首出算法块
⑴ 采用首次适应算法回收内存时,可能出现哪几种情况应该怎样处理这些情况 采用首次适应算法
a. 回收区与插入点的前一个分区相邻接,此时可将回收区与插入点的前一分区合并,不再为回收分区分配新表项,而只修改前邻接分区的大小;
b. 回收分区与插入点的后一分区相邻接,此时合并两区,然后用回收区的首址作为新空闲区的首址,大小为两者之和;
c. 回收区同时与插入点的前后两个分区邻接,此时将三个分区合并,使用前邻接分区的首址,大小为三区之和,取消后邻接分区的表项;
d. 回收区没有邻接空闲分区,则应为回收区单独建立一个新表项,填写回收区的首址和大小,并根据其首址,插入到空闲链中的适当位置
⑵ 高速缓冲存储器的作用是什么
高速缓冲存储器的容量一般只有主存储器的几百分之一,但它的存取速度能与中央处理器相匹配。
根据程序局部性原理,正在使用的主存储器某一单元邻近的那些单元将被用到的可能性很大。因而,当中央处理器存取主存储器某一单元时,计算机硬件就自动地将包括该单元在内的那一组单元内容调入高速缓冲存储器,中央处理器即将存取的主存储器单元很可能就在刚刚调入到高速缓冲存储器的那一组单元内。
所以中央处理器就可以直接对高速缓冲存储器进行存取。在整个处理过程中,如果中央处理器绝大多数存取主存储器的操作能为存取高速缓冲存储器所代替,计算机系统处理速度就能显着提高。
(2)首出算法块扩展阅读:
提高高速缓冲存储器读取命中率的算法:
1、随机法:随机替换算法就是用随机数发生器产生一个要替换的块号,将该块替换出去,此算法简单、易于实现,而且它不考虑Cache块过去、现在及将来的使用情况,但是没有利用上层存储器使用的“历史信息”、没有根据访存的局部性原理。
2、先进先出法:先进先出算法就是将最先进入Cache的信息块替换出去。FIFO算法按调入Cache的先后决定淘汰的顺序,选择最早调入Cache的字块进行替换,它不需要记录各字块的使用情况,比较容易实现,系统开销小。
3、近期最少使用法:近期最少使用(Least Recently Used,LRU)算法。这种方法是将近期最少使用的Cache中的信息块替换出去。该算法较先进先出算法要好一些。但此法也不能保证过去不常用将来也不常用。
⑶ 区块链 --- 共识算法
PoW算法是一种防止分布式服务资源被滥用、拒绝服务攻击的机制。它要求节点进行适量消耗时间和资源的复杂运算,并且其运算结果能被其他节点快速验算,以耗用时间、能源做担保,以确保服务与资源被真正的需求所使用。
PoW算法中最基本的技术原理是使用哈希算法。假设求哈希值Hash(r),若原始数据为r(raw),则运算结果为R(Result)。
R = Hash(r)
哈希函数Hash()的特性是,对于任意输入值r,得出结果R,并且无法从R反推回r。当输入的原始数据r变动1比特时,其结果R值完全改变。在比特币的PoW算法中,引入算法难度d和随机值n,得到以下公式:
Rd = Hash(r+n)
该公式要求在填入随机值n的情况下,计算结果Rd的前d字节必须为0。由于哈希函数结果的未知性,每个矿工都要做大量运算之后,才能得出正确结果,而算出结果广播给全网之后,其他节点只需要进行一次哈希运算即可校验。PoW算法就是采用这种方式让计算消耗资源,而校验仅需一次。
PoS算法要求节点验证者必须质押一定的资金才有挖矿打包资格,并且区域链系统在选定打包节点时使用随机的方式,当节点质押的资金越多时,其被选定打包区块的概率越大。
POS模式下,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000。这个时候,如果你验证了一个POS区块,你的币龄就会被清空为0,同时从区块中获得相对应的数字货币利息。
节点通过PoS算法出块的过程如下:普通的节点要成为出块节点,首先要进行资产的质押,当轮到自己出块时,打包区块,然后向全网广播,其他验证节点将会校验区块的合法性。
DPoS算法和PoS算法相似,也采用股份和权益质押。
但不同的是,DPoS算法采用委托质押的方式,类似于用全民选举代表的方式选出N个超级节点记账出块。
选民把自己的选票投给某个节点,如果某个节点当选记账节点,那么该记账节点往往在获取出块奖励后,可以采用任意方式来回报自己的选民。
这N个记账节点将轮流出块,并且节点之间相互监督,如果其作恶,那么会被扣除质押金。
通过信任少量的诚信节点,可以去除区块签名过程中不必要的步骤,提高了交易的速度。
拜占庭问题:
拜占庭是古代东罗马帝国的首都,为了防御在每块封地都驻扎一支由单个将军带领的军队,将军之间只能靠信差传递消息。在战争时,所有将军必须达成共识,决定是否共同开战。
但是,在军队内可能有叛徒,这些人将影响将军们达成共识。拜占庭将军问题是指在已知有将军是叛徒的情况下,剩余的将军如何达成一致决策的问题。
BFT:
BFT即拜占庭容错,拜占庭容错技术是一类分布式计算领域的容错技术。拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或中断以及遭到恶意攻击等原因,计算机和网络可能出现不可预料的行为。拜占庭容错技术被设计用来处理这些异常行为,并满足所要解决的问题的规范要求。
拜占庭容错系统 :
发生故障的节点被称为 拜占庭节点 ,而正常的节点即为 非拜占庭节点 。
假设分布式系统拥有n台节点,并假设整个系统拜占庭节点不超过m台(n ≥ 3m + 1),拜占庭容错系统需要满足如下两个条件:
另外,拜占庭容错系统需要达成如下两个指标:
PBFT即实用拜占庭容错算法,解决了原始拜占庭容错算法效率不高的问题,算法的时间复杂度是O(n^2),使得在实际系统应用中可以解决拜占庭容错问题
PBFT是一种状态机副本复制算法,所有的副本在一个视图(view)轮换的过程中操作,主节点通过视图编号以及节点数集合来确定,即:主节点 p = v mod |R|。v:视图编号,|R|节点个数,p:主节点编号。
PBFT算法的共识过程如下:客户端(Client)发起消息请求(request),并广播转发至每一个副本节点(Replica),由其中一个主节点(Leader)发起提案消息pre-prepare,并广播。其他节点获取原始消息,在校验完成后发送prepare消息。每个节点收到2f+1个prepare消息,即认为已经准备完毕,并发送commit消息。当节点收到2f+1个commit消息,客户端收到f+1个相同的reply消息时,说明客户端发起的请求已经达成全网共识。
具体流程如下 :
客户端c向主节点p发送<REQUEST, o, t, c>请求。o: 请求的具体操作,t: 请求时客户端追加的时间戳,c:客户端标识。REQUEST: 包含消息内容m,以及消息摘要d(m)。客户端对请求进行签名。
主节点收到客户端的请求,需要进行以下交验:
a. 客户端请求消息签名是否正确。
非法请求丢弃。正确请求,分配一个编号n,编号n主要用于对客户端的请求进行排序。然后广播一条<<PRE-PREPARE, v, n, d>, m>消息给其他副本节点。v:视图编号,d客户端消息摘要,m消息内容。<PRE-PREPARE, v, n, d>进行主节点签名。n是要在某一个范围区间内的[h, H],具体原因参见 垃圾回收 章节。
副本节点i收到主节点的PRE-PREPARE消息,需要进行以下交验:
a. 主节点PRE-PREPARE消息签名是否正确。
b. 当前副本节点是否已经收到了一条在同一v下并且编号也是n,但是签名不同的PRE-PREPARE信息。
c. d与m的摘要是否一致。
d. n是否在区间[h, H]内。
非法请求丢弃。正确请求,副本节点i向其他节点包括主节点发送一条<PREPARE, v, n, d, i>消息, v, n, d, m与上述PRE-PREPARE消息内容相同,i是当前副本节点编号。<PREPARE, v, n, d, i>进行副本节点i的签名。记录PRE-PREPARE和PREPARE消息到log中,用于View Change过程中恢复未完成的请求操作。
主节点和副本节点收到PREPARE消息,需要进行以下交验:
a. 副本节点PREPARE消息签名是否正确。
b. 当前副本节点是否已经收到了同一视图v下的n。
c. n是否在区间[h, H]内。
d. d是否和当前已收到PRE-PPREPARE中的d相同
非法请求丢弃。如果副本节点i收到了2f+1个验证通过的PREPARE消息,则向其他节点包括主节点发送一条<COMMIT, v, n, d, i>消息,v, n, d, i与上述PREPARE消息内容相同。<COMMIT, v, n, d, i>进行副本节点i的签名。记录COMMIT消息到日志中,用于View Change过程中恢复未完成的请求操作。记录其他副本节点发送的PREPARE消息到log中。
主节点和副本节点收到COMMIT消息,需要进行以下交验:
a. 副本节点COMMIT消息签名是否正确。
b. 当前副本节点是否已经收到了同一视图v下的n。
c. d与m的摘要是否一致。
d. n是否在区间[h, H]内。
非法请求丢弃。如果副本节点i收到了2f+1个验证通过的COMMIT消息,说明当前网络中的大部分节点已经达成共识,运行客户端的请求操作o,并返回<REPLY, v, t, c, i, r>给客户端,r:是请求操作结果,客户端如果收到f+1个相同的REPLY消息,说明客户端发起的请求已经达成全网共识,否则客户端需要判断是否重新发送请求给主节点。记录其他副本节点发送的COMMIT消息到log中。
如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻的序号不连续。备份节点应当有职责来主动检查这些序号的合法性。
如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点作恶或者下线,发起View Change协议。
View Change协议 :
副本节点向其他节点广播<VIEW-CHANGE, v+1, n, C , P , i>消息。n是最新的stable checkpoint的编号, C 是 2f+1验证过的CheckPoint消息集合, P 是当前副本节点未完成的请求的PRE-PREPARE和PREPARE消息集合。
当主节点p = v + 1 mod |R|收到 2f 个有效的VIEW-CHANGE消息后,向其他节点广播<NEW-VIEW, v+1, V , O >消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主节点重新发起的未经完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的选取规则:
副本节点收到主节点的NEW-VIEW消息,验证有效性,有效的话,进入v+1状态,并且开始 O 中的PRE-PREPARE消息处理流程。
在上述算法流程中,为了确保在View Change的过程中,能够恢复先前的请求,每一个副本节点都记录一些消息到本地的log中,当执行请求后副本节点需要把之前该请求的记录消息清除掉。
最简单的做法是在Reply消息后,再执行一次当前状态的共识同步,这样做的成本比较高,因此可以在执行完多条请求K(例如:100条)后执行一次状态同步。这个状态同步消息就是CheckPoint消息。
副本节点i发送<CheckPoint, n, d, i>给其他节点,n是当前节点所保留的最后一个视图请求编号,d是对当前状态的一个摘要,该CheckPoint消息记录到log中。如果副本节点i收到了2f+1个验证过的CheckPoint消息,则清除先前日志中的消息,并以n作为当前一个stable checkpoint。
这是理想情况,实际上当副本节点i向其他节点发出CheckPoint消息后,其他节点还没有完成K条请求,所以不会立即对i的请求作出响应,它还会按照自己的节奏,向前行进,但此时发出的CheckPoint并未形成stable。
为了防止i的处理请求过快,设置一个上文提到的 高低水位区间[h, H] 来解决这个问题。低水位h等于上一个stable checkpoint的编号,高水位H = h + L,其中L是我们指定的数值,等于checkpoint周期处理请求数K的整数倍,可以设置为L = 2K。当副本节点i处理请求超过高水位H时,此时就会停止脚步,等待stable checkpoint发生变化,再继续前进。
在区块链场景中,一般适合于对强一致性有要求的私有链和联盟链场景。例如,在IBM主导的区块链超级账本项目中,PBFT是一个可选的共识协议。在Hyperledger的Fabric项目中,共识模块被设计成可插拔的模块,支持像PBFT、Raft等共识算法。
Raft基于领导者驱动的共识模型,其中将选举一位杰出的领导者(Leader),而该Leader将完全负责管理集群,Leader负责管理Raft集群的所有节点之间的复制日志。
下图中,将在启动过程中选择集群的Leader(S1),并为来自客户端的所有命令/请求提供服务。 Raft集群中的所有节点都维护一个分布式日志(复制日志)以存储和提交由客户端发出的命令(日志条目)。 Leader接受来自客户端的日志条目,并在Raft集群中的所有关注者(S2,S3,S4,S5)之间复制它们。
在Raft集群中,需要满足最少数量的节点才能提供预期的级别共识保证, 这也称为法定人数。 在Raft集群中执行操作所需的最少投票数为 (N / 2 +1) ,其中N是组中成员总数,即 投票至少超过一半 ,这也就是为什么集群节点通常为奇数的原因。 因此,在上面的示例中,我们至少需要3个节点才能具有共识保证。
如果法定仲裁节点由于任何原因不可用,也就是投票没有超过半数,则此次协商没有达成一致,并且无法提交新日志。
数据存储:Tidb/TiKV
日志:阿里巴巴的 DLedger
服务发现:Consul& etcd
集群调度:HashiCorp Nomad
只能容纳故障节点(CFT),不容纳作恶节点
顺序投票,只能串行apply,因此高并发场景下性能差
Raft通过解决围绕Leader选举的三个主要子问题,管理分布式日志和算法的安全性功能来解决分布式共识问题。
当我们启动一个新的Raft集群或某个领导者不可用时,将通过集群中所有成员节点之间协商来选举一个新的领导者。 因此,在给定的实例中,Raft集群的节点可以处于以下任何状态: 追随者(Follower),候选人(Candidate)或领导者(Leader)。
系统刚开始启动的时候,所有节点都是follower,在一段时间内如果它们没有收到Leader的心跳信号,follower就会转化为Candidate;
如果某个Candidate节点收到大多数节点的票,则这个Candidate就可以转化为Leader,其余的Candidate节点都会回到Follower状态;
一旦一个Leader发现系统中存在一个Leader节点比自己拥有更高的任期(Term),它就会转换为Follower。
Raft使用基于心跳的RPC机制来检测何时开始新的选举。 在正常期间, Leader 会定期向所有可用的 Follower 发送心跳消息(实际中可能把日志和心跳一起发过去)。 因此,其他节点以 Follower 状态启动,只要它从当前 Leader 那里收到周期性的心跳,就一直保持在 Follower 状态。
当 Follower 达到其超时时间时,它将通过以下方式启动选举程序:
根据 Candidate 从集群中其他节点收到的响应,可以得出选举的三个结果。
共识算法的实现一般是基于复制状态机(Replicated state machines),何为 复制状态机 :
简单来说: 相同的初识状态 + 相同的输入 = 相同的结束状态 。不同节点要以相同且确定性的函数来处理输入,而不要引入一下不确定的值,比如本地时间等。使用replicated log是一个很不错的注意,log具有持久化、保序的特点,是大多数分布式系统的基石。
有了Leader之后,客户端所有并发的请求可以在Leader这边形成一个有序的日志(状态)序列,以此来表示这些请求的先后处理顺序。Leader然后将自己的日志序列发送Follower,保持整个系统的全局一致性。注意并不是强一致性,而是 最终一致性 。
日志由有序编号(log index)的日志条目组成。每个日志条目包含它被创建时的任期号(term),和日志中包含的数据组成,日志包含的数据可以为任何类型,从简单类型到区块链的区块。每个日志条目可以用[ term, index, data]序列对表示,其中term表示任期, index表示索引号,data表示日志数据。
Leader 尝试在集群中的大多数节点上执行复制命令。 如果复制成功,则将命令提交给集群,并将响应发送回客户端。类似两阶段提交(2PC),不过与2PC的区别在于,leader只需要超过一半节点同意(处于工作状态)即可。
leader 、 follower 都可能crash,那么 follower 维护的日志与 leader 相比可能出现以下情况
当出现了leader与follower不一致的情况,leader强制follower复制自己的log, Leader会从后往前试 ,每次AppendEntries失败后尝试前一个日志条目(递减nextIndex值), 直到成功找到每个Follower的日志一致位置点(基于上述的两条保证),然后向后逐条覆盖Followers在该位置之后的条目 。所以丢失的或者多出来的条目可能会持续多个任期。
要求候选人的日志至少与其他节点一样最新。如果不是,则跟随者节点将不投票给候选者。
意味着每个提交的条目都必须存在于这些服务器中的至少一个中。如果候选人的日志至少与该多数日志中的其他日志一样最新,则它将保存所有已提交的条目,避免了日志回滚事件的发生。
即任一任期内最多一个leader被选出。这一点非常重要,在一个复制集中任何时刻只能有一个leader。系统中同时有多余一个leader,被称之为脑裂(brain split),这是非常严重的问题,会导致数据的覆盖丢失。在raft中,两点保证了这个属性:
因此, 某一任期内一定只有一个leader 。
当集群中节点的状态发生变化(集群配置发生变化)时,系统容易受到系统故障。 因此,为防止这种情况,Raft使用了一种称为两阶段的方法来更改集群成员身份。 因此,在这种方法中,集群在实现新的成员身份配置之前首先更改为中间状态(称为联合共识)。 联合共识使系统即使在配置之间进行转换时也可用于响应客户端请求,它的主要目的是提升分布式系统的可用性。
⑷ 求用c语言写出首次适应分配算法的分配过程~
/********************************
内存管理模拟程序
*******************************/
#include<iostream.h>
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include <time.h>
#include <windows.h>
/*定义宏*/
#define TotalMemSize 1024 /*划分的物理块的大小,地址范围0~1023*/
#define MinSize 2 /*规定的不再分割的剩余分区的大小*/
#define getpch(type) (type*)malloc(sizeof(type))
/*定义内存块*/
typedef struct memBlock
{
struct memBlock *next;/*指向下一个块*/
int stAddr; /*分区块的初始地址*/
int memSize; /*分区块的大小*/
int status; /*分区块的状态,0:空闲,1:以被分配*/
}MMB;
/*定义全局变量*/
MMB *idleHead=NULL; /*空闲分区链表的头指针*/
MMB *usedHead=NULL; /*分配分区链表的头指针*/
MMB *usedRear=NULL; /*分配分区链表的链尾指针*/
MMB *np; /*循环首次适应算法中指向即将被查询的空闲块*/
int idleNum=1;/*当前空闲分区的数目*/
int usedNum=0;/*当前已分配分区的数目*/
MMB *memIdle=NULL; /*指向将要插入分配分区链表的空闲分区*/
MMB *memUsed=NULL; /*指向将要插入空闲分区链表的已分配分区*/
int flag=1;/*标志分配是否成功,1:成功*/
/*函数声明*/
void textcolor (int color);/*输出着色*/
void InitMem();/*初始化函数*/
int GetUseSize(float miu,float sigma); /*获得请求尺寸*/
MMB *SelectUsedMem(int n);/*选择待释放的块*/
void AddToUsed();/*将申请到的空闲分区加到分配分区链表中*/
int RequestMemff(int usize); /*请求分配指定大小的内存,首次适应算法*/
int RequestMemnf(int usize); /*请求分配指定大小的内存,循环首次适应算法*/
void AddToIdle();/*将被释放的分配分区加到空闲分区链表中(按地址大小)*/
void ReleaseMem(); /*释放指定的分配内存块*/
/*主函数*/
void main()
{
int sim_step;
float miu,sigma; /*使随机生成的请求尺寸符合正态分布的参数*/
int i;
int a;
MMB *p;
/* double TotalStep=0,TotalSize=0,TotalRatio=0,TotalUSize=0,Ratio=0,n=0;
double aveStep=0,aveSize=0,aveRatio=0;
int step=0,usesize=0; */
textcolor(11);
printf("\n\t\t内存管理模拟程序\n\n");
/* InitMem();*/
while(true)
{
double TotalStep=0,TotalSize=0,TotalRatio=0,TotalUSize=0,Ratio=0,n=0;
double aveStep=0,aveSize=0,aveRatio=0;
int step=0,usesize=0;
InitMem();
textcolor(12);
printf("\n\n首次适应算法: 0");
printf("\n循环首次适应算法: 1\n");
textcolor(11);
printf("\n请选择一种算法:");
scanf("%d",&a);
textcolor(15);
printf("\n输入一定数量的步数:(sim_step)");
scanf("%d",&sim_step);
printf("\n 输入使随机生成的请求尺寸符合正态分布的参数:miu,sigma ");
scanf("%f,%f",&miu,&sigma);
for(i=1;i<=sim_step;i++)
{
textcolor(10);
printf("\n\n#[%d]\n",i);
do{
usesize=GetUseSize(miu,sigma);
while((usesize<0)||(usesize>TotalMemSize))
{
usesize=GetUseSize(miu,sigma);
}
textcolor(13);
printf("\n\n申请的内存尺寸为:%d",usesize);
printf("\n此时可用的空闲分区有 %d 块情况如下:",idleNum);
p=idleHead;
textcolor(15);
while(p!=NULL)
{
printf("\n始址:%d\t 尺寸:%d",p->stAddr,p->memSize);
p=p->next;
}
TotalSize+=usesize;
if(a==0)
step=RequestMemff(usesize);
else
step=RequestMemnf(usesize);
TotalStep+=step;
n++;
}while(flag==1);
p=usedHead;
while(p!=NULL)
{
TotalUSize+=p->memSize;
printf("\n始址:%d\t 尺寸:%d",p->stAddr,p->memSize);
p=p->next;
}
textcolor(11);
if(TotalUSize!=0)
{
Ratio=TotalUSize/TotalMemSize;
TotalUSize=0;
printf("\n内存利用率NO.%d :%f%c",i,100*Ratio,'%');
}
else
{
Ratio=0;
printf("\n内存利用率NO.%d :%c%c",i,'0','%');
}
TotalRatio+=Ratio;
ReleaseMem();
}
if(n!=0)
{
textcolor(10);
aveStep=TotalStep/n;
aveSize=TotalSize/n;
aveRatio=TotalRatio/sim_step;
printf("\n平均搜索步骤:%f",aveStep);
printf("\n平均请求尺寸:%f",aveSize);
printf("\n平均内存利用率:%f",aveRatio);
}
}
}
// 输出着色 /////////////////////////////////////////
void textcolor (int color)
{
SetConsoleTextAttribute (GetStdHandle (STD_OUTPUT_HANDLE), color );
}
/******************************
函数名:InitMem()
用途:把内存初始化为一整块空闲块
****************************************/
void InitMem()
{
MMB *p;
p=getpch(MMB);
p->memSize=TotalMemSize;
p->stAddr=0;
p->status=0;
p->next=NULL;
idleHead=p;
np=idleHead;
usedHead=NULL;
usedRear=NULL;
idleNum=1;
usedNum=0;
flag=1;
memIdle=NULL;
memUsed=NULL;
}
/******************************
函数名:GetUseSize(float miu,float sigma)
用途:获得请求尺寸;
参数说明:float miu,float sigma :正态分布的参数
返回值:申请尺寸的大小;
****************************************************/
int GetUseSize(float miu,float sigma)
{
float r1,r2;
float u,v,w;
float x,y;
do
{
r1=rand()/32767.0;
r2=rand()/32767.0;
u=2*r1-1;
v=2*r2-1;
w=u*u+v*v;
}while(w>1);
x=u*sqrt(((-log(w))/w));
y=v*sqrt(((-log(w))/w));
return miu+sigma*x;
}
/******************************
函数名:*SelectUsedMem(int n)
用途:选择待释放的块(0~n-1)
返回值:指向待释放的块的指针;
****************************************************/
MMB *SelectUsedMem(int n)
{
MMB *p;
int i,j;
if(n>0)
{
i = rand()%n ;
textcolor(5);
printf("\n\n当前已分配分区总数为:%d",n);
printf("\n待释放块的序号为:%d\n",i );
p=usedHead;
if(p!=NULL)
{
for(j=i;j>0;j--)
p=p->next;
return(p);
}
else
return(NULL);
}
else
{
printf("\n当前没有可释放的资源!\n");
}
}
/******************************
函数名:AddToUsed()
用途:将申请到的空闲分区加到分配分区链表中
***************************************************************/
void AddToUsed()
{
MMB *p;
memIdle->status=1;
if(usedHead==NULL)
{
usedHead=memIdle;
usedRear=usedHead;
}
else
{
usedRear->next=memIdle;
usedRear=memIdle;
}
usedNum++;
printf("\n当前分配分区共有%d块!",usedNum);
p=usedHead;
while(p!=NULL)
{
printf("\n始址:%d \t 尺寸:%d",p->stAddr,p->memSize);
p=p->next;
}
}
/******************************
函数名:RequestMemff(int usize)
参数说明:usize:请求尺寸的大小;
用途:请求分配指定大小的内存,首次适应算法
返回值:搜索步骤
***************************************************************/
int RequestMemff(int usize)
{
MMB *p1,*p2,*s;
int step;
int suc=0;
int size1,size2;
if(idleHead==NULL)
{
flag=0;
textcolor(12);
printf("\n分配失败!");
return 0;
}
else
{
if((idleHead->memSize)>usize)
{
size1=(idleHead->memSize)-usize;
if(size1<=MinSize)
{
memIdle=idleHead;
idleHead=idleHead->next;
memIdle->next=NULL;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=idleHead->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
idleHead->memSize=idleHead->memSize-usize;
idleHead->stAddr=idleHead->stAddr+usize;
}
step=1;
flag=1;
textcolor(12);
printf("\n分配成功!");
AddToUsed();
}
else
{
p1=idleHead;
step=1;
p2=p1->next;
while(p2!=NULL)
{
if((p2->memSize)>usize)
{
size2=(p2->memSize)-usize;
if(size2<=MinSize)
{
p1->next=p2->next;
memIdle=p2;
memIdle->next=NULL;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=p2->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
p2->memSize=p2->memSize-usize;
p2->stAddr=p2->stAddr+usize;
}
flag=1;
suc=1;
textcolor(12);
printf("\n分配成功!");
AddToUsed();
p2=NULL;
}
else
{
p1=p1->next;
p2=p2->next;
step++;
}
}
if(suc==0)
{
flag=0;
textcolor(12);
printf("\n分配失败!");
}
}
}
return step;
}
/******************************
函数名:AddToIdle()
用途:将被释放的分配分区加到空闲分区链表中(按地址递增顺序排列)
***************************************************************/
void AddToIdle()
{
MMB *p1,*p2;
int insert=0;
if((idleHead==NULL))
{
idleHead=memUsed;
idleNum++;
np=idleHead;
}
else
{
int Add=(memUsed->stAddr)+(memUsed->memSize);
if((memUsed->stAddr<idleHead->stAddr)&&(Add!=idleHead->stAddr))
{
memUsed->next=idleHead;
idleHead=memUsed;
idleNum++;
}
else
{
if((memUsed->stAddr<idleHead->stAddr)&&(Add==idleHead->stAddr))
{
idleHead->stAddr=memUsed->stAddr;
idleHead->memSize+=memUsed->memSize;
}
else
{
p1=idleHead;
p2=p1->next;
while(p2!=NULL)
{
if(memUsed->stAddr>p2->stAddr)
{
p1=p1->next;
p2=p2->next;
}
else
{
int Add1=p1->stAddr+p1->memSize;
int Add2=p2->stAddr-memUsed->memSize;
if((Add1==memUsed->stAddr)&&(memUsed->stAddr!=Add2))
{
p1->memSize=p1->memSize+memUsed->memSize;
}
if((Add1!=memUsed->stAddr)&&(memUsed->stAddr==Add2))
{
p2->memSize=p2->memSize+memUsed->memSize;
p2->stAddr=memUsed->stAddr;
}
if((Add1!=memUsed->stAddr)&&(memUsed->stAddr!=Add2))
{
memUsed->next=p2;
p1->next=memUsed;
if(np->stAddr==p2->stAddr)
np=p1->next;
idleNum++;
}
if((Add1==memUsed->stAddr)&&(memUsed->stAddr==Add2))
{
p1->memSize=p1->memSize+memUsed->memSize+p2->memSize;
p1->next=p2->next;
if((np->stAddr)==(p2->stAddr))
np=p1;
idleNum--;
}
p2=NULL;
insert=1;
}
}
if(insert==0)
{
p1->next=memUsed;
idleNum++;
}
}
}
}
}
/******************************
函数名:ReleaseMem()
用途:释放指定的分配内存块
***************************************************************/
void ReleaseMem()
{
MMB *q1,*q2;
MMB *s;
if(usedNum==0)
{
printf("\n当前没有分配分区!");
return;
}
else
{
s=SelectUsedMem(usedNum);
if(s!=NULL)
{
if(s->stAddr==usedHead->stAddr)
{
memUsed=usedHead;
usedHead=usedHead->next;
memUsed->next=NULL;
AddToIdle();
usedNum--;
}
else
{
q1=usedHead;
q2=q1->next;
while(q2!=NULL)
{
if(q2->stAddr!=s->stAddr)
{
q1=q1->next;
q2=q2->next;
}
else
{
q1->next=q2->next;
memUsed=q2;
memUsed->next=NULL;
if(q1->next==NULL)
usedRear=q1;
AddToIdle();
usedNum--;
q2=NULL;
}
}
}
}
}
}
/******************************
函数名:RequestMemnf(int usize)
参数说明:usize:请求尺寸的大小;
用途:请求分配指定大小的内存,循环首次适应算法
返回值:搜索步骤
***************************************************************/
int RequestMemnf(int usize)
{
MMB *p2,*p,*s;
int step;
int iNum=0;
int suc=0;
int size1,size2,size3;
if(idleHead==NULL)
{
flag=0;
printf("\n分配失败!");
return 0;
}
else
{
iNum=idleNum;
while(iNum>0)
{
iNum--;
if((np->memSize)>usize)
{
/*指针指向的空闲块满足条件,且正好为头指针*/
if(np->stAddr==idleHead->stAddr)
{
size1=(idleHead->memSize)-usize;
if(size1<=MinSize)
{
memIdle=idleHead;
idleHead=idleHead->next;
memIdle->next=NULL;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=idleHead->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
idleHead->memSize=idleHead->memSize-usize;
idleHead->stAddr=idleHead->stAddr+usize;
}
if((idleHead==NULL)||(idleHead->next==NULL))
np=idleHead;
else
np=idleHead->next;
}
else/*指针指向的空闲块满足条件,不为头指针*/
{
size2=(np->memSize)-usize;
if(size2<=MinSize) /*从空闲链表中删除*/
{
p=idleHead;
while(p->next->stAddr!=np->stAddr)
p=p->next;
p->next=np->next;
memIdle=np;
memIdle->next=NULL;
np=p;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=np->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
np->memSize=np->memSize-usize;
np->stAddr=np->stAddr+usize;
}
if(np->next==NULL)
np=idleHead;
else
np=np->next;
}
step=1;
flag=1;
suc=1;
textcolor(12);
printf("\n分配成功!");
AddToUsed();
iNum=0;
}
else /*当前指针指向的空闲区不满足条件*/
{
step=1;
p2=np->next;
if(p2==NULL)
{
np=idleHead;
iNum--;
}
else
{
if((p2->memSize)>usize)
{
size3=(p2->memSize)-usize;
if(size3<=MinSize)
{
np->next=p2->next;
memIdle=p2;
memIdle->next=NULL;
idleNum--;
}
else
{
s=getpch(MMB);
s->memSize=usize;
s->stAddr=p2->stAddr;
s->status=1;
s->next=NULL;
memIdle=s;
p2->memSize=p2->memSize-usize;
p2->stAddr=p2->stAddr+usize;
}
flag=1;
suc=1;
printf("\n分配成功!");
AddToUsed();
if(p2->next==NULL)
np=idleHead;
else
np=p2->next;
p2=NULL;
iNum=0;
}
else
{
np=np->next;
p2=p2->next;
iNum--;
step++;
}
}
}
// iNum--;
}
if(suc==0)
{
flag=0;
textcolor(12);
printf("\n分配失败!");
}
}
return step;
}
⑸ 采用c语言实现首次适应算法完成主存空间的分配和回收 急
有没有具体的要求,比方说数据结构方面,我这有一个,你可以参考参考
#include"stdio.h"
#include"stdlib.h"
#define
n
10
/*假定系统允许的最大作业为n,假定模拟实验中n值为10*/
#define
m
10
/*假定系统允许的空闲区表最大为m,假定模拟实验中m值为10*/
#define
minisize
100
struct{
float
address;
/*已分分区起始地址*/
float
length;
/*已分分区长度,单位为字节*/
int
flag;
/*已分配区表登记栏标志,用"0"表示空栏目*/
}used_table[n];
/*已分配区表*/
struct{
float
address;
/*空闲区起始地址*/
float
length;
/*空闲区长度,单位为字节*/
int
flag;
/*空闲区表登记栏标志,用"0"表示空栏目,用"1"表示未分配*/
}free_table[m];
/*空闲区表*/
void
main(
)
{
int
i,a;
void
allocate(char
str,float
leg);//分配主存空间函数
void
reclaim(char
str);//回收主存函数
float
xk;
char
J;/*空闲分区表初始化:*/
free_table[0].address=10240;
free_table[0].length=102400;
free_table[0].flag=1;
for(i=1;i<m;i++)
free_table[i].flag=0;/*已分配表初始化:*/
for(i=0;i<n;i++)
used_table[i].flag=0;
while(1)
{
printf("\n选择功能项(0-退出,1-分配主存,2-回收主存,3-显示主存)\n");
printf("选择功项(0~3)
:");
scanf("%d",&a);
switch(a)
{
case
0:
exit(0);
/*a=0程序结束*/
case
1:
/*a=1分配主存空间*/printf("输入作业名J和作业所需长度xk:
");
scanf("%*c%c%f",&J,&xk);
allocate(J,xk);/*分配主存空间*/
break;
case
2:
/*a=2回收主存空间*/printf("输入要回收分区的作业名");
scanf("%*c%c",&J);reclaim(J);/*回收主存空间*/
break;
case
3:
/*a=3显示主存情况*//*输出空闲区表和已分配表的内容*/
printf("输出空闲区表:\n起始地址
分区长度
标志\n");
for(i=0;i<m;i++)
printf("%6.0f%9.0f%6d\n",free_table[i].address,free_table[i].length,
free_table[i].flag);
printf("
按任意键,输出已分配区表\n");
getchar();
printf("
输出已分配区表:\n起始地址
分区长度
标志\n");
for(i=0;i<n;i++)
if(used_table[i].flag!=0)
printf("%6.0f%9.0f%6c\n",used_table[i].address,used_table[i].length,
used_table[i].flag);
else
printf("%6.0f%9.0f%6d\n",used_table[i].address,used_table[i].length,
used_table[i].flag);
break;
default:printf("没有该选项\n");
}/*case*/
}/*while*/
}/*主函数结束*/
int
uflag;//分配表标志
int
fflag;//空闲表标志
float
uend_address;
float
fend_address;
void
allocate(char
str,float
leg)
{
uflag=0;fflag=0;
int
k,i;float
ressize;
for(i=0;i<m;i++)
{
if(free_table[i].flag==1
&&
free_table[i].length>=leg)
{
fflag=1;break;
}
}
if(fflag==0)
printf("没有满足条件的空闲区\n");
else
{
ressize=free_table[i].length-leg;
for(k=0;k<n;k++)
{
if(used_table[k].flag==0)
{
if(ressize<minisize)//剩余块过小
{
used_table[k].length=free_table[i].length;
used_table[k].address=free_table[i].address;
used_table[k].flag=str;
free_table[i].length=0;
free_table[i].flag=0;
break;
}
else
{
used_table[k].address=free_table[i].address+ressize;
used_table[k].flag=str;
used_table[k].length=leg;
free_table[i].length=ressize;
break;
}
}
}//for结束
}
}
void
reclaim(char
str)
{
uflag=0;fflag=0;
int
k,i;
for(k=0;k<n;k++)
{
if(used_table[k].flag==str)
{
uflag=1;break;
}
}
if(uflag==0)
printf("\n找不到该作业!\n");
else
{
for(i=0;i<m;i++)
{
uend_address=used_table[k].address+used_table[k].length;
fend_address=free_table[i].address+free_table[i].length;
if(used_table[k].address==fend_address)//上邻
{
fflag=1;
free_table[i].length=free_table[i].length+used_table[k].length;
free_table[i].flag=1;
used_table[k].flag=0;
used_table[k].length=0;
used_table[k].address=0;
printf("\n已回收!\n");
break;
}
else
{
if(free_table[i].address==uend_address)//下邻
{
fflag=1;
free_table[i].address=used_table[k].address;
free_table[i].length=free_table[i].length+used_table[k].length;
free_table[i].flag=1;
used_table[k].flag=0;
used_table[k].length=0;
used_table[k].address=0;
printf("\n已回收!\n");
break;
}
}
}//for结束
if(fflag==0)
{
i=0;
for(i=0;i<m;i++)
{
if(free_table[i].flag==0)
{
free_table[i].address=used_table[k].address;
free_table[i].length=used_table[k].length;
free_table[i].flag=1;
used_table[k].length=0;
used_table[k].flag=0;
used_table[k].address=0;
break;
}
}
printf("\n已回收!\n");
}
}
}
⑹ 开方的简便算法
开方的简便算法是:
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表. 我们计算0.5*(350+136161/350)得到369.5 然后我们再计算0.5*(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1.我们有理由断定369^2=136161 一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。
此方法是在高一学万有引力和航天时,因需要大量开平方运算又不能用计算器,而被逼无奈研发的。
开立方的方法与开平方的方法很类似,但要复杂很多,如果不能熟练掌握,倒不如按大脸猫说的方法:凑!当然,熟练掌握以后,比凑的方法是快多了。
拓展资料
开方(英文rooting),指求一个数的方根的运算,为乘方的逆运算(参见“方根”词条)。在中国古代也指求二次及高次方程(包括二项方程)的正根。
⑺ 快递运费首重续重计算方法
你这两件货看快递公司怎么收,如果给你按两票货算费用就高,如果给你按一票货算费用就少点,具体费用就是:首重+续重,首重就是第一公司的重量,续重就是减1公斤后后面的重量再算,比如你这两件货如果快递公司一起算一票的话具体算法是:18.3+13.7=32kg=1(首重)*9+31(续重)*3=102元,一般黑点的快递公司点要给你按两票算就是第一箱18.3按19公斤算,因为快递收费是不足一公斤按一公斤算的也就是18.3=19=1*9+18*3=63元,第二箱13.7=14=1*9+13*3=48元,分开算的话你的费用要多9元,你可以和快递公司讲价全部按一起算,因为你这是算大货了,还可以讲成全按3快一公斤算,对了和EMS不可以讲价,其他快递公司可以讲价。
⑻ 算法设计:顺序队列的结构定义如下,请设计将队首元素x出队的算法,请将出队函数的函数整体补充完整
具体代码先不写了,提供一个思路给你:
将队列的第一个元素拿出来,放入辅助队列中
将两个队列的第一个元素比较(用Dequeue()方法获取),大的放入辅助队列,小的依然放到原始队列的末尾。
重复(2)的操作,直至所有的元素都比较了一遍
这样就将原来队列里面最大的元素取出来了并保存到了辅助队列里面(相应的原始队列里面删除了这个元素),然后再用循环的方法将第二大、第三大的数依次取出......
⑼ 首次适应算法是什么
分区分配算法(Partitioning Placement Algorithm)
最佳适应算法(Best Fit):
它从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表(空闲区链)中的空闲分区要按大小从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。该算法保留大的空闲区,但造成许多小的空闲区。
首次适应算法(First Fit):
从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法目的在于减少查找时间。为适应这种算法,空闲分区表(空闲区链)中的空闲分区要按地址由低到高进行排序。该算法优先使用低址部分空闲区,在低址空间造成许多小的空闲区,在高地址空间保留大的空闲区。
循环首次适应算法(Next Fit):
该算法是首次适应算法的变种。在分配内存空间时,不再每次从表头(链首)开始查找,而是从上次找到空闲区的下一个空闲开始查找,直到找到第一个能满足要求的的空闲区为止,并从中划出一块与请求大小相等的内存空间分配给作业。该算法能使内存中的空闲区分布得较均匀。
⑽ vb实现先进先出算法是什么
vb实现先进先出算法是指以先购入的存货应先发出(销售或耗用)这样一种存货实物流转假设为前提,对发出存货进行计价的一种方法。