当前位置:首页 » 操作系统 » 最优解贪心算法

最优解贪心算法

发布时间: 2022-11-17 05:16:32

Ⅰ 贪心算法得出来的一定是最优解吗

一般是,但也有不是的情况,要得到最优最好用搜索或动归

Ⅱ 怎样应用贪心算法求得最优解

动态规划要求。。具有最优子结构,记f[i]最优时,f[i - 1]的解也最优。。。最终可以得到最优解

贪心算法,一般只能得到近优解或者局部最优解。。

Ⅲ 贪心算法几个经典例子

[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。

要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

贪心算法是很常见的算法之一,这是由于它简单易行,构造贪心策略简单。但是,它需要证明后才能真正运用到题目的算法中。一般来说,贪心算法的证明围绕着整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。

对于本例题中的3种贪心策略,都无法成立,即无法被证明。

Ⅳ 贪心算法及其应用

求解一个问题时有多个步骤,每个步骤都选择当下最优的那个解,而不用考虑整体的最优解。通常,当我们面对的问题拥有以下特点的时候,就可以考虑使用贪心算法。

比如,我们举个例子,仓库里面总共有五种豆子,其对应的重量和总价值如下,现在我们有一个可以装100KG重量的袋子,怎么装才能使得袋子中的豆子价值最大?

我们首先看看这个问题是否符合贪心算法的使用场景?限制值是袋子100KG,期望值是袋子里面的价值最高。所以是符合的。那么我们尝试着应用下贪心算法的方法,每一个步骤都寻找当下的最优解,怎么做呢?

把仓库里面的每种豆子价值除以重量,得出每种豆子的单价,那么当下的最优解,肯定是尽可能最多地装单价最贵的,也就是先把20KG的黄豆都装上,然后再把30KG的绿豆都装上,再装50KG的红豆,那么此时正好装满袋子,总价值将是270元,这就是通过贪心算法求解的答案。

贪心算法的应用在这个问题上的求解是否是最优解需要一个很复杂的数学论证,我们不用那样,只要心里举几个例子,验证下是否比它更好即可,如果举不出例子,那么就可以认为这就是最优解了。

虽然贪心算法虽然在大部分实践场景中都能得到最优解,但是并不能保证一定是最优解。比如在如下的有向带权图中寻找从S到T的最短路径,那么答案肯定就是S->A->E->T,总代价为1+4+4=9;

然而,实际上的最短路径是S->B->D->T,总代价为6。

所以,不能所有这类问题都迷信贪心算法的求解,但其作为一种算法指导思想,还是很值得学习的。

除了以上袋子装豆子的问题之外,还有很多应用场景。这种问题能否使用贪心算法来解决的关键是你能否将问题转换为贪心算法适用的问题,即找到问题的限制值和期望值。

我们有m个糖果要分给n个孩子,n大于m,注定有的孩子不能分到糖果。其中,每个糖果的大小都不同,分别为S1,S2,S3...,Sm,每个孩子对糖果的需求也是不同的,为N1,N2,N3...,Nn,那么我们如何分糖果,才能尽可能满足最多数量孩子的需求?

这个问题中,限制值是糖果的数量m,期望值满足最多的孩子需求。对于每个孩子,能用小的糖果满足其需求,就不要用大的,避免浪费。所以我们可以给所有孩子的需求排个序,从需求最小的孩子开始,用刚好能满足他的糖果来分给他,以此来分完所有的糖果。

我们有1元、5元、10元、20元、50元、100元纸币各C1、C5、C10、C20、C50、C100张,现在要购买一个价值K元的东西,请问怎么才能适用最少的纸币?

这个问题应该不难,限制值是各个纸币的张数,期望值是适用最少的纸币。那么我们就先用面值最大的100元去付钱,当再加一张100元就超过K时,就更换小面额的,直至正好为K元。

对于n个区间[L1,R1],[L2,R2]...[Ln,Rn],我们怎么从中选出尽可能多的区间,使它们不相交?

我们需要把这个问题转换为符合贪心算法特点的问题,假设这么多区间的最左端点是Lmin,最右端点是Rmax,那么问题就是在[Lmin,Rmax]中,选择尽可能多的区间往里面塞,并且保证它们不相交。这里,限制值就是区间[Lmin,Rmax],期望值就是尽可能多的区间。

我们的解决办法就是每次从区间中选择那种左端点>=已经覆盖区间右边端点的,且该区间右端点尽可能高小的。如此,我们可以让未覆盖区间尽可能地大,才能保证可以塞进去尽可能多的区间。

贪心算法最重要的就是学会如何将要解决的问题抽象成适合贪心算法特点的模型,找到限制条件和期望值,只要做好这一步,接下来的就比较简单了。在平时我们不用刻意去记,多多练习类似的问题才是最有效的学习方法。

Ⅳ 贪心算法的基本思路

1.建立数学模型来描述问题
⒉把求解的问题分成若干个子问题。
⒊对每一子问题求解,得到子问题的局部最优解。
⒋把子问题的解局部最优解合成原来解问题的一个解。
实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步
do
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解。
下面是一个可以试用贪心算法解的题目,贪心解的确不错,可惜不是最优解。

Ⅵ 贪心算法的本质

1. 贪心法(Greedy Algorithm)定义

求解最优化问题的算法通常需要经过一系列的步骤,在每个步骤都面临多种选择;

贪心法就是这样的算法:它在每个决策点作出在当时看来最佳的选择,即总是遵循某种规则,做出局部最优的选择,以推导出全局最优解(局部最优解->全局最优解)

2. 对贪心法的深入理解

(1)原理:一种启发式策略,在每个决策点作出在当时看来最佳的选择

(2)求解最优化问题的两个关键要素:贪心选择性质+最优子结构

①贪心选择性质:进行选择时,直接做出在当前问题中看来最优的选择,而不必考虑子问题的解;

②最优子结构:如果一个问题的最优解包含其子问题的最优解,则称此问题具有最优子结构性质

(3)解题关键:贪心策略的选择

贪心算法不是对所有问题都能得到整体最优解的,因此选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

(4)一般步骤:

①建立数学模型来描述最优化问题;

②把求解的最优化问题转化为这样的形式:对其做出一次选择后,只剩下一个子问题需要求解;

③证明做出贪心选择后:

1°原问题总是存在全局最优解,即贪心选择始终安全;

2°剩余子问题的局部最优解与贪心选择组合,即可得到原问题的全局最优解。

并完成2°

3. 贪心法与动态规划

最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。

Ⅶ 贪心算法的基本思想

贪心算法的基本思想就是分级处理。

贪心算法是一种分级处理的方法。用贪心法设计算法的特点是一步一步的进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加为止。

3、还有一个函数检查是否一个候选对象的集合是可行的,也即是否可能往该集合上添加更多的候选对象以获得一个解。和上一个函数一样,此时不考虑解决方法的最优性。

4、选择函数可以指出哪一个剩余的候选对象最有希望构成问题的解。

5、最后,目标函数给出解的值。

Ⅷ 贪心算法,这个贪心到底是什么意思

贪心指目光短浅,只看到当前这一步的最优决策,而不考虑以后的决策。这样的算法只在特定的问题下是正确的。

Ⅸ (三) 贪心算法

贪心算法的思想非常简单且算法效率很高,在一些问题的解决上有着明显的优势。

假设有3种硬币,面值分别为1元、5角、1角。这3种硬币各自的数量不限,现在要找给顾客3元6角钱,请问怎样找才能使得找给顾客的硬币数量最少呢?

你也许会不假思索的说出答案:找给顾客3枚1元硬币,1枚5角硬币,1枚1角硬币。其实也可以找给顾客7枚5角硬币,1枚1角硬币。可是在这里不符合题意。在这里,我们下意识地应用了所谓贪心算法解决这个问题。

所谓贪心算法,就是 总是做出在当前看来是最好的选择(未从整体考虑) 的一种方法。以上述的题目为例,为了找给顾客的硬币数量最少,在选择硬币的面值时,当然是尽可能地选择面值大的硬币。因此,下意识地遵循了以下方案:
(1)首先找出一个面值不超过3元6角的最大硬币,即1元硬币。
(2)然后从3元6角中减去1元,得到2元6角,再找出一个面值不超过2元6角的最大硬币,即1元硬币。
(3)然后从2元6角中减去1元,得到1元6角,再找出一个面值不超过1元6角的最大硬币,即1元硬币。
(4)然后从1元6角中减去1元,得到6角,再找出一个面值不超过6角的最大硬币,即5角硬币。
(5)然后从6角中减去5角,得到1角,再找出一个面值不超过1角的最大硬币,即1角硬币。
(6)找零钱的过程结束。
这个过程就是一个典型的贪心算法思想。

贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的 局部最优解 ,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题它能产生整体最优解。但其解必然是最优解的很好近似解。)

贪心算法没有固定的算法框架,算法设计的关键是 贪心策略的选择 。选择的贪心策略必须具备无后效性。

贪心策略 适用的前提 是:

严格意义上讲,要使用贪心算法求解问题,该问题应当具备以下性质:

注意 :对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。

因此, 选择能产生问题最优解的最优量度标准是使用贪婪算法的核心 。

实际上,贪心算法 适用的情况很少 。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。

最优解问题大部分都可以拆分成一个个的子问题(多阶段决策问题),把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。

贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。

动态规划方法代表了这一类问题的一般解法, 自底向上 构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。

而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始( 自顶向下 ),选择最优的路,一直走到底就可以了。

一个问题分为多个阶段,每个阶段可以有n种决策,各个阶段的决策构成一个决策序列,称为一个策略。
这两种算法都是选择性算法,在进行决策的选择时:

前提是这个问题得具有贪心选择性质,需要证明(数学归纳法(第一、第二)),如果不满足那就只能使用动态规划解决。(一旦证明贪心选择性质,用贪心算法解决问题比动态规划具有更低的时间复杂度和空间复杂度。)

从范畴上来看:
Greedy ⊂ DP ⊂ Searching (贪心是动规的特例)
即所有的贪心算法问题都能用DP求解,更可以归结为一个搜索问题,反之不成立。

贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,这使得算法在编码和执行的过程中都有着一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。但是贪心算法并不是对所有的问题都能得到整体最优解或最理想的近似解,与回溯法等比较,它的适用区域相对狭窄许多,因此正确地判断它的应用时机十分重要。

一步一步地进行,常 以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况 ,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。

它采用 自顶向下 ,以 迭代 的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以 贪心法不需要回溯 。

【问题描述】
马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条最短路径。

【贪心算法】
其实马踏棋盘的问题很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一个有名的算法。在每个结点对其子结点进行选取时,优先选择‘出口’最小的进行搜索,‘出口’的意思是在这些子结点中它们的可行子结点的个数,也就是‘孙子’结点越少的越优先跳,为什么要这样选取,这是一种局部调整最优的做法,如果优先选择出口多的子结点,那出口少的子结点就会越来越多,很可能出现‘死’结点(顾名思义就是没有出口又没有跳过的结点),这样对下面的搜索纯粹是徒劳,这样会浪费很多无用的时间,反过来如果每次都优先选择出口少的结点跳,那出口少的结点就会越来越少,这样跳成功的机会就更大一些。

Ⅹ 将最优装载问题的贪心算法推广到2艘船的情形,贪心算法仍能产生最优解吗

贪心算法不能产生最优解。

两艘船的装载问题,是先装完第一艘,再装第二艘,所以就必须把第一艘尽可能的装满,才能使总的装载量更多。

对于一个具体问题,要确定它是否具有贪心选择的性质,必须证明每一步所作的贪心选择最终能得到问题的最优解,通常可以首先证明问题的一个整体最优解,是从贪心选择开始的,而且作了贪心选择后,原问题简化为一个规模更小的类似子问题。



(10)最优解贪心算法扩展阅读:

两艘船的装载问题需要用的是回溯法,有了问题的解空间后,还需要将解空间有效地组织起来,使得回溯法能方便地搜索整个解空间,通常将解空间组织成树或图的形式。

如果在当前的扩展结点处不能再向纵深方向移动,则当前的扩展结点就成为死结点。此时应往回移动(回溯)至最近的一个活结点处,并使其成为当前的扩展结点。回溯法以上述工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。

此外,贪心算法的每一次操作都对结果产生直接影响,而动态规划则不是。贪心算法对每个子问题的解决方案都做出选择,不能回退;动态规划则会根据以前的选择结果对当前进行选择,有回退功能。

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:335
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:378
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:612
java用什么软件写 发布:2025-05-18 03:56:19 浏览:32
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:943
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:739
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:803
网卡访问 发布:2025-05-18 03:35:04 浏览:511
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:371