当前位置:首页 » 操作系统 » 数字图像处理的算法

数字图像处理的算法

发布时间: 2022-11-12 01:31:34

A. 数字图像处理的基本步骤请问数字图像后处理是什么请详细解答

咨询记录 · 回答于2021-10-14

B. 数字图像处理的主要方法

数字图像处理的工具可分为三大类:

第一类包括各种正交变换和图像滤波等方法,其共同点是将图像变换到其它域(如频域)中进行处理(如滤波)后,再变换到原来的空间(域)中。

第二类方法是直接在空间域中处理图像,它包括各种统计方法、微分方法及其它数学方法。

第三类是数学形态学运算,它不同于常用的频域和空域的方法,是建立在积分几何和随机集合论的基础上的运算。

由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。

(2)数字图像处理的算法扩展阅读

1、数字图像处理包括内容:

图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。

2、数字图像处理系统包括部分:

输入(采集);存储;输出(显示);通信;图像处理与分析。

3、应用

图像是人类获取和交换信息的主要来源,因 此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。

主要应用于航天和航空、生物医学工程、通信 工程、工业和工程、军事公安、文化艺术、机器人视觉、视频和多媒体系统、科学可视化、电子商务等方面。

C. 数字图像处理clean算法的MATLAB代码

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 
目前比较经典的图像去噪算法主要有以下三种: 
均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 
中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 
实验一:均值滤波对高斯噪声的效果 
I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像

D. 数字图像处理:原理与算法的内容简介

《数字图像处理:原理与算法》针对图像处理和算法两方面为“零知识”起点的读者。前12章适用于本科教学,主要内容包括概论、图像数字化、图像处理基础、图像几何变换、图像时频变换、图像增强、图像恢复、图像分割、图像特征与分析、图像形态学、模式识别和图像压缩。最后3章包括分形图像压缩、图像加密和图像水印,可为本科高年级和研究生教学之用。
《数字图像处理:原理与算法》内容新颖并注重培养创新能力,介绍算法深入浅出并注重实现,其主要算法都在配套的《数字图像处理-VisualC#.NET编程与实验》一书中实现了程序。若结合《数字图像处理一VisualC#.NET编程与实验》,各层次读者可各取所需地学习有关章节。《数字图像处理:原理与算法》的所有算法和公式都经过推导和证明,并经过程序验证。
《数字图像处理:原理与算法》适用于计算机、通信和电子信息、自动控制、生物医学工程等各理工科相关专业的本科和研究生教学和工程技术人员应用参考。

E. 数字图像处理——图像插值

网上有很多介绍插值算法的,但感觉收获都不大

介绍三种图像插值算法:最近邻内插,双线性内插,双三次内插(双立方内插)

三次插值即用三阶多项式拟合原函数(也应该有其他用途)。假设三次拟合函数为

在matlab中,图像被定义为一个三维向量,若不考虑图像的通道数,可以将图像看作一个二维矩阵处理。matlab图像矩阵中坐标值映射到二维坐标系中,每一个像素块对应的是一个点,但实际的像素块是有一定尺寸的。

在进行双线性插值和双三次插值时,需要用坐标值拟合函数,为了简化计算,总是选取 作为局部坐标系原点,其中 为待插值坐标。

当出现这些情况时,补充这些像素的灰度值为图像内最相邻像素块的灰度值。

进行坐标变换后,选取与内插点 欧式距离最近的像素值进行插值。在程序中,使用将 按照四舍五入的舍入方式选取最近邻的像素块。

双线性内插是线性内插的二维实现,在x维度先进行线性插值,再由得到的值对y维度进行插值。在局部坐标系中,选取 相邻的四个像素进行双线性内插。由在数学原理中的推导可知

双三次内插是三次插值的二维实现。选取与 相邻的16个像素进行双三次内插,局部坐标系中x与y坐标范围均为 。由数学原理中的推到可知

最近邻插值法的优点是计算量很小,运算速度较快。但它仅使用离待测采样点最近的像素的灰度值作为该采样点的灰度值,而没考虑其他相邻像素点的影响,因而重新采样后灰度值有明显的不连续性,会产生明显的马赛克和锯齿现象。

双线性插值法效果要好于最近邻插值,计算量较大。缩放后图像质量高,基本克服了最近邻插值灰度值不连续的特点,因为它考虑了待测采样点周围四个直接邻点对该采样点的相关性影响。但是,此方法未考虑到各邻点间灰度值变化率的影响, 具有低通滤波器的性质, 从而导致缩放后图像的高频分量受到损失, 图像边缘在一定程度上变得较为模糊,丢失了一些细节信息。

双立方插值计算量最大,运算速度慢。双立方插值用三阶函数逼近,不仅考虑到周围四个直接相邻像素点灰度值的影响,还考虑到它们灰度值变化率的影响,能够产生比双线性插值更为平滑的边缘,计算精度很高,处理后的图像细节损失最少,效果最佳。

F. 什么是计算机图像处理,数字图像处理技术主要包括哪些内容。(三步)

图像处理就是将图像转化为一个数字矩阵存放在计算机中,并采用一定的算法对其进行处理。图像处理的基础是数学,最主要任务就是各种算法的设计和实现。目前,图像处理技术已经在很多方面有着广泛的应用。如通讯技术、遥感技术、生物医学、工业生产、计算机科学等等。根据应用领域的不同要求,可以将图像处理技术划分为许多分支,其中比较重要的分支有:①图像数字化:通过采样和量化将模拟图像变成便于计算机处理的数字形式。③图像的增强和复原:主要目的是增强图像中的有用信息,削弱干扰和噪声,使图像清晰或将转化为更适合分析的形式。③图像编码:在满足一定的保真条件下,对图像进行编码处理,达到压缩图像信息量,简化图像的目的。以便于存储和传输。④图像重建:主要是利用采集的数据来重建出图像。图像重建的主要算法有代数法、傅立叶反投影法和使用广泛的卷积反投影法等。⑤模式识别:识别是图像处理的主要目的。如:指纹鉴别、人脸识别等是模式识别的内容。当今的模式识别方法通常有三种:统计识别法、句法结构模式识别法和模糊识别法。⑥计算机图形学:用计算机将实际上不存在的,只是概念上所表示的物体进行图像处理和显现出来。

G. (急)数字图像处理主要包含哪八个方面的内容

主要内容有:图像增强、图像编码、图像复原、图像分割、图像分类、图像重建、图像信息的输出和显示。

图像增强用于改善图像视觉质量;图像复原是尽可能地恢复图像本来面目;图像编码是在保证图像质量的前提下压缩数据,使图像便于存储和传输;图像分割就是把图像按其灰度或集合特性分割成区域的过程。

图像分类是在将图像经过某些预处理(压缩、增强和复原)后,再将图像中有用物体的特征进行分割,特征提取,进而进行分类;图像重建是指从数据到图像的。处理,即输入的是某种数据,而经过处理后得到的结果是图像。

(7)数字图像处理的算法扩展阅读

发展概况

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。

他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。

随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。

在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。

H. 数字图像处理的基本算法及要解决的主要问题

图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。

图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。

传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
目录
[隐藏]

* 1 解决方案
* 2 常用的信号处理技术
o 2.1 从一维信号处理扩展来的技术和概念
o 2.2 专用于二维(或更高维)的技术和概念
* 3 典型问题
* 4 应用
* 5 相关相近领域
* 6 参见

[编辑] 解决方案

几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如 全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。

从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。

[编辑] 常用的信号处理技术

大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。

图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。

[编辑] 从一维信号处理扩展来的技术和概念

* 分辨率(Image resolution|Resolution)
* 动态范围(Dynamic range)
* 带宽(Bandwidth)
* 滤波器设计(Filter (signal processing)|Filtering)
* 微分算子(Differential operators)
* 边缘检测(Edge detection)
* Domain molation
* 降噪(Noise rection)

[编辑] 专用于二维(或更高维)的技术和概念

* 连通性(Connectedness|Connectivity)
* 旋转不变性(Rotational invariance)

[编辑] 典型问题

* 几何变换(geometric transformations):包括放大、缩小、旋转等。
* 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。
* 图像合成(image composite):多个图像的加、减、组合、拼接。
* 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。
* 边缘检测(edge detection):进行边缘或者其他局部特征提取。
* 分割(image segmentation):依据不同标准,把二维图像分割成不同区域。
* 图像制作(image editing):和计算机图形学有一定交叉。
* 图像配准(image registration):比较或集成不同条件下获取的图像。
* 图像增强(image enhancement):
* 图像数字水印(image watermarking):研究图像域的数据隐藏、加密、或认证。
* 图像压缩(image compression):研究图像压缩。

[编辑] 应用

* 摄影及印刷 (Photography and printing)
* 卫星图像处理 (Satellite image processing)
* 医学图像处理 (Medical image processing)
* 面孔识别, 特征识别 (Face detection, feature detection, face identification)
* 显微图像处理 (Microscope image processing)
* 汽车障碍识别 (Car barrier detection)

[编辑] 相关相近领域

* 分类(Classification)
* 特征提取(Feature extraction)
* 模式识别(Pattern recognition)
* 投影(Projection)
* 多尺度信号分析(Multi-scale signal analysis)
* 离散余弦变换(The Discrete Cosine Transform)

I. 数字图像处理 膨胀和腐蚀算法的实现

腐蚀的算法:
用3x3的结构元素,扫描图像的每一个像素
用结构元素与其覆盖的二值图像做“与”操作
如果都为1,结果图像的该像素为1。否则为0。
结果:使二值图像减小一圈
定义:E = B  S = { x,y | SxyB}

膨胀的算法:
用3x3的结构元素,扫描图像的每一个像素
用结构元素与其覆盖的二值图像做“与”操作
如果都为0,结果图像的该像素为0。否则为1
结果:使二值图像扩大一圈
定义:E = B  S = { x,y | Sxy∩B ≠Ф}

J. 数字图像处理的基本概念

(一)数字图像

数字图像,又称数字化图像,是一种以二维数组(矩阵)形式表示的图像。该数组由对连续变化的空间图像作等间距抽样所产生的抽样点——像元(像素)组成,抽样点的间距取决于图像的分辨率或服从有关的抽样定律抽样点(像元)的量值,通常为抽样区间内连续变化之量物的均值化量值,一般称作亮度值或灰度值,它们的最大、最小值区间代表该数字图像的动态范围。数字图像的物理含义取决于抽样对象的性质。对于遥感数字图像,就是相应成像区域内地物电磁辐射强度的二维分布。

在数字图像中,像元是最基本的构成单元。每一个像元的位置可由行、列(x,y)坐标确定;亮度值(z)通常以0(黑)到255(白)为取值范围。因此,任何一幅数字图像都可以通过X、Y、Z的三维坐标系表示出。例如,陆地卫星的MSS图像(图4-8),便可看作x=2340(行),y=3240(列),z=0-255的三维坐标系。TM、HRV等亦然,只是行、列数不同而已。

图4-8 陆地卫星MSS数字图像的构成原理

数字图像可以有各种不同的来源:大多数卫星遥感,如MSS、TM、HRV、AVERR等等,地面景像的遥感信息都直接记录在数字磁带上,有关的接收系统(遥感卫星地面站、气象卫星接收站等)均可提供相应的计算机兼容数字磁带(CCT)及其记录格式。应用人员只要按记录格式将CCT数据输入计算机图像处理系统,即可获得数字图像,并进行各种图像处理;对于胶片影像,则可通过透射密度计、飞点扫描器、鼓形扫描器及摄像扫描器等,将影像密度转换为数值,进而形成数字图像;对于非遥感的地学图件,如地形图、地质图、航磁图、重力图、化探元素异常图等等,也可通过数字化仪,转换为数字图像。同一地区不同来源的数字图像都可精确配准,并作复合处理。

与光学图像相比,数字图像量化等级高(256级)、失真度小、不同图像的配准精度高、传输及储存方便,尤为重要的是可由计算机进行各种灵活、可靠、有效的处理,使遥感图像获得更好的判读、分析等应用效果。

(二)数字图像处理

数字图像以不同亮度值像元的行、列矩阵组织数据,其最基本的特点就是像元的空间坐标和亮度取值都被离散化了,即只能取有限的、确定的值。所以,离散和有限是数字图像最基本的数学特征。所谓数字图像处理,就是依据数字图像的这一数字特征,构造各种数字模型和相应的算法,由计算机进行运算(矩阵变换)处理,进而获得更加有利于实际应用的输出图像及有关数据和资料。故数字图像处理通常也称为计算机增强处理。

数字图像处理在算法上基本可归为两类:一类为点处理,即施行图像变换运算时只输入图像空间上一个像元点的值,逐点处理,直到所有点都处理完毕,如反差增强、比值增强等;另一类为邻域处理,即为了产生一个新像元的输出,需要输入与该像元相邻的若干个像元的数值。这类算法一般用作空间特征的处理,如各种滤波处理。点处理和邻域处理有各自不同的适应面,在设计算法时,需针对不同的处理对象和处理目标加以选择。

遥感数字图像处理,数据量一般很大,往往要同时针对一组数字图像(多波段、多时相等)作多种处理,因此,需要依据遥感图像所具有的波谱特征、空间特征和时间特性,按照不同的对象和要求构造各种不同的数学模型,设计出不同的算法,不仅处理方法非常丰富,而且形成了自身的特色,已发展为一门专门的技术。根据处理目的和功能的不同,目前遥感数字图像处理主要包括以下四方面的内容。

1.图像恢复处理:旨在改正或补偿成像过程中的辐射失真、几何畸变、各种噪声以及高频信息的损失等。属预处理范畴,一般包括辐射校正、几何校正、数字放大、数字镶嵌等。

2.图像增强处理:对经过恢复处理的数据通过某种数学变换,扩大影像间的灰度差异,以突出目标信息或改善图像的视觉效果,提高可解译性。主要包括有反差增强、彩色增强、运算增强、滤波增强、变换增强等方法。

3.图像复合处理:对同一地区各种不同来源的数字图像按统一的地理坐标作空间配准叠合,以进行不同信息源之间的对比或综合分析。通常也称多元信息复合,既包括遥感与遥感信息的复合,也包括遥感与非遥感地学信息的复合。

4.图像分类处理:对多重遥感数据,根据其像元在多维波谱空间的特征(亮度值向量),按一定的统计决策标准,由计算机划分和识别出不同的波谱集群类型,据以实现地质体的自动识别分类。有监督和非监督两种分类方法。

遥感数字图像处理的过程和各部分内容的关系如图4-9。本节将从遥感地质应用的角度简要介绍其中几种常用的处理方法,有一些方法(如复合处理)将在有关的应用章节讨论。

数字图像处理既可在专用的图像处理系统上进行,也可自编程序在通用计算机或微机上进行;处理结果既可打印成数符图(图4-10),也可以在彩色显示器上作彩色显示;既可以输出单波段的黑白图像,也可以输出多波段合成或各种运算处理结果的彩色图像(参见图版③);既可以内拍或扫描到胶片上成像,也可以外摄翻拍成像;既可以直接形成成果图件,给出各种统计数据,也可以再记录到CCT上转存……。总之,十分灵活、方便,比光学图像处理有更强的适应性,越来越得到广泛的应用。

图4-9 遥感图像数字处理基本流程

(三)数字图像处理系统

遥感数字图像处理不仅数据量大,而且数据传输频繁,专业性强,因此,一般都要在专门的处理设备上进行。用以进行数字图像处理的专门计算机设备及其功能软件即称之为数字图像处理系统,通通由硬件系统和软件系统两大部分组成。

其中,硬件系统,按目前国内外的发展趋势可分为大型的专用机系统(如目前国内使用的I2S公司的S600系统)和微机图像处理系统两类。一般情况下,它们都包括以下一些基本的部件(图4-11):

1.主机:进行各种运算、预处理、统计分析和协调各种外围设备运转的控制中心,是最基本的设备。一般为速度快、内存大的计算机,如VAX-11、VAX-3600等。随着微机的内存日渐扩大、运算速度越来越快,已可以用微机取代,如PC386、PC486及各种工作站等。

图4-10 杭州三潭印月TM5波段数符图

图4-11 数字图像处理系统基本结构示意图

2.磁带机和磁盘机:连结数字磁带(CCT)和主机的数据传输装置,既可以输入CCT数据,也可以将中间处理和最终处理的结果再转存记录到CCT上;对于微机系统,图像数据的传输一般用软磁盘,但对大数据量的卫星CCT则需用具微机接口的磁带机(如F880);

3.图像处理机:数字图像处理专用的核心设备,既具体承担各种图像处理功能,如图像复原、几何校正、增强和分类等各种变换处理等等,也是主机和各种输出输入设备的纽带。就前者而言,它实际上是各种图像处理软件的硬件化。目前国内使用较多的M75图像处理机即是,它可以快速处理显示512×512或1024×1024的图像;对于微机系统,则可以用图像处理板(MVP-AT板)代替。

4.输出设备:用作处理结果的监视分析(彩色监视器或彩显)及记录、成图(包括宽行打印机、彩色喷墨打印机、绘图仪、胶片记录扫描仪等等)。

对于功能齐全的系统,除上述外,通常还包括有胶片影像的摄像或扫描数字化仪、图形数字化仪等输入设备。

软件系统系指与硬件系统配套的用于图像处理及操作实施的各种软件。一般包括系统软件和应用软件两部分。前者又包括操作系统和编译系统,主要用于输入指令、参数及与计算机“对话”;后者则是以某种语言编制的应用软件,存于硬件系统的应用程序库中,用户可按研究任务采用对话方式或菜单方式,发出相应的指令使用这些程序,由主机作运算处理,获得所需的结果。不同专业往往设计有各自的应用软件系统,故国际上已涌现出各种各样的软件系统,如JPL的VICAR系统、LARSYS系统等等;目前微机上则普遍采用C语言编程,也已开发了一系列的微机图像处理的应用软件。

热点内容
怎么设置电脑开机密码和屏幕锁 发布:2025-05-16 03:07:05 浏览:55
华为锁屏密码忘记了怎么解锁 发布:2025-05-16 03:06:26 浏览:474
安卓文字为什么没有苹果舒服 发布:2025-05-16 03:01:26 浏览:357
phpnow解压版 发布:2025-05-16 02:52:49 浏览:811
dmporacle数据库 发布:2025-05-16 02:44:31 浏览:831
云主机上传 发布:2025-05-16 02:44:30 浏览:82
鼠标如何编程 发布:2025-05-16 02:29:09 浏览:816
安卓70能用什么软件 发布:2025-05-16 01:45:09 浏览:481
编程发展史 发布:2025-05-16 01:38:52 浏览:529
android图片气泡 发布:2025-05-16 01:38:40 浏览:887