gsp算法
‘壹’ 时间窗口法英文怎么写
时间窗口法
[词典] time window method;
[例句]GSP的引入是为了发现满足序列模式中的时间约束、滑动窗口的模式。GSP算法增加了时间约束、滑动窗口和分类法。
The introcing of GSP is to discover the patterns within the time constrains, sliding windows.
‘贰’ 手机的GSP定位系统是什么
全球定位系统(GPS)是本世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统 。其主要目的是为陆、海、空三大领域提供实时、 全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。 全球定位系统由三部分构成:(1)地面控制部分,由主控站(负责管理、协调整个地面控制系统的 工作)、地面天线(在主控站的控制下,向卫星注入寻电文)、监测站(数据自动收集中心)和通讯辅助系统(数据传输)组成;(2)空间部分,由24颗卫星组成,分布在6个道平面上;(3)用户装置部分, 主要由GPS接收机和卫星天线组成。 全球定位系统的主要特点:(1)全天候;(2) 全球覆盖;(3)三维定速定时高精度;(4)快速省时高效率:(5)应用广泛多功能。 全球定位系统的主要用途:(1)陆地应用,主要包括车辆导航、应急反应、大气物理观测、地球物理资源勘探、工程测量、变形监测、地壳运动监测、 市政规划控制等;(2)海洋应用,包括远洋船最佳航程航线测定、船只实时调度与导航、海洋救援、海洋探宝、水文地质测量以及海洋平台定位、海平面升降监测等;(3)航空航天应用,包括飞机导航、航空遥 感姿态控制、低轨卫星定轨、导弹制导、航空救援和载人航天器防护探测等。 GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。 经过20余年的实践证明,GPS系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。 GPS技术已经发展成为多领域、多模式、多用途、多机型的国际性高新技术产业。 GPS原理 24颗GPS卫星在离地面1万2千公里的高空上,以12小时的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在GPS观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。 事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。 由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策,使得民用GPS的定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站(差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分GPS,定位精度可提高到5米。 GPS前景 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。 随着冷战结束和全球经济的蓬勃发展,美国政府宣布2000年至2006期间,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到20米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。据有关专家预测,在美国,单单是汽车GPS导航系统,2000年后的市场将达到30亿美元,而在我国,汽车导航的市场也将达到50亿元人民币。可见,GPS技术市场的应用前景非常可观。
‘叁’ 机器学习一般常用的算法有哪些
机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。
一、线性回归
一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。
二、Logistic 回归
它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。
三、线性判别分析(LDA)
在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。
四、决策树
决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。
五、朴素贝叶斯
其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。
六、K近邻算法
K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。
七、Boosting 和 AdaBoost
首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。
八、学习向量量化算法(简称 LVQ)
学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求
‘肆’ 数据挖掘算法的算法分类
C4.5就是一个决策树算法,它是决策树(决策树也就是做决策的节点间像一棵树一样的组织方式,其实是一个倒树)核心算法ID3的改进算法,所以基本上了解了一半决策树构造方法就能构造它。决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。C4.5比ID3改进的地方时:
ID3选择属性用的是子树的信息增益(这里可以用很多方法来定义信息,ID3使用的是熵(entropy)(熵是一种不纯度度量准则)),也就是熵的变化值,而C4.5用的是信息增益率。也就是多了个率嘛。一般来说率就是用来取平衡用的,就像方差起的作用差不多,比如有两个跑步的人,一个起点是100m/s的人、其1s后为110m/s;另一个人起速是1m/s、其1s后为11m/s。如果仅算差值那么两个就是一样的了;但如果使用速度增加率(加速度)来衡量,2个人差距就很大了。在这里,其克服了用信息增益选择属性时偏向选择取值多的属性的不足。在树构造过程中进行剪枝,我在构造决策树的时候好讨厌那些挂着几个元素的节点。对于这种节点,干脆不考虑最好,不然很容易导致overfitting。对非离散数据都能处理,这个其实就是一个个式,看对于连续型的值在哪里分裂好。也就是把连续性的数据转化为离散的值进行处理。能够对不完整数据进行处理,这个重要也重要,其实也没那么重要,缺失数据采用一些方法补上去就是了。 (朴素贝叶斯NB)
NB认为各个特征是独立的,谁也不关谁的事。所以一个样本(特征值的集合,比如“数据结构”出现2次,“文件”出现1次),可以通过对其所有出现特征在给定类别的概率相乘。比如“数据结构”出现在类1的概率为0.5,“文件”出现在类1的概率为0.3,则可认为其属于类1的概率为0.5*0.5*0.3。 (支持向量机SVM)
SVM就是想找一个分类得最”好”的分类线/分类面(最近的一些两类样本到这个”线”的距离最远)。这个没具体实现过,上次听课,那位老师自称自己实现了SVM,敬佩其钻研精神。常用的工具包是LibSVM、SVMLight、MySVM。 (Mining frequent patterns without candidate generation)
这个也不太清楚。FP-growth算法(Frequent Pattern-growth)使用了一种紧缩的数据结构来存储查找频繁项集所需要的全部信息。采用算法:将提供频繁项集的数据库压缩到一棵FP-tree来保留项集关联信息,然后将压缩后的数据库分成一组条件数据库(一种特殊类型的投影数据库),每个条件数据库关联一个频繁项集。 K-Means是一种最经典也是使用最广泛的聚类方法,时至今日扔然有很多基于其的改进模型提出。K-Means的思想很简单,对于一个聚类任务(你需要指明聚成几个类,当然按照自然想法来说不应该需要指明类数,这个问题也是当前聚类任务的一个值得研究的课题),首先随机选择K个簇中心,然后反复计算下面的过程直到所有簇中心不改变(簇集合不改变)为止:步骤1:对于每个对象,计算其与每个簇中心的相似度,把其归入与其最相似的那个簇中。
步骤2:更新簇中心,新的簇中心通过计算所有属于该簇的对象的平均值得到。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 BIRCH也是一种聚类算法,其全称是Balanced Iterative Recing and Clustering using Hierarchies。BIRCH也是只是看了理论没具体实现过。是一个综合的层次聚类特征(Clustering Feature, CF)和聚类特征树(CF Tree)两个概念,用于概括聚类描述。聚类特征树概括了聚类的有用信息,并且占用空间较元数据集合小得多,可以存放在内存中,从而可以提高算法在大型数据集合上的聚类速度及可伸缩性。
BIRCH算法包括以下两个阶段:
1)扫描数据库,建立动态的一棵存放在内存的CF Tree。如果内存不够,则增大阈值,在原树基础上构造一棵较小的树。
2)对叶节点进一步利用一个全局性的聚类算法,改进聚类质量。
由于CF Tree的叶节点代表的聚类可能不是自然的聚类结果,原因是给定的阈值限制了簇的大小,并且数据的输入顺序也会影响到聚类结果。因此需要对叶节点进一步利用一个全局性的聚类算法,改进聚类质量。 AdaBoost做分类的一般知道,它是一种boosting方法。这个不能说是一种算法,应该是一种方法,因为它可以建立在任何一种分类算法上,可以是决策树,NB,SVM等。
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据,并将关键放在关键的训练数据上面。 GSP,全称为Generalized Sequential Pattern(广义序贯模式),是一种序列挖掘算法。对于序列挖掘没有仔细看过,应该是基于关联规则的吧!网上是这样说的:
GSP类似于Apriori算法,采用冗余候选模式的剪除策略和特殊的数据结构-----哈希树来实现候选模式的快速访存。
GSP算法描述:
1)扫描序列数据库,得到长度为1的序列模式L1,作为初始的种子集。
2)根据长度为i 的种子集Li ,通过连接操作和修剪操作生成长度为i+1的候选序列模式Ci+1;然后扫描序列数据库,计算每个候选序列模式的支持度,产生长度为i+1的序列模式Li+1,并将Li+1作为新的种子集。
3)重复第二步,直到没有新的序列模式或新的候选序列模式产生为止。
产生候选序列模式主要分两步:
连接阶段:如果去掉序列模式s1的第一个项目与去掉序列模式s2的最后一个项目所得到的序列相同,则可以将s1与s2进行连接,即将s2的最后一个项目添加到s1中。
修切阶段:若某候选序列模式的某个子序列不是序列模式,则此候选序列模式不可能是序列模式,将它从候选序列模式中删除。
候选序列模式的支持度计算:对于给定的候选序列模式集合C,扫描序列数据库,对于其中的每一条序列s,找出集合C中被s所包含的所有候选序列模式,并增加其支持度计数。 又是一个类似Apriori的序列挖掘。
其中经典十大算法为:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。
‘伍’ 用户行为分析系统建立所需步骤和所需软件
Web日志挖掘分析的方法
日志文件的格式及其包含的信息
①2006-10-17 00:00:00②202.200.44.43 ③218.77.130.24 80 ④GET ⑤/favicon.ico
⑥Mozilla/5.0+(Windows;+U;+Windows+NT+5.1;+zh-CN;+rv:1.8.0.3)+Gecko/20060426
+Firefox/1.5.0.3。
①访问时间;②用户IP地址;③访问的URL,端口;④请求方法(“GET”、“POST”等);
⑤访问模式;⑥agent,即用户使用的操作系统类型和浏览器软件。
一、日志的简单分析
1、注意那些被频繁访问的资源
2、注意那些你网站上不存在资源的请求。常见的扫描式攻击还包括传递恶意参数等:
3、观察搜索引擎蜘蛛的来访情况
4、观察访客行为
应敌之策:
1、封杀某个IP
2、封杀某个浏览器类型(Agent)
3、封杀某个来源(Referer)
4、防盗链
5、文件重命名
作用:
1.对访问时间进行统计,可以得到服务器在某些时间段的访问情况。
2.对IP进行统计,可以得到用户的分布情况。
3.对请求URL的统计,可以得到网站页面关注情况。
4.对错误请求的统计,可以更正有问题的页面。
二、Web挖掘
根据所挖掘的Web 数据的类型,可以将Web 数据挖掘分为以下三类:Web 内容挖掘(Web Content Mining)、Web 结构挖掘(Web Structure Mining)、Web 使用挖掘(Web Usage Mining)(也称为Web日志挖掘)。
①Web内容挖掘。Web内容挖掘是指从文档的内容中提取知识。Web内容挖掘又分为文本挖掘和多媒体挖掘。目前多媒体数据的挖掘研究还处于探索阶段,Web文本挖掘已经有了比较实用的功能。Web文本挖掘可以对Web上大量文档集合的内容进行总结、分类、聚类、关联分析,以及利用Web文档进行趋势预测等。Web文档中的标记,例如<Title>和<Heading>等蕴含了额外的信息,可以利用这些信息来加强Web文本挖掘的作用。
②Web结构挖掘。Web结构挖掘是从Web的组织结构和链接关系中推导知识。它不仅仅局限于文档之间的超链接结构,还包括文档内部的结构。文档中的URL目录路径的结构等。Web结构挖掘能够利用网页间的超链接信息对搜索引擎的检索结果进行相关度排序,寻找个人主页和相似网页,提高Web搜索蜘蛛在网上的爬行效率,沿着超链接优先爬行。Web结构挖掘还可以用于对Web页进行分类、预测用户的Web链接使用及Web链接属性的可视化。对各个商业搜索引擎索引用的页数量进行统计分析等。
③Web使用记录挖掘。Web使用记录挖掘是指从Web的使用记录中提取感兴趣的模式,目前Web使用记录挖掘方面的研究较多,WWW中的每个服务器都保留了访问日志,记录了关于用户访问和交互的信息,可以通过分析和研究Web日志记录中的规律,来识别网站的潜在用户;可以用基于扩展有向树模型来识别用户浏览序列模式,从而进行Web日志挖掘;可以根据用户访问的Web记录挖掘用户的兴趣关联规则,存放在兴趣关联知识库中,作为对用户行为进行预测的依据,从而为用户预取一些Web页面,加快用户获取页面的速度,分析这些数据还可以帮助理解用户的行为,从而改进站点的结构,或为用户提供个性化的服务。
通过对Web服务器日志中大量的用户访问记录深入分析,发现用户的访问模式和兴趣爱好等有趣、新颖、潜在有用的以及可理解的未知信息和知识,用于分析站点的使用情况,从而辅助管理和支持决策。当前,web日志挖掘主要被用于个性化服务与定制、改进系统性能和结构、站点修改、商业智能以及web特征描述等诸多领域。
三、Web日志挖掘的方法
(一)首先,进行数据的预处理。
从学习者的访问日志中得到的原始日志记录并不适于挖掘,必须进行适当的处理才能进行挖掘。因此,需要通过日志清理,去除无用的记录;对于某些记录,我们还需要通过站点结构信息,把URL路径补充成完整的访问序列;然后划分学习者,并把学习者的会话划分成多个事务。
(二)其次,进行模式发现
一旦学习者会话和事务识别完成,就可以采用下面的技术进行模式发现。模式发现, 是对预处理后的数据用数据挖掘算法来分析数据。分有统计、分类、聚类、关等多种方法。
① 路径分析。它可以被用于判定在一个站点中最频繁访问的路径,还有一些其它的有关路径的信息通过路径分析可以得出。路径分析可以用来确定网站上的频繁访问路径, 从而调整和优化网站结构, 使得用户访问所需网页更加简单快捷, 还可以根据用户典型的浏览模式用于智能推荐和有针对性的电子商务活动。例如:70% 的学习者在访问/ E-Business /M2时,是从/EB开始,经过/ E-Business /SimpleDescription,/ E-Business /M1;65%的学习者在浏览4个或更少的页面内容后就离开了。利用这些信息就可以改进站点的设计结构。
② 关联规则。 使用关联规则发现方法,可以从Web的访问事务中找到的相关性。关联规则是寻找在同一个事件中出现的不同项的相关性,用数学模型来描述关联规则发现的问题:x=>y的蕴含式,其中x,y为属性——值对集(或称为项目集),且X∩Y空集。在数据库中若S%的包含属性——值对集X的事务也包含属性——值集Y,则关联规则X=>Y的置信度为C%。
③ 序列模式。在时间戳有序的事务集中,序列模式的发现就是指那些如“一些项跟随另一个项”这样的内部事务模式。它能发现数据库中如“在某一段时间内,客户购买商品A,接着会购买商品B,尔后又购买商品C,即序列A→B→C出现的频率高”之类的信息。序列模式描述的问题是:在给定的交易序列数据库中,每个序列按照交易的时间排列的一组交易集,挖掘序列函数作用是返回该数据库中高频率出现有序列。
④ 分类分析。发现分类规则可以给出识别一个特殊群体的公共属性的描述,这种描述可以用于分类学习者。分类包括的挖掘技术将找出定义了一个项或事件是否属于数据中某特定子集或类的规则。该类技术是最广泛应用于各类业务问题的一类挖掘技术。分类算法最知名的是决策树方法,此外还有神经元网络、Bayesian分类等。例如:在/ E-Business /M4学习过的学习者中有40%是20左右的女大学生。
⑤聚类分析。可以从Web访问信息数据中聚类出具有相似特性的学习者。在Web事务日志中,聚类学习者信息或数据项能够便于开发和设计未来的教学模式和学习群体。聚类是将数据集划分为多个类,使得在同一类中的数据之间有较高的相似度,而在不同类中的数据差别尽可能大。在聚类技术中,没有预先定义好的类别和训练样本存在,所有记录都根据彼此相似程度来加以归类。主要算法有k—means、DBSCAN等。聚类分析是把具有相似特征的用户或数据项归类,在网站管理中通过聚类具有相似浏览行为的用户。基于模糊理论的Web页面聚类算法与客户群体聚类算法的模糊聚类定义相同,客户访问情况可用URL(Uj)表示。有Suj={(Ci,fSuj(Ci))|Ci∈C},其中fSuj(Ci)→[0,1]是客户Ci和URL(Uj)间的关联度:式中m为客户的数量,hits(Ci)表示客户Ci访问URL(Uj)的次数。利用Suj和模糊理论中的相似度度量Sfij定义建立模糊相似矩阵,再根据相似类[Xi]R的定义构造相似类,合并相似类中的公共元素得到的等价类即为相关Web页面。
⑥统计。统计方法是从Web 站点中抽取知识的最常用方法, 它通过分析会话文件, 对浏览时间、浏览路径等进行频度、平均值等统计分析。虽然缺乏深度, 但仍可用于改进网站结构, 增强系统安全性, 提高网站访问的效率等。
⑦协同过滤。协同过滤技术采用最近邻技术,利用客户的历史、喜好信息计算用户之间的距离,目标客户对特点商品的喜好程度由最近邻居对商品的评价的加权平均值来计算。
(三)最后,进行模式分析。
模式分析。基于以上的所有过程,对原始数据进行进一步分析,找出用户的浏览模式规律,即用户的兴趣爱好及习惯,并使其可视化,为网页的规划及网站建设的决策提供具体理论依据。其主要方法有:采用SQL查询语句进行分析;将数据导入多维数据立方体中,用OLAP工具进行分析并给出可视化的结果输出。(分类模式挖掘、聚类模式挖掘、时间序列模式挖掘、序列模式挖掘、关联规则等)
四、关联规则
(一)关联规则
顾名思义,关联规则(association rule)挖掘技术用于于发现数据库中属性之间的有趣联系。一般使用支持度(support)和置信度(confidence)两个参数来描述关联规则的属性。
1.支持度。规则 在数据库 中的支持度 是交易集中同时包含 , 的事务数与所有事务数之比,记为 。支持度描述了 , 这两个项集在所有事务中同时出现的概率。
2.置信度。规则 在事务集中的置信度(confidence)是指同时包含 , 的事务数与包含 的事务数之比,它用来衡量关联规则的可信程度。记为
规则 A Þ C:支持度= support({A}È{C}) = 50%,置信度= support({A}È{C})/support({A}) = 66.6%
(二)Apriori方法简介
Apriori算法最先是由Agrawal等人于1993年提出的,它的基本思想是:首先找出所有具有超出最小支持度的支持度项集,用频繁的(k—1)-项集生成候选的频繁k-项集;其次利用大项集产生所需的规则;任何频繁项集的所有子集一定是频繁项集是其核心。
Apriori算法需要两个步骤:第一个是生成条目集;第二个是使用生成的条目集创建一组关联规则。当我们把最小置信度设为85%,通过关联规则的形成以及对应置信度的计算,我们可以从中得到以下有用的信息:
1.置信度大于最小置信度时:我们可以这样认为,用户群体在浏览相关网页时,所呈列的链接之间是有很大关联的,他们是用户群的共同爱好,通过网页布局的调整,从某种意义上,可以带来更高的点击率及潜在客户;
2.置信度小于最小置信度时:我们可以这样认为,用户群体对所呈列链接之间没太多的关联,亦或关联规则中的链接在争夺用户。
五、网站中Web日志挖掘内容
(1)网站的概要统计。网站的概要统计包括分析覆盖的时间、总的页面数、访问数、会话数、惟一访问者、以及平均访问、最高访问、上周访问、昨日访问等结果集。
(2)内容访问分析。内容访问分析包括最多及最少被访问的页面、最多访问路径、最多访问的新闻、最高访问的时间等。
(3)客户信息分析。客户信息分析包括访问者的来源省份统计、访问者使用的浏览器及操作系统分析、访问来自的页面或者网站、来自的IP地址以及访问者使用的搜索引擎。
(4)访问者活动周期行为分析。访问者活动周期行为分析包括一周7天的访问行为、一天24小时的访问行为、每周的最多的访问日、每天的最多访问时段等。
(5)主要访问错误分析。主要访问错误分析包括服务端错误、页面找不到错误等。
(6)网站栏目分析。网站栏目分析包括定制的频道和栏目设定,统计出各个栏目的访问情况,并进行分析。
(7)商务网站扩展分析。商务网站扩展分析是专门针对专题或多媒体文件或下载等内容的访问分析。
(8)有4个方向可以选择:①对用户点击行为的追踪,click stream研究;②对网页之间的关联规则的研究;③对网站中各个频道的浏览模式的研究;④根据用户浏览行为,对用户进行聚类,细分研究;(如果你能够结合现有的互联网产品和应用提出一些自己的建议和意见,那就更有价值了。)
(9)发现用户访问模式。通过分析和探究Web日志记录中的规律,可以识别电子商务的潜在客户,提高对最终用户的服务质量,并改进Web服务器系统的性能。
(10)反竞争情报活动。反竞争情报是企业竞争情报活动的重要组成部分。
六、相关软件及算法
(一)相关软件:
1.数据挖掘的专用软件wake。
2.用OLAP工具
3.已经有部分公司开发出了商用的网站用户访问分析系统,如WebTrends公司的CommerceTrends 3.0,它能够让电子商务网站更好地理解其网站访问者的行为,帮助网站采取一些行动来将这些访问者变为顾客。CommerceTrends主要由3部分组成:Report Generation Server、Campain Analyzer和Webhouse Builder。
4.Accrue公司的Accrue Insight,它是一个综合性的Web分析工具,它能够对网站的运行状况有个深入、细致和准确的分析,通过分析顾客的行为模式,帮助网站采取措施来提高顾客对于网站的忠诚度,从而建立长期的顾客关系。
(二)相关算法:
1.运用各种算法进行数据挖掘:GSP算法, Prefixspana算法,
2.关联规则分析:Apriori、FP-growth算法等。
3.Apriori算法及其变种算法
4.基于数据库投影的序列模式生长技术(database project based sequential pattern growth)
5. Wake算法、MLC++等
6. PageRank算法和HITS算法利用Web页面间的超链接信息计算“权威型”(Authorities)网页和“目录型”(Hubs)网页的权值。Web结构挖掘通常需要整个Web的全局数据,因此在个性化搜索引擎或主题搜索引擎研究领域得到了广泛的应用。
7.参考检索引擎的挖掘算法,比如Apache的lucene等。
‘陆’ 关于GSP and VCG 算法
[编辑本段]GSP算法描述
1)扫描序列数据库,得到长度为1的序列模式L1,作为初始的种子集 2)根据长度为i 的种子集Li ,通过连接操作和修剪操作生成长度为i+1的候选序列模式Ci+1;然后扫描序列数据库,计算每个候选序列模式的支持度,产生长度为i+1的序列模式Li+1,并将Li+1作为新的种子集 3)重复第二步,直到没有新的序列模式或新的候选序列模式产生为止 产生候选序列模式主要分两步: 连接阶段:如果去掉序列模式s1的第一个项目与去掉序列模式s2的最后一个项目所得到的序列相同,则可以将s1与s2进行连接,即将s2的最后一个项目添加到s1中 修切阶段:若某候选序列模式的某个子序列不是序列模式,则此候选序列模式不可能是序列模式,将它从候选序列模式中删除 候选序列模式的支持度计算:对于给定的候选序列模式集合C,扫描序列数据库,对于其中的每一条序列s,找出集合C中被s所包含的所有候选序列模式,并增加其支持度计数。
GSP算法存在的主要问题
如果序列数据库的规模比较大,则有可能会产生大量的候选序列模式 需要对序列数据库进行循环扫描 对于序列模式的长度比较长的情况,由于其对应的短的序列模式规模太大,本算法很难处理
只知道一种。。。希望能帮上忙。。。。
‘柒’ 汽车音响gsp是什么意思
数字音频处理器。
数字音频处理器是一种数字化的音频信号处理设备,它先将多通道输入的模拟信号转化为数字信号,然后对数字信号进行一系列可调谐的算法处理,满足改善音质、矩阵混音、消噪、消回音、消反馈等应用需求。
一般的数字处理器,内部的架构普遍是由输入部分和输出部分组成,其中属于音频处理部分的功能一般如下:输入部分一般会包括,输入增益控制(INPUTGAIN),输入均衡(若干段参数均衡)调节(INPUTEQ),输入端延时调节(INPUTDELAY),输入极性(也就是大家说的相位)转换(inputpolarity)等功能。
‘捌’ 序列模式的序列挖掘算法步骤
1) 排序阶段。数据库D以客户号为主键交易时间为次键进行排序。这个阶段将原来的事务数据库转换成由客户序列组成的数据库。
2) 频繁项集阶段。找出所有频繁项集组成的集合L。也同步得到所有频繁1-序列组成的集合。
3) 转换阶段。在找序列模式的过程中要不断地进行检测一个给定的频繁集是否包含于一个客户序列中。
4) 序列阶段利用已知的频繁集的集合来找到所需的序列。类似于关联的Apriori算法。 AprioriAll算法与Apriori算法的执行过程是一样的,不同点在于候选集的产生,具体候选者的产生如下:
候选集生成的时候需要区分最后两个元素的前后,因此就有<p.item1,p.item2,…,p.,q.>和<p.item1,p.item2,…, q.,p.>两个元素。 AprioriSome算法可以看做是AprioriAll算法的改进,具体可以分为两个阶段:
(1)Forward阶段:找出置顶长度的所有大序列,在产生Li后,根据判断函数j=next(last),此时last=i,j>i,下个阶段不产生i+1的候选项,而是产生j的候选项,如果j=i+1,那么就根据Li生成Cj,如果j>i+1,那么Cj就有Cj-1产生。然后扫描数据库计算Cj的支持度。
(2)Backward阶段:根据Lj中的大项集,去掉Ci(i<j)中出现的Lj项,然后计算Ci中的支持度,判断那些在Forward阶段被漏判的项集。
AprioriAll算法和AprioriSome算法的比较:
(1)AprioriAll用去计算出所有的候选Ck,而AprioriSome会直接用去计算所有的候选,因为包含,所以AprioriSome会产生比较多的候选。
(2)虽然AprioriSome跳跃式计算候选,但因为它所产生的候选比较多,可能在回溯阶段前就占满内存。
(3)如果内存占满了,AprioriSome就会被迫去计算最后一组的候选。
(4)对于较低的支持度,有较长的大序列,AprioriSome算法要好些。 GSP(Generalized Sequential Patterns)算法,类似于Apriori算法大体分为候选集产生、候选集计数以及扩展分类三个阶段。与AprioriAll算法相比,GSP算法统计较少的候选集,并且在数据转换过程中不需要事先计算频繁集。
GSP的计算步骤与Apriori类似,但是主要不同在于产生候选序列模式,GSP产生候选序列模式可以分成如下两个步骤:
(1)连接阶段:如果去掉序列模式S1的第一个项目与去掉序列模式S2的最后一个项目所得到的序列相同,则可以将S1和S2进行连接,即将S2的最后一个项目添加到S1中去。
(2)剪枝阶段:若某候选序列模式的某个子集不是序列模式,则此候选序列模式不可能是序列模式,将它从候选序列模式中删除。