylabel('X(t)')

第五步、计算信号的傅里叶变换。

Y = fft(X);

第六步、计算双侧频谱 P2, 计算单侧频谱 P1。

P2 = abs(Y/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1)

第七步、定义频域 f 并绘制单侧幅值频谱 P1

f = Fs*(0:(L/2))/L;

plot(f,P1)

title('Single-Sided Amplitude Spectrum of X(t)')

xlabel('f (Hz)'),ylabel('|P1(f)|')

运行结果。

⑼ 用matlab编写实现fft的程序。

function y=myditfft(x)
%本程序对输入序列实现DIT-FFT基2算法,点数取大于等于长度的2的幂次
%------------------------------------
%

myditfft.c
%------------------------------------
m=nextpow2(x);

%求的x长度对应的2的最低幂次m
N=2^m;
if length(x)<N

x=[x,zeros(1,N-length(x))];

%若的长度不是2的幂,补0到2的整数幂
end
nxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1;
%求1:2^m数列的倒序
y=x(nxd);

%将倒序排列作为的初始值
for mm=1:m

%将DFT做m次基2分解,从左到右,对每次分解作DFT运算

Nmr=2^mm;

u=1;

%旋转因子u初始化

WN=exp(-i*2*pi/Nmr);

%本次分解的基本DFT因子WN=exp(-i*2*pi/Nmr)

for j=1:Nmr/2

%本次跨越间隔内的各次碟形运算

for k=j:Nmr:N

%本次碟形运算的跨越间隔为Nmr=2^mm

kp=k+Nmr/2;

%确定碟形运算的对应单元下标

t=y(kp)*u;

%碟形运算的乘积项

y(kp)=y(k)-t;

%碟形运算的加法项

y(k)=y(k)+t;

end

u=u*WN;

%修改旋转因子,多乘一个基本DFT因子WN

end
end

⑽ FFT测量相位具体算法。在matlab中如何使用进行编程

% 下面的程序里Pn 存的就是基波相位 如果求的是谐波相位,稍微修改即可
x = load('data.dat'); %load 数据
fs=10000; % 采样频率,自己根据实际情况设置
N=length(x); % x 是待分析的数据
n=1:N;
%1-FFT
X=fft(x); % FFT
X=X(1:N/2);
Xabs=abs(X);
Xabs(1) = 0; %直流分量置0
[Amax,index]=max(Xabs);
if(Xabs(index-1) > Xabs(index+1))
a1 = Xabs(index-1) / Xabs(index);
r1 = 1/(1+a1);
k01 = index -1;
else
a1 = Xabs(index) / Xabs(index+1);
r1 = 1/(1+a1);
k01 = index;
end
Fn = (k01+r1-1)*fs/N; %基波频率
An = 2*pi*r1*Xabs(k01)/(N*sin(r1*pi)); %基波幅值
Pn = phase(X(k01))-pi*r1; %基波相位 单位弧度
Pn = mod(Pn(1),pi);

热点内容
电脑开机密码忘记了怎么破解 发布:2025-05-14 21:09:40 浏览:54
pythondict格式 发布:2025-05-14 21:09:38 浏览:884
落叶片拍摄脚本 发布:2025-05-14 20:40:49 浏览:798
安卓为什么不能用cmwap 发布:2025-05-14 20:40:43 浏览:656
jquery获取上传文件 发布:2025-05-14 20:27:57 浏览:43
云web服务器搭建 发布:2025-05-14 20:25:36 浏览:526
汽修汽配源码 发布:2025-05-14 20:08:53 浏览:742
蜜蜂编程官网 发布:2025-05-14 19:59:28 浏览:58
优酷怎么给视频加密 发布:2025-05-14 19:31:34 浏览:635
梦三国2副本脚本 发布:2025-05-14 19:29:58 浏览:860