当前位置:首页 » 操作系统 » 挖掘算法

挖掘算法

发布时间: 2022-01-22 09:00:45

1. 数据挖掘算法有哪些

统计和可视化要想建立一个好的预言模型,你必须了解自己的数据。最基本的方法是计算各种统计变量(平均值、方差等)和察看数据的分布情况。你也可以用数据透视表察看多维数据。数据的种类可分为连续的,有一个用数字表示的值(比如销售量)或离散的,分成一个个的类别(如红、绿、蓝)。离散数据可以进一步分为可排序的,数据间可以比较大小(如,高、中、低)和标称的,不可排序(如邮政编码)。图形和可视化工具在数据准备阶段尤其重要,它能让你快速直观的分析数据,而不是给你枯燥乏味的文本和数字。它不仅让你看到整个森林,还允许你拉近每一棵树来察看细节。在图形模式下人们很容易找到数据中可能存在的模式、关系、异常等,直接看数字则很难。可视化工具的问题是模型可能有很多维或变量,但是我们只能在2维的屏幕或纸上展示它。比如,我们可能要看的是信用风险与年龄、性别、婚姻状况、参加工作时间的关系。因此,可视化工具必须用比较巧妙的方法在两维空间内展示n维空间的数据。虽然目前有了一些这样的工具,但它们都要用户“训练”过他们的眼睛后才能理解图中画的到底是什么东西。对于眼睛有色盲或空间感不强的人,在使用这些工具时可能会遇到困难。聚集(分群)聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显,而同一个群之间的数据尽量相似。与分类不同(见后面的预测型数据挖掘),在开始聚集之前你不知道要把数据分成几组,也不知道怎么分(依照哪几个变量)。因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好,这时你需要删除或增加变量以影响分群的方式,经过几次反复之后才能最终得到一个理想的结果。神经元网络和K-均值是比较常用的聚集算法。不要把聚集与分类混淆起来。在分类之前,你已经知道要把数据分成哪几类,每个类的性质是什么,聚集则恰恰相反。关联分析关联分析是寻找数据库中值的相关性。两种常用的技术是关联规则和序列模式。关联规则是寻找在同一个事件中出现的不同项的相关性,比如在一次购买活动中所买不同商品的相关性。序列模式与此类似,他寻找的是事件之间时间上的相关性,如对股票涨跌的分析。关联规则可记为A==>B,A称为前提和左部(LHS),B称为后续或右部(RHS)。如关联规则“买锤子的人也会买钉子”,左部是“买锤子”,右部是“买钉子”。要计算包含某个特定项或几个项的事务在数据库中出现的概率只要在数据库中直接统计即可。某一特定关联(“锤子和钉子”)在数据库中出现的频率称为支持度。比如在总共1000个事务中有15个事务同时包含了“锤子和钉子”,则此关联的支持度为1.5%。非常低的支持度(比如1百万个事务中只有一个)可能意味着此关联不是很重要,或出现了错误数据(如,“男性和怀孕”)。要找到有意义的规则,我们还要考察规则中项及其组合出现的相对频率。当已有A时,B发生的概率是多少?也即概率论中的条件概率。回到我们的例子,也就是问“当一个人已经买了锤子,那他有多大的可能也会买钉子?”这个条件概率在数据挖掘中也称为可信度,计算方法是求百分比:(A与B同时出现的频率)/(A出现的频率)。让我们用一个例子更详细的解释这些概念: 总交易笔数(事务数):1,000包含“锤子”:50包含“钉子”:80包含“钳子”:20包含“锤子”和“钉子”:15包含“钳子”和“钉子”:10包含“锤子”和“钳子”:10包含“锤子”、“钳子”和“钉子”:5 则可以计算出: “锤子和钉子”的支持度=1.5%(15/1,000)“锤子、钉子和钳子”的支持度=0.5%(5/1,000)“锤子==>钉子”的可信度=30%(15/50)“钉子==>锤子”的可信度=19%(15/80)“锤子和钉子==>钳子”的可信度=33%(5/15)“钳子==>锤子和钉子”的可信度=25%(5/20)

2. 数据挖掘中的预测算法有哪些

数据挖掘(六):预测
http://blog.csdn.net/kingzone_2008/article/details/8977837

3. 求一个数据挖掘的算法

试论贝叶斯分类、决策树分类分类挖掘算法的优势与劣势,以及解决维度效应的策略

引言 数据分类是指按照分析对象的属性、特征,建立不同的组类来描述事物。数据分类是数据挖掘的主要内容之一,主要是通过分析训练数据样本,产生关于类别的精确描述。这种类别通常由分类规则组成,可以用来对未来的数据进行分类和预测。分类技术解决问题的关键是构造分类器。 一.数据分类 数据分类一般是两个步骤的过程: 第1步:建立一个模型,描述给定的数据类集或概念集(简称训练集)。通过分析由属性描述的数据库元组来构造模型。每个元组属于一个预定义的类,由类标号属性确定。用于建立模型的元组集称为训练数据集,其中每个元组称为训练样本。由于给出了类标号属性,因此该步骤又称为有指导的学习。如果训练样本的类标号是未知的,则称为无指导的学习(聚类)。学习模型可用分类规则、决策树和数学公式的形式给出。 第2步:使用模型对数据进行分类。包括评估模型的分类准确性以及对类标号未知的元组按模型进行分类。 常用的分类规则挖掘方法 分类规则挖掘有着广泛的应用前景。对于分类规则的挖掘通常有以下几种方法,不同的方法适用于不同特点的数据: 1.贝叶斯方法 2.决策树方法 3.人工神经网络方法 4.约略集方法 5.遗传算法 分类方法的评估标准: 准确率:模型正确预测新数据类标号的能力。速度:产生和使用模型花费的时间。健壮性:有噪声数据或空缺值数据时模型正确分类或预测的能力。伸缩性:对于给定的大量数据,有效地构造模型的能力。可解释性:学习模型提供的理解和观察的层次。 影响一个分类器错误率的因素 (1) 训练集的记录数量。生成器要利用训练集进行学习,因而训练集越大,分类器也就越可靠。然而,训练集越大,生成器构造分类器的时间也就越长。错误率改善情况随训练集规模的增大而降低。 (2) 属性的数目。更多的属性数目对于生成器而言意味着要计算更多的组合,使得生成器难度增大,需要的时间也更长。有时随机的关系会将生成器引入歧途,结果可能构造出不够准确的分类器(这在技术上被称为过分拟合)。因此,如果我们通过常识可以确认某个属性与目标无关,则将它从训练集中移走。 (3) 属性中的信息。有时生成器不能从属性中获取足够的信息来正确、低错误率地预测标签(如试图根据某人眼睛的颜色来决定他的收入)。加入其他的属性(如职业、每周工作小时数和年龄),可以降低错误率。 (4) 待预测记录的分布。如果待预测记录来自不同于训练集中记录的分布,那么错误率有可能很高。比如如果你从包含家用轿车数据的训练集中构造出分类器,那么试图用它来对包含许多运动用车辆的记录进行分类可能没多大用途,因为数据属性值的分布可能是有很大差别的。 评估方法 有两种方法可以用于对分类器的错误率进行评估,它们都假定待预测记录和训练集取自同样的样本分布。 (1) 保留方法(Holdout):记录集中的一部分(通常是2/3)作为训练集,保留剩余的部分用作测试集。生成器使用2/3 的数据来构造分类器,然后使用这个分类器来对测试集进行分类,得出的错误率就是评估错误率。虽然这种方法速度快,但由于仅使用2/3 的数据来构造分类器,因此它没有充分利用所有的数据来进行学习。如果使用所有的数据,那么可能构造出更精确的分类器。 (2) 交叉纠错方法(Cross validation):数据集被分成k 个没有交叉数据的子集,所有子集的大小大致相同。生成器训练和测试共k 次;每一次,生成器使用去除一个子集的剩余数据作为训练集,然后在被去除的子集上进行测试。把所有得到的错误率的平均值作为评估错误率。交叉纠错法可以被重复多次(t),对于一个t 次k 分的交叉纠错法,k *t 个分类器被构造并被评估,这意味着交叉纠错法的时间是分类器构造时间的k *t 倍。增加重复的次数意味着运行时间的增长和错误率评估的改善。我们可以对k 的值进行调整,将它减少到3 或5,这样可以缩短运行时间。然而,减小训练集有可能使评估产生更大的偏差。通常Holdout 评估方法被用在最初试验性的场合,或者多于5000 条记录的数据集;交叉纠错法被用于建立最终的分类器,或者很小的数据集。 二.贝叶斯分类 贝叶斯分类方法是一种具有最小错误率的概率分类方法,可以用数学公式的精确方法表示出来,并且可以用很多种概率理论来解决。 设(Ω,Θ,P)为概率空间,Ai∈Θ(i=1,2,…,n)为Ω的一个有穷剖分,且P(Ai)>0 (i=1,2,…,n),则对任意B∈Θ且P(B)>0,有 P(Ai|B)= (i=1,2,…,n) 上式称为贝叶斯公式。贝叶斯定理为我们提供了一个计算假设h的后验概率的方法 P(h|D)= 分类有规则分类和非规则分类,贝叶斯分类是非规则分类,它通过训练集训练而归纳出分类器,并利用分类器对没有分类的数据进行分类。 贝叶斯分类的特点贝叶斯分类具有如下特点: (1) 贝叶斯分类并不把一个对象绝对地指派给某一类,而是通过计算得出属于某一类的概率,具有最大概率的类便是该对象所属的类; (2) 一般情况下在贝叶斯分类中所有的属性都潜在地起作用,即并不是一个或几个属性决定分类,而是所有的属性都参与分类; (3) 贝叶斯分类对象的属性可以是离散的、连续的,也可以是混合的。 贝叶斯定理给出了最小化误差的最优解决方法,可用于分类和预测。理论上,它看起来很完美,但在实际中,它并不能直接利用,它需要知道证据的确切分布概率,而实际上我们并不能确切的给出证据的分布概率。因此我们在很多分类方法中都会作出某种假设以逼近贝叶斯定理的要求。 三.决策树分类 决策树(Decision Tree)又称为判定树,是运用于分类的一种树结构。其中的每个内部结点(internal node)代表对某个属性的一次测试,每条边代表一个测试结果,叶结点(leaf)代表某个类(class)或者类的分布(class distribution),最上面的结点是根结点。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。 构造决策树是采用自上而下的递归构造方法。决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据。二叉树的内部结点(非叶结点)一般表示为一个逻辑判断,如形式为(a = b)的逻辑判断,其中a 是属性,b是该属性的某个属性值;树的边是逻辑判断的分支结果。多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。树的叶结点都是类别标记。 使用决策树进行分类分为两步: 第1步:利用训练集建立并精化一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程。 第2步:利用生成完毕的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。 问题的关键是建立一棵决策树。这个过程通常分为两个阶段: (1) 建树(Tree Building):决策树建树算法见下,可以看得出,这是一个递归的过程,最终将得到一棵树。 (2) 剪枝(Tree Pruning):剪枝是目的是降低由于训练集存在噪声而产生的起伏。 决策树方法的评价。 优点 与其他分类算法相比决策树有如下优点: (1) 速度快:计算量相对较小,且容易转化成分类规则。只要沿着树根向下一直走到叶,沿途的分裂条件就能够唯一确定一条分类的谓词。 (2) 准确性高:挖掘出的分类规则准确性高,便于理解,决策树可以清晰的显示哪些字段比较重要。 缺点 一般决策树的劣势: (1) 缺乏伸缩性:由于进行深度优先搜索,所以算法受内存大小限制,难于处理大训练集。一个例子:在Irvine机器学习知识库中,最大可以允许的数据集仅仅为700KB,2000条记录。而现代的数据仓库动辄存储几个G-Bytes的海量数据。用以前的方法是显然不行的。 (2) 为了处理大数据集或连续量的种种改进算法(离散化、取样)不仅增加了分类算法的额外开销,而且降低了分类的准确性,对连续性的字段比较难预测,当类别太多时,错误可能就会增加的比较快,对有时间顺序的数据,需要很多预处理的工作。 但是,所用的基于分类挖掘的决策树算法没有考虑噪声问题,生成的决策树很完美,这只不过是理论上的,在实际应用过程中,大量的现实世界中的数据都不是以的意愿来定的,可能某些字段上缺值(missing values);可能数据不准确含有噪声或者是错误的;可能是缺少必须的数据造成了数据的不完整。 另外决策树技术本身也存在一些不足的地方,例如当类别很多的时候,它的错误就可能出现甚至很多。而且它对连续性的字段比较难作出准确的预测。而且一般算法在分类的时候,只是根据一个属性来分类的。 在有噪声的情况下,完全拟合将导致过分拟合(overfitting),即对训练数据的完全拟合反而不具有很好的预测性能。剪枝是一种克服噪声的技术,同时它也能使树得到简化而变得更容易理解。另外,决策树技术也可能产

4. 数据挖掘十大算法 pdf

http://www.cs.uvm.e/~icdm/algorithms/10Algorithms-08.pdf
到这个网站下载就OK

5. 三种经典的数据挖掘算法

算法,可以说是很多技术的核心,而数据挖掘也是这样的。数据挖掘中有很多的算法,正是这些算法的存在,我们的数据挖掘才能够解决更多的问题。如果我们掌握了这些算法,我们就能够顺利地进行数据挖掘工作,在这篇文章我们就给大家简单介绍一下数据挖掘的经典算法,希望能够给大家带来帮助。
1.KNN算法
KNN算法的全名称叫做k-nearest neighbor classification,也就是K最近邻,简称为KNN算法,这种分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似,即特征空间中最邻近的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法常用于数据挖掘中的分类,起到了至关重要的作用。
2.Naive Bayes算法
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。这种算法在数据挖掘工作使用率还是挺高的,一名优秀的数据挖掘师一定懂得使用这一种算法。
3.CART算法
CART, 也就是Classification and Regression Trees。就是我们常见的分类与回归树,在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。这两个思想也就决定了这种算法的地位。
在这篇文章中我们给大家介绍了关于KNN算法、Naive Bayes算法、CART算法的相关知识,其实这三种算法在数据挖掘中占据着很高的地位,所以说如果要从事数据挖掘行业一定不能忽略这些算法的学习。

6. 数据挖掘与算法是什么关系

data mining:数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。reference:数据挖掘2.聚类和分类:关于这些,我相信再好的算法,都会有一定的准确度,我没有说这些东西不重要。
3.如果你的数据量足够大,举个例子说明吧,数据挖掘是这样做的,你要判断什么样的苹果是甜的,应该这样做,去超市买苹果,总结甜苹果的特征 A B ,第二次你也去买苹果,就选具备这些特征值的。存的的问题有可能买到的苹果还不是甜的,可能原因是要同时包含特征C。但是如果你数据量足够大,足够大,你要买的苹果直接能够找到,一模一样的苹果,是不是甜的,都已经知道啦,直接取出来不就好了吗?前提是数据你想要什么有什么。

7. 数据挖掘算法是做什么的

算法是利用计算机解决问题的处理步骤,简而言之,算法就是解决问题的步骤

算法必须具备两个重要条件:

有效性:算法必须要为给定的任务给出正确的结果,即,有满足条件的输入值时,此算法一定要保证正常工作(返回正确的输出值)。表明算法有效性的方法之一就是断点。断点设置在算法的任意位置上,判断此位置是否满足给出的条件,即,程序是否正确运行。

终止性:算法中没有永远反复执行,即,没有无限循环,且不返回答案的情况。算法终止性可以用反复处理结束条件的判断变量,或经过有限次的反复一定能到达结束条件等方法证明。

8. 带你了解数据挖掘中的经典算法

数据挖掘的算法有很多,而不同的算法有着不同的优点,同时也发挥着不同的作用。可以这么说,算法在数据挖掘中做出了极大的贡献,如果我们要了解数据挖掘的话就不得不了解这些算法,下面我们就继续给大家介绍一下有关数据挖掘的算法知识。
1.The Apriori algorithm,
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。这个算法是比较复杂的,但也是十分实用的。
2.最大期望算法
在统计计算中,最大期望算法是在概率模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量。最大期望经常用在机器学习和计算机视觉的数据集聚领域。而最大期望算法在数据挖掘以及统计中都是十分常见的。
3.PageRank算法
PageRank是Google算法的重要内容。PageRank里的page不是指网页,而是创始人的名字,即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”,这个标准就是衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
3.AdaBoost算法
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,然后把这些弱分类器集合起来,构成一个更强的最终分类器。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。这种算法给数据挖掘工作解决了不少的问题。
数据挖掘算法有很多,这篇文章中我们给大家介绍的算法都是十分经典的算法,相信大家一定可以从中得到有价值的信息。需要告诉大家的是,我们在进行数据挖掘工作之前一定要事先掌握好数据挖掘需呀掌握的各类算法,这样我们才能在工总中得心应手,如果基础不牢固,那么我们迟早是会被淘汰的。职场如战场,我们一定要全力以赴。

9. 数据挖掘中的经典算法

大家都知道,数据挖掘中有很多的算法,不同的算法有着不同的优势,它们在数据挖掘领域都产生了极为深远的影响。那么大家知道不知知道数据挖掘中的经典算法都有哪些呢?在这篇文章中我们就给大家介绍数据挖掘中三个经典的算法,希望这篇文章能够更好的帮助大家。
1.K-Means算法
K-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k大于n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。这种算法在数据挖掘中是十分常见的算法。
2.支持向量机
而Support vector machines就是支持向量机,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,这种方法广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。这些优点也就成就了这种算法。

3.C4.5算法
然后我们给大家说一下C4.5算法,C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并对ID3算法进行了改进,这种改进具体体现在四个方面,第一就是在树构造过程中进行剪枝,第二就是能够完成对连续属性的离散化处理,第三就是用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足,第四就是能够对不完整数据进行处理。那么这种算法的优点是什么呢?优点就是产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
相信大家看了这篇文章以后对The k-means algorithm算法、Support vector machines、C4.5算法有了比较是深刻的了解,其实这三种算法那都是十分重要的算法,能够帮助数据挖掘解决更多的问题。大家在学习数据挖掘的时候一定要注意好这些问题。

热点内容
如何改变vivo手机账户密码 发布:2024-05-19 10:56:07 浏览:376
sql的length函数 发布:2024-05-19 10:55:15 浏览:545
数据库管理系统设计报告 发布:2024-05-19 10:49:50 浏览:684
linux怎么将驱动编译进内核 发布:2024-05-19 10:23:47 浏览:768
c语言读程序题 发布:2024-05-19 10:13:52 浏览:675
新的安卓手机怎么样下载微信 发布:2024-05-19 10:05:06 浏览:879
加9的算法 发布:2024-05-19 10:04:15 浏览:264
新名图配置怎么样 发布:2024-05-19 09:31:30 浏览:95
php获取子节点 发布:2024-05-19 09:21:18 浏览:160
php生成html 发布:2024-05-19 09:20:24 浏览:795