当前位置:首页 » 操作系统 » 最小生成树kruskal算法

最小生成树kruskal算法

发布时间: 2022-12-09 09:27:50

① 图所示是一个无向带权图,请分别按Prim算法和Kruskal算法求最小生成树.

•普里姆(Prim)算法

基本思想

假设N=(V,E)是一个具有n个顶点的连通网,T=(U,TE)是所求的最小生成树,其中U是T的顶点集,TE是T的边集。

(1)初始U={u0}(u0∈V),TE=φ;

(2)在所有u∈U,v∈V-U的边中选一条代价最小的边(u0,v0)并入集合TE,同时将v0并入U;

(3)重复(2),直到U=V为止。

此时,TE中必含有n-1条边,则T=(V,{TE})为N的最小生成树。

注意:1.最小生成树不唯一。

2.该图从节点最小开始。

② 克鲁斯卡尔算法求最小生成树

克鲁斯卡尔算法的基本思想,这是我自己结合教材理解的,难免有误,谨慎参考:
1:将图中的n顶点看成是n个集合。解释为,图中共有6个顶点,那么就有六个集合。即a,b,c,d,e,f各自分别都是一个集合。{a},{b}等。
2:按权值由小到大的顺序选择边。所选边应满足两个顶点不在同一个顶点集合内。将该边放到生成树边的集合,同时将该边的两个顶点所在的集合合并。这是书上的描述,可能有点难理解,这里解释一下:
首先,选择权值最小的边,即为图中的(a,c)边,此时a,c满足不在同一个顶点集合内,将这个边记录下来,然后合并这两个顶点的集合,即此时剩下五个顶点集合了,{a,c},{b},{d},{e},{f}
3:重复步骤2,直到所有的顶点都在同一个集合内!解释如下:
此时剩下的边中权值最小的为(d,f),满足不在同一个顶点集合,所以记录下该边,然后合并这两个顶点集合。新的顶点集合为{a,c} {b} {e} {d,f}
接着,继续重复,选择边(b,e),满足不在同一个顶点集合内,所以记录下该边,然后再次合并这两个集合,新的集合为{a,c} {d,f} {b,e}
继续,选择边(c,f),满足不在同一个顶点集合内,所以记录下该边,然后合并这两个顶点所在的集合,新集合为{a,c,d,f} {b,e}
再继续,选择权值为15的边,发现边(c,d)和边(a,d)都不满足条件不在同一个顶点集合内,所以只能选择边(b,c),记录下该边,然后合并顶点集合,新集合为{a,b,c,d,e,f},此时所有点都在同一集合内,所以结束!
4:将上面我们记录的那些边连接起来就行了!这就是最小生成树,附本人手绘:

③ 图的最小生成树算法

图的生成树和最小生成树生成树(SpanningTree):如果一个图的子图是一个包含图所有节点的树,那这个子图就称为生成树.

④ 求最小生成树 利用Kruskal算法求图G的一棵最小生成树T,用c语言

#include <cstdlib>
#include <iostream>
#include <queue>
using namespace std;

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 并查集存储结构
// Tags: 值为-1则表示为根节点
struct DisjointSet
{
int *arr;// 值为父节点下标
int number;// arr元素个数
};

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 初始化并查集结构
// Input: number - 元素的个数
// Output:s - number个元素自成一集的并查集
void InitSet(DisjointSet &s, int number)
{
s.number = number;
s.arr = new int[number];
memset(s.arr, -1, sizeof(int) * number);
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 删除并查集结构
// Input: s - 并查集存储结构
// Output:s - 回收内存后的结构
void FreeSet(DisjointSet &s)
{
if (s.arr)
{
delete []s.arr;
s.number = 0;
}
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 获得某个结点的根节点
// Input: s - 并查集; index - 结点下标
// Output: return - 根节点下标
int GetRoot(DisjointSet &s, int index)
{
while (s.arr[index] != -1)
index = s.arr[index];

return index;
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 合并index1和index2所在的两个集合
// Input: index1 - 结点1下标, index2 - 结点2下标
// Output: s - 并查集
void Union(DisjointSet &s, int index1, int index2)
{
int root1 = GetRoot(s, index1);
int root2 = GetRoot(s, index2);

s.arr[root1] = root2;
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 判断两个结点是否在同一个集合中
// Input: s - 并查集, index1 - 结点1下标, index2 - 结点2下标
// Output: return - true: 在 false: 不在
bool Find(DisjointSet &s, int index1, int index2)
{
return GetRoot(s, index1) == GetRoot(s, index2);
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 图的邻接矩阵
struct Graph
{
int **value;// 权值,-1表示无法到达
int number;
};

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 初始化一个图
// Input: g - 图的存储结构, number - 结点个数
// Output: g - 图
void InitGraph(Graph &g, int number)
{
int i = 0;

g.value = new int *[number];
for (i = 0; i < number; i++)
g.value[i] = new int[number];

g.number = number;
memset(*g.value, -1, sizeof(int) * number * number);
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 回收一个图
// Input: g - 图, number - 结点个数
// Output: g - 图的存储结构
void FreeGraph(Graph &g)
{
int i = 0;

for (i = 0; i < g.number; i++)
delete []g.value[i];

delete []g.value;

g.value = 0;
g.number = 0;
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 为图在a,b间添加一条边
// Input:e1, e2 - 两个结点, value - 权值
// Output: graph - 加边后的图
void AddEdge(Graph &graph, int e1, int e2, int value)
{
graph.value[e1][e2] =value;
graph.value[e2][e1] = value;
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 显示一条边
struct OneEdge
{
OneEdge(int _a = 0, int _b = 0, int _value = 0):
a(_a), b(_b), value(_value){}

int a, b;// 边的两个结点
int value; // 边的权值
};

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 根据权值判断两个边的大小
// Tags: 由于priority_queue是最大堆,所以这里小于号变成大于号,从而使priority_queue变成最小堆
bool operator <(OneEdge e1, OneEdge e2)
{
if (e1.value > e2.value) return true;
else return false;
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Description: 用户输入图的边
// Input: n - 加边的个数
// Output: graph - 加边后的图
// Tags: Console下用户输入点对(a, b, v)
void InputEdge(Graph &graph, int n)
{
int i = 0, a, b, v;
for (i = 0; i < n; i++)
{
scanf("%d %d %d", &a, &b, &v);
AddEdge(graph, a, b, v);
}
}

int main()
{
const int NODE_NUMBER = 6;
const int EDGE_NUMBER = 9;

Graph graph;// 图
DisjointSet set;// 并查集
priority_queue<OneEdge> edge;// 2叉堆

InitGraph(graph, NODE_NUMBER);// 初始化图
InputEdge(graph, EDGE_NUMBER);
InitSet(set, NODE_NUMBER); // 初始化并查集

int i = 0, j = 0;// 初始化堆
for (i = 0; i < NODE_NUMBER; i++)
for (j = i; j < NODE_NUMBER; j++)
if (graph.value[i][j] > 0)
edge.push(OneEdge(i, j, graph.value[i][j]));

int min_pay = 0;// 最小耗费值
int add_num = 0;// 已经添加了几个边
OneEdge min_value_edge;// 当前权值最小边

while (add_num < NODE_NUMBER - 1)
{
min_value_edge = edge.top();
// 这里是因为了STL中2叉堆的结构中有一个缓冲区
// 需要将缓冲区中的每一个元素弹出来
if(min_value_edge.value > 0 && !Find(set, min_value_edge.a, min_value_edge.b))
{
Union(set, min_value_edge.a, min_value_edge.b);
min_pay += min_value_edge.value;
add_num++;
}
edge.pop();
}

printf("%d", min_pay);
return 0;
}

这个是c++语言的,最小权值存储在min_pay中,树存储在并查集set中,且在获取最小权值路径的时候用了STL中的2叉堆,算法复杂度为O(|V| * lgE)
不知是否满足您的要求

⑤ prim和kruscal算法得到的最小生成树是否一样

应该不一样。可以用一个图根据两算法试一下,若一样,再修改图,之后应该就可以了。
(网络或者查书本更加有效……)
构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件iS,jV-S,且c[i][j]最小的边,将顶点j添加到S中。
这个过程一直进行到S=V时为止。
Kruskal算法构造G的最小生成树:将所有的边按权从小到大排序。然后从第一条边开始,依边权递增的顺序查看每一条边,并按下述方法连接2个不同的连通分支:当查看到第k条边(v, w)时,如果端点v和w分别是当前2个不同的连通分支T1和T2中的顶点时,就用边(v, w)将T1和T2连接成一个连通分支,然后继续查看第k+1条边;如果端点v和w在当前的同一个连通分支中,就直接再查看第k+1条边。这个过程一直进行到只剩下一个连通分支时为止

⑥ 最小生成树 普里姆算法和克鲁斯卡尔算法

kruskal算法的时间复杂度主要由排序方法决定,其排序算法只与带权边的个数有关,与图中顶点的个数无关,当使用时间复杂度为O(eloge)的排序算法时,克鲁斯卡算法的时间复杂度即为O(eloge),因此当带权图的顶点个数较多而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果最好!

克鲁斯卡尔算法
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

普里姆算法
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。
--以上传自http://hi..com/valyanprogramming/blog/item/1bc960e6095f9726b93820d9.html

1.Kruskal
//题目地址:http://acm.pku.e.cn/JudgeOnline/problem?id=1258

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
struct node
{
int v1;
int v2;
int len;
}e[10000];//定义边集
int cmp(const void *a,const void *b)//快排比较函数
{
return ((node*)a)->len-((node*)b)->len;
}
int v[100],a[100][100];//v为点集
void makeset(int n)
{
for(int i=0;i<n;i++)
v[i]=i;
}
int find(int x)
{
int h=x;
while(h!=v[h])
h=v[h];
return h;
}
int main()
{
int n,i,j,r1,r2,p,total;
while(scanf("%d",&n)!=EOF)
{
p=0;
total=0;
makeset(n);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
e[p].v1=i;
e[p].v2=j;
e[p].len=a[i][j];
p++;
}
}
qsort(e,p,sizeof(e[0]),cmp);
for(i=0;i<p;i++)
{
r1=find(e[i].v1);
r2=find(e[i].v2);
if(r1!=r2)
{
total+=e[i].len;
v[r1]=r2;
}
}
printf("%d\n",total);
}
system("pause");
return 0;
}

2.Prim
//题目地址同上

#include <iostream>
using namespace std;

#define M 101
#define maxnum 100001
int dis[M][M];

int prim(int n)
{
bool used[M]={};
int d[M],i,j,k;
for(i=1; i<=n; i++)
d[i] = dis[1][i];
used[1] = true;
int sum=0;
for(i=1; i<n; i++){
int temp=maxnum;
for(j=1; j<=n; j++){
if( !used[j] && d[j]<temp ){
temp = d[j];
k = j;
}
}
used[k] = true;
sum += d[k];
for(j=1; j<=n; j++){
if( !used[j] && dis[k][j]<d[j] )
d[j] = dis[k][j]; // 与Dijksta算法的差别之处
}
}
return sum;
}

int main()
{
int n,i,j;
while( cin>>n ){

for(i=1; i<=n; i++){
for(j=1; j<=n; j++){
scanf("%d",&dis[i][j]);
if( !dis[i][j] )
dis[i][j] = maxnum;
}
}

cout<<prim(n)<<endl;
}
return 0;
}

代码来自网络

⑦ kruskal算法是什么呢

kruskal算法是求加权连通图的最小生成树的算法。

kruskal算法总共选择n- 1条边,(共n个点)所使用的贪心准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若产生环路则不可能形成一棵生成树。

kruskal算法分e步,其中e是网络中边的数目。按耗费递增的顺序来考虑这e 条边,每次考虑一条边。当考虑某条边时,若将其加入到已选边的集合中会出现环路,则将其抛弃,否则,将它选入。

Kruskal算法基本思想:

每次选不属于同一连通分量(保证不生成圈)且边权值最小的顶点,将边加入MST,并将所在的2个连通分量合并,直到只剩一个连通分量。

排序使用Quicksort(O(eloge))。

检查是否在同一连通分量用Union-Find,每次Find和union运算近似常数。

Union-Find使用rank启发式合并和路径压缩

总复杂度O(eloge)=O(elogv) (因为e<n(n-1)/2)。

⑧ 最小生成树两种算法有何区别

主要有两个:
1.普里姆(Prim)算法

特点:时间复杂度为O(n2).适合于求边稠密的最小生成树。
2.克鲁斯卡尔(Kruskal)算法

特点:时间复杂度为O(eloge)(e为网中边数),适合于求稀疏的网的最小生成树。

⑨ 用kruskal算法构造例3的最小生成树是什么意思

1.kruskal算法
假设连通网N=(V,{E})。则令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),图中每个顶点自成一个连通分量。在E中选择最小代价的边,若该边依附的顶点落在T中不同的连通分量中,则将该边加入到T中,否则舍去此边而选择下一条代价最小的边,依次类推,直到T中所有顶点都在同一连通分量上为止。
示例如下:

图中先将每个顶点看作独立的子图,然后查找最小权值边,这条边是有限制条件的,边得两个顶点必须不在同一个图中,如上图,第一个图中找到最小权值边为(v1,v3),且满足限制条件,继续查找到边(v4,v6),(v2,v5),(v3,v6),当查找到最后一条边时,仅仅只有(v2,v3)满足限制条件,其他的如(v3,v4),(v1,v4)都在一个子图里面,不满足条件,至此已经找到最小生成树的所有边。
2.kruskal算法程序设计
由于我们要查找边权值最小的边,那么我们的第一步应该把边权值排序,这样就可以很快查找到权值最小的边,为了简化程序设计,我们不使用其他的数据结构,仅仅设立一个结构体数组来存储边,用一个标记数组来标记哪些边已经被选择(实际程序设计的时候没有用到标记数组);
解决了边得存储和排序问题,现在是算法最关键的就是怎么判断边的两个顶点不在一个子图里面,一个简单的办法是设立一个辅助数组f[n],初始化如下:
void Initialize()
{
int i;
for(i=0; i
f[i] = i;
}
如此初始化是为了让每个顶点各自为一个图,如果找到一条边(i,j)那么做如下标记:(i
void Mark_same(int i, int j)
{
//找到i的父节点
while(f[i] != i)
{
i= f[i];
}
f[j] = i;//将j指向其父节点
}

上面的标记过程也给了我们怎么判断两个顶点是否在一个图中找到了方法,即判断其父节点是否相同,相同则是在一个图里;
int Is_same(int i, int j)
{
//找到i的父节点
while(f[i] != i)
{
i= f[i];
}
//找到i的父节点
while(f[j] != j)
{
j= f[j];
}
return i == j ? 1 : 0;
}

注意:实际设计程序的时候不用标记已选边,因为已选择的边会讲端点集合合并为一个集合,从而在判断是否为同一集合的时候就可以排除了。

⑩ 最小生成树是什么

1.生成树从前述的深度优先和广度优先遍历算法知,对于一个拥有n个顶点的无向连通图,它的边数一般都大于n-1。生成树是指在连通图中,由n个顶点和不构成回路的n-1条边构成的树。若由深度优先遍历得到的生成树称为深度优先生成树,则由广度优先遍历得到的生成树称为广度优先生成树。再进一步分析可知,对于满足条件,连通图的n个顶点和不构成回路的n-1条边构成的生成树有多棵,换言之,图的生成树不唯一。2.最小生成树对于带权的图,其生成树的边也带权,在这些带权的生成树中必有一棵边的权值之和最小的生成树,这棵生成树就是最小(代价)生成树。

最小生成树在实际中具有重要用途,如在通信网的设计中,用顶点表示城市,用边表示两个城市之间的通信线路,边的权值表示建造通信线路的费用,这n个城市之间最多可以建n(n-1)/2条线路。如果要求在任意两个城市之间都有线路相连,且建设费用最少,即从n(n-1)/2条边中选取权值最小的n-1条,这就是最小生成树问题。2.构造最小生成树的基本原则(1)尽可能选取权值最小的边,但不能构成回路。

(2)选择n-1条边构成最小生成树。

常见的最小生成树算法有普里姆(Prim)算法和克鲁斯卡尔(kruskal)算法两种。

热点内容
shell脚本日志输出 发布:2024-05-03 06:31:04 浏览:713
服务器快捷方式是什么意思 发布:2024-05-03 06:28:18 浏览:108
我的世界怎么成为服务器最靓的仔 发布:2024-05-03 06:26:44 浏览:853
安卓手机用博雅mm1用什么软件 发布:2024-05-03 06:19:23 浏览:693
算法键值 发布:2024-05-03 06:16:52 浏览:5
qq密码哪里开启 发布:2024-05-03 06:03:23 浏览:579
全排列的递归算法 发布:2024-05-03 05:42:28 浏览:901
肥胖的算法 发布:2024-05-03 05:38:09 浏览:783
两个数据库事务 发布:2024-05-03 05:33:41 浏览:855
phpjson转 发布:2024-05-03 05:33:40 浏览:659