数据库的写入速度
❶ vb如何提高数据库写入速度
数据库的存储速度应该先一起写入很多条到cache再commit一起写入这样才能更快。写cache实际上是在处理磁盘IO的问题,这个也是数据库性能调整的很重要的一步,简单一点的就是多文件组,多数据文件(放在多个物理磁盘上,索引也放开)
当然了,数据库服务器的硬件还是有很大区别的,最明显的就是多物理硬盘,而且硬盘够快Cache够大,磁盘的单堞容量大,采用单独的专门的raid控制器……
最后,数据库的写入和VB真没有什么关系,只和写入的语句的服务器的读写性能有关系。
❷ mysql 事务写入速度很慢,有什么办法能加速
mysql5的手册中提到,插入一条记录,所需的时间比例大概是:
连接:(3)
发送查询给服务器:(2)
分析查询:(2)
插入记录:(1x记录大小)
插入索引:(1x索引)
关闭:(1)
并且表的大小以logN(B树)的速度减慢索引的插入,因此提高插入速度的方法大概有以下7种:
一个insert语句包含多个value值;
使用insert delayed方法;
使用insert into ...values(select ...from),即select的同时执行insert;
使用load data infile;
先禁掉索引,插入后再创建索引;
写锁表,插入,解锁。原因是索引缓存区仅在所有insert语句完成后才刷新到磁盘上一次;
增加key_buffer_size值来扩大键高速缓冲区。
❸ sql server读取写入速度具体多少m/s
sql server 不同版本与CPU挂钩。
一般标准版就一个1cpu左右,有钱,可以只运行2个CPU。
比如企业版,买支持1个CPU的版本不限连接数,需要20几万。何况买2个CPU.
若用盗版,估计你也就一个CPU了。查你,就挂了。
所以说你还需要考虑SQL SERVER和读取速度吗?
最快的速度能达到你复制一个文件的速度。
最慢的速度可以为0。
还有你的网络带宽,一般公司的普通网络带宽也就100Mb比特,也就是是最快速度为100/8=12.5M
❹ C# 提高 SQLite 插入数据速度
这种本地小型数据库的写入速度受很多因素影响,一种是写入的方法,另外就是硬件配置(比如硬盘速度),一般来说要一次写入多条数据,通常要么一次执行多条语句,要么放在一个事务中执行,这里讨论的很详细了http://blog.csdn.net/djun100/article/details/12135763
30000条数据个人估计应该在10—30秒内写完。
❺ 磁盘读写和数据库读写哪个效率更高
假定在程序效率和关键过程相当且不计入缓存等措施的条件下,读写任何类型的数据都没有直接操作文件来的快,不论MSYQL过程如何,最后都要到磁盘上去读这个“文件”(记录存储区等效),所以当然这一切的前提是只读 内容,无关任何排序或查找操作。
动态网站一般都是用数据库来存储信息,如果信息的及时性要求不高 可以加入缓存来减少频繁读写数据库。
两种方式一般都支持,但是绕过操作系统直接操作磁盘的性能较高,而且安全性也较高,数据库系中的磁盘性能一直都是瓶颈,大型数据库一般基于unix
系统,当然win下也有,不常用应为win的不可靠性,unix下,用的是裸设备raw设备,就是没有加工过的设备(unix下的磁盘分区属于特殊设备,
以文件形式统一管理),由dbms直接管理,不通过操作系统,效率很高,可靠性也高,因为磁盘,cache和内存都是自己管理的,大型数据库系统
db2,oracal,informix(不太流行了),mssql算不上大型数据库系统。
1、直接读文件相比数据库查询效率更胜一筹,而且文中还没算上连接和断开的时间。
2、一次读取的内容越大,直接读文件的优势会越明
显(读文件时间都是小幅增长,这跟文件存储的连续性和簇大小等有关系),这个结果恰恰跟书生预料的相反,说明MYSQL对更大文件读取可能又附加了某些操
作(两次时间增长了近30%),如果只是单纯的赋值转换应该是差异偏小才对。
3、写文件和INSERT几乎不用测试就可以推测出,数据库效率只会更差。
4、很小的配置文件如果不需要使用到数据库特性,更加适合放到独立文件里存取,无需单独创建数据表或记录,很大的文件比如图片、音乐等采用文件存储更为方便,只把路径或缩略图等索引信息放到数据库里更合理一些。
5、PHP上如果只是读文件,file_get_contents比fopen、fclose更有效率,不包括判断存在这个函数时间会少3秒左右。
6、fetch_row和fetch_object应该是从fetch_array转换而来的,书生没看过PHP的源码,单从执行上就可以说明fetch_array效率更高,这跟网上的说法似乎相反。
磁盘读写与数据库的关系:
一 磁盘物理结构
(1) 盘片:硬盘的盘体由多个盘片叠在一起构成。
在硬盘出厂时,由硬盘生产商完成了低级格式化(物理格式化),作用是将空白的盘片(Platter)划分为一个个同圆心、不同半径的磁道
(Track),还将磁道划分为若干个扇区(Sector),每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息,默认每个扇区的大小为
512字节。通常使用者无需再进行低级格式化操作。
(2) 磁头:每张盘片的正反两面各有一个磁头。
(3) 主轴:所有磁片都由主轴电机带动旋转。
(4) 控制集成电路板:复杂!上面还有ROM(内有软件系统)、Cache等。
二 磁盘如何完成单次IO操作
(1) 寻道
当控制器对磁盘发出一个IO操作命令的时候,磁盘的驱动臂(Actuator
Arm)带动磁头(Head)离开着陆区(Landing
Zone,位于内圈没有数据的区域),移动到要操作的初始数据块所在的磁道(Track)的正上方,这个过程被称为寻道(Seeking),对应消耗的时
间被称为寻道时间(Seek Time);
(2) 旋转延迟
找到对应磁道还不能马上读取数据,这时候磁头要等到磁盘盘片(Platter)旋转到初始数据块所在的扇区(Sector)落在读写磁头正下方之后才能开始读取数据,在这个等待盘片旋转到可操作扇区的过程中消耗的时间称为旋转延时(Rotational Delay);
(3) 数据传送
接下来就随着盘片的旋转,磁头不断的读/写相应的数据块,直到完成这次IO所需要操作的全部数据,这个过程称为数据传送(Data Transfer),对应的时间称为传送时间(Transfer Time)。完成这三个步骤之后单次IO操作也就完成了。
根据磁盘单次IO操作的过程,可以发现:
单次IO时间 = 寻道时间 + 旋转延迟 + 传送时间
进而推算IOPS(IO per second)的公式为:
IOPS = 1000ms/单次IO时间
三 磁盘IOPS计算
不同磁盘,它的寻道时间,旋转延迟,数据传送所需的时间各是多少?
1. 寻道时间
考虑到被读写的数据可能在磁盘的任意一个磁道,既有可能在磁盘的最内圈(寻道时间最短),也可能在磁盘的最外圈(寻道时间最长),所以在计算中我们只考虑平均寻道时间。
在购买磁盘时,该参数都有标明,目前的SATA/SAS磁盘,按转速不同,寻道时间不同,不过通常都在10ms以下:
3. 传送时间2. 旋转延时
和寻道一样,当磁头定位到磁道之后有可能正好在要读写扇区之上,这时候是不需要额外的延时就可以立刻读写到数据,但是最坏的情况确实要磁盘旋转整整
一圈之后磁头才能读取到数据,所以这里也考虑的是平均旋转延时,对于15000rpm的磁盘就是(60s/15000)*(1/2) = 2ms。
(1) 磁盘传输速率
磁盘传输速率分两种:内部传输速率(Internal Transfer Rate),外部传输速率(External Transfer Rate)。
内部传输速率(Internal Transfer Rate),是指磁头与硬盘缓存之间的数据传输速率,简单的说就是硬盘磁头将数据从盘片上读取出来,然后存储在缓存内的速度。
理想的内部传输速率不存在寻道,旋转延时,就一直在同一个磁道上读数据并传到缓存,显然这是不可能的,因为单个磁道的存储空间是有限的;
实际的内部传输速率包含了寻道和旋转延时,目前家用磁盘,稳定的内部传输速率一般在30MB/s到45MB/s之间(服务器磁盘,应该会更高)。
外部传输速率(External Transfer Rate),是指硬盘缓存和系统总线之间的数据传输速率,也就是计算机通过硬盘接口从缓存中将数据读出交给相应的硬盘控制器的速率。
硬盘厂商在硬盘参数中,通常也会给出一个最大传输速率,比如现在SATA3.0的6Gbit/s,换算一下就是6*1024/8,768MB/s,通常指的是硬盘接口对外的最大传输速率,当然实际使用中是达不到这个值的。
这里计算IOPS,保守选择实际内部传输速率,以40M/s为例。
(2) 单次IO操作的大小
有了传送速率,还要知道单次IO操作的大小(IO Chunk Size),才可以算出单次IO的传送时间。那么磁盘单次IO的大小是多少?答案是:不确定。
操作系统为了提高 IO的性能而引入了文件系统缓存(File System Cache),系统会根据请求数据的情况将多个来自IO的请求先放在缓存里面,然后再一次性的提交给磁盘,也就是说对于数据库发出的多个8K数据块的读操作有可能放在一个磁盘读IO里就处理了。
还有,有些存储系统也是提供了缓存(Cache),接收到操作系统的IO请求之后也是会将多个操作系统的 IO请求合并成一个来处理。
不管是操作系统层面的缓存还是磁盘控制器层面的缓存,目的都只有一个,提高数据读写的效率。因此每次单独的IO操作大小都是不一样的,它主要取决于系统对于数据读写效率的判断。这里以SQL Server数据库的数据页大小为例:8K。
(3) 传送时间
传送时间 = IO Chunk Size/Internal Transfer Rate = 8k/40M/s = 0.2ms
可以发现:
(3.1) 如果IO Chunk Size大的话,传送时间会变大,从而导致IOPS变小;
(3.2) 机械磁盘的主要读写成本,都花在了寻址时间上,即:寻道时间 + 旋转延迟,也就是磁盘臂的摆动,和磁盘的旋转延迟。
(3.3) 如果粗略的计算IOPS,可以忽略传送时间,1000ms/(寻道时间 + 旋转延迟)即可。
4. IOPS计算示例
以15000rpm为例:
(1) 单次IO时间
单次IO时间 = 寻道时间 + 旋转延迟 + 传送时间 = 3ms + 2ms + 0.2 ms = 5.2 ms
(2) IOPS
IOPS = 1000ms/单次IO时间 = 1000ms/5.2ms = 192 (次)
这里计算的是单块磁盘的随机访问IOPS。
考虑一种极端的情况,如果磁盘全部为顺序访问,那么就可以忽略:寻道时间 + 旋转延迟 的时长,IOPS的计算公式就变为:IOPS = 1000ms/传送时间
IOPS = 1000ms/传送时间= 1000ms/0.2ms = 5000 (次)
显然这种极端的情况太过理想,毕竟每个磁道的空间是有限的,寻道时间 + 旋转延迟 时长确实可以减少,不过是无法完全避免的。
四 数据库中的磁盘读写
1. 随机访问和连续访问
(1) 随机访问(Random Access)
指的是本次IO所给出的扇区地址和上次IO给出扇区地址相差比较大,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。
(2) 连续访问(Sequential Access)
相反的,如果当次IO给出的扇区地址与上次IO结束的扇区地址一致或者是接近的话,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。
(3) 以SQL Server数据库为例
数据文件,SQL Server统一区上的对象,是以extent(8*8k)为单位进行空间分配的,数据存放是很随机的,哪个数据页有空间,就写在哪里,除非通过文件组给每个表预分配足够大的、单独使用的文件,否则不能保证数据的连续性,通常为随机访问。
另外哪怕聚集索引表,也只是逻辑上的连续,并不是物理上。
日志文件,由于有VLF的存在,日志的读写理论上为连续访问,但如果日志文件设置为自动增长,且增量不大,VLF就会很多很小,那么就也并不是严格的连续访问了。
2. 顺序IO和并发IO
(1) 顺序IO模式(Queue Mode)
磁盘控制器可能会一次对磁盘组发出一连串的IO命令,如果磁盘组一次只能执行一个IO命令,称为顺序IO;
(2) 并发IO模式(Burst Mode)
当磁盘组能同时执行多个IO命令时,称为并发IO。并发IO只能发生在由多个磁盘组成的磁盘组上,单块磁盘只能一次处理一个IO命令。
(3) 以SQL Server数据库为例
有的时候,尽管磁盘的IOPS(Disk Transfers/sec)还没有太大,但是发现数据库出现IO等待,为什么?通常是因为有了磁盘请求队列,有过多的IO请求堆积。
磁盘的请求队列和繁忙程度,通过以下性能计数器查看:
LogicalDisk/Avg.Disk Queue Length
LogicalDisk/Current Disk Queue Length
LogicalDisk/%Disk Time
这种情况下,可以做的是:
(1) 简化业务逻辑,减少IO请求数;
(2) 同一个实例下,多个数据库迁移的不同实例下;
(3) 同一个数据库的日志,数据文件分离到不同的存储单元;
(4) 借助HA策略,做读写操作的分离。
3. IOPS和吞吐量(throughput)
(1) IOPS
IOPS即每秒进行读写(I/O)操作的次数。在计算传送时间时,有提到,如果IO Chunk Size大的话,那么IOPS会变小,假设以100M为单位读写数据,那么IOPS就会很小。
(2) 吞吐量(throughput)
吞吐量指每秒可以读写的字节数。同样假设以100M为单位读写数据,尽管IOPS很小,但是每秒读写了N*100M的数据,吞吐量并不小。
(3) 以SQL Server数据库为例
对于OLTP的系统,经常读写小块数据,多为随机访问,用IOPS来衡量读写性能;
对于数据仓库,日志文件,经常读写大块数据,多为顺序访问,用吞吐量来衡量读写性能。
磁盘当前的IOPS,通过以下性能计数器查看:
LogicalDisk/Disk Transfers/sec
LogicalDisk/Disk Reads/sec
LogicalDisk/Disk Writes/sec
磁盘当前的吞吐量,通过以下性能计数器查看:
LogicalDisk/Disk Bytes/sec
LogicalDisk/Disk Read Bytes/sec
LogicalDisk/Disk Write Bytes/sec
❻ 如何优化mysql写入速
单机MySQL数据库的优化
一、服务器硬件对MySQL性能的影响
①磁盘寻道能力 (磁盘I/O),我们现在上的都是SAS15000转的硬盘。MySQL每秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知。所以,通常认为磁 盘I/O是制约MySQL性能的最大因素之一,对于日均访 问量在100万PV以上的Discuz!论坛,由于磁盘I/O的制约,MySQL的性能会非常低下!解决这一制约因素可以考虑以下几种解决方案: 使用RAID1+0磁盘阵列,注意不要尝试使用RAID-5,MySQL在RAID-5磁盘阵列上的效率不会像你期待的那样快。
②CPU 对于MySQL应用,推荐使用DELL R710,E5620 @2.40GHz(4 core)* 2 ,我现在比较喜欢DELL R710,也在用其作Linuxakg 虚拟化应用;
③物理内存对于一台使用MySQL的Database Server来说,服务器内存建议不要小于2GB,推荐使用4GB以上的物理内存,不过内存对于现在的服务器而言可以说是一个可以忽略的问题,工作中遇到高端服务器基本上内存都超过了32G。
我们工作中用得比较多的数据库服务器是HP DL580G5和DELL R710,稳定性和性能都不错;特别是DELL R710,我发现许多同行都是采用它作数据库的服务器,所以重点推荐下。
二、MySQL的线上安装我建议采取编译安装的方法,这样性能上有较大提升,服务器系统我建议用64bit的Centos5.5,源码包的编译参数会默 认以Debgu模式生成二进制代码,而Debug模式给MySQL带来的性能损失是比较大的,所以当我们编译准备安装的产品代码时,一定不要忘记使用“— without-debug”参数禁用Debug模式。而如果把—with-mysqld-ldflags和—with-client-ldflags二 个编译参数设置为—all-static的话,可以告诉编译器以静态方式编译和编译结果代码得到最高的性能。使用静态编译和使用动态编译的代码相比,性能 差距可能会达到5%至10%之多。我参考了简朝阳先生的编译参数,特列如下,供大家参考
./configure –prefix=/usr/local/mysql –without-debug –without-bench –enable-thread-safe-client –enable-assembler –enable-profiling –with-mysqld-ldflags=-all-static –with-client-ldflags=-all-static –with-charset=latin1 –with-extra-charset=utf8,gbk –with-innodb –with-csv-storage-engine –with-federated-storage-engine –with-mysqld-user=mysql –without-我是怎么了ded-server –with-server-suffix=-community –with-unix-socket-path=/usr/local/mysql/sock/mysql.sock
三、MySQL自身因素当解决了上述服务器硬件制约因素后,让我们看看MySQL自身的优化是如何操作的。对 MySQL自身的优化主要是对其配置文件my.cnf中的各项参数进行优化调整。下面介绍一些对性能影响较大的参数。
下面,根据以上硬件配置结合一份已经优化好的my.cnf进行说明:
#vim /etc/my.cnf
以下只列出my.cnf文件中[mysqld]段落中的内容,其他段落内容对MySQL运行性能影响甚微,因而姑且忽略。
[mysqld]
port = 3306
serverid = 1
socket = /tmp/mysql.sock
skip-locking
#避免MySQL的外部锁定,减少出错几率增强稳定性。
skip-name-resolve
#禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求!
back_log = 384
#back_log参数的值指出在MySQL暂时停止响应新请求之前的短时间内多少个请求可以被存在堆栈中。 如果系统在一个短时间内有很多连接,则需要增大该参数的值,该参数值指定到来的TCP/IP连接的侦听队列的大小。不同的操作系统在这个队列大小上有它自 己的限制。 试图设定back_log高于你的操作系统的限制将是无效的。默认值为50。对于Linux系统推荐设置为小于512的整数。
key_buffer_size = 384M
#key_buffer_size指定用于索引的缓冲区大小,增加它可得到更好的索引处理性能。对于内存在4GB左右的服务器该参数可设置为256M或384M。注意:该参数值设置的过大反而会是服务器整体效率降低!
max_allowed_packet = 4M
thread_stack = 256K
table_cache = 614K
sort_buffer_size = 6M
#查询排序时所能使用的缓冲区大小。注意:该参数对应的分配内存是每连接独占,如果有100个连接,那么实际分配的总共排序缓冲区大小为100 × 6 = 600MB。所以,对于内存在4GB左右的服务器推荐设置为6-8M。
read_buffer_size = 4M
#读查询操作所能使用的缓冲区大小。和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。
join_buffer_size = 8M
#联合查询操作所能使用的缓冲区大小,和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。
myisam_sort_buffer_size = 64M
table_cache = 512
thread_cache_size = 64
query_cache_size = 64M
#指定MySQL查询缓冲区的大小。可以通过在MySQL控制台观察,如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不 够 的情况;如果Qcache_hits的值非常大,则表明查询缓冲使用非常频繁,如果该值较小反而会影响效率,那么可以考虑不用查询缓 冲;Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很多。
tmp_table_size = 256M
max_connections = 768
#指定MySQL允许的最大连接进程数。如果在访问论坛时经常出现Too Many Connections的错误提 示,则需要增大该参数值。
max_connect_errors = 1000
wait_timeout = 10
#指定一个请求的最大连接时间,对于4GB左右内存的服务器可以设置为5-10。
thread_concurrency = 8
#该参数取值为服务器逻辑CPU数量*2,在本例中,服务器有2颗物理CPU,而每颗物理CPU又支持H.T超线程,所以实际取值为4*2=8;这个目前也是双四核主流服务器配置。
skip-networking
#开启该选项可以彻底关闭MySQL的TCP/IP连接方式,如果WEB服务器是以远程连接的方式访问MySQL数据库服务器则不要开启该选项!否则将无法正常连接!
table_cache=1024
#物理内存越大,设置就越大。默认为2402,调到512-1024最佳
innodb_additional_mem_pool_size=4M
#默认为2M
innodb_flush_log_at_trx_commit=1
#设置为0就是等到innodb_log_buffer_size列队满后再统一储存,默认为1
innodb_log_buffer_size=2M
#默认为1M
innodb_thread_concurrency=8
#你的服务器CPU有几个就设置为几,建议用默认一般为8
key_buffer_size=256M
#默认为218,调到128最佳
tmp_table_size=64M
#默认为16M,调到64-256最挂
read_buffer_size=4M
#默认为64K
read_rnd_buffer_size=16M
#默认为256K
sort_buffer_size=32M
#默认为256K
thread_cache_size=120
#默认为60
query_cache_size=32M
※值得注意的是:
很多情况需要具体情况具体分析
一、如果Key_reads太大,则应该把my.cnf中Key_buffer_size变大,保持Key_reads/Key_read_requests至少1/100以上,越小越好。
二、如果Qcache_lowmem_prunes很大,就要增加Query_cache_size的值。
很多时候我们发现,通过参数设置进行性能优化所带来的性能提升,可能并不如许多人想象的那样产生质的飞跃,除非是之前的设置存在严重不合理的情况。我们 不能将性能调优完全依托于通过DBA在数据库上线后进行的参数调整,而应该在系统设计和开发阶段就尽可能减少性能问题。
【51CTO独家特稿】如果单MySQL的优化始终还是顶不住压力时,这个时候我们就必须考虑MySQL的高可用架构(很多同学也爱说成是MySQL集群)了,目前可行的方案有:
一、MySQL Cluster
优势:可用性非常高,性能非常好。每份数据至少可在不同主机存一份拷贝,且冗余数据拷贝实时同步。但它的维护非常复杂,存在部分Bug,目前还不适合比较核心的线上系统,所以这个我不推荐。
二、DRBD磁盘网络镜像方案
优势:软件功能强大,数据可在底层快设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。IO操作保持顺序,可满足数据库对数据一致 性的苛刻要求。但非分布式文件系统环境无法支持镜像数据同时可见,性能和可靠性两者相互矛盾,无法适用于性能和可靠性要求都比较苛刻的环境,维护成本高于 MySQL Replication。另外,DRBD也是官方推荐的可用于MySQL高可用方案之一,所以这个大家可根据实际环境来考虑是否部署。
三、MySQL Replication
在实际应用场景中,MySQL Replication是使用最为广泛的一种提高系统扩展性的设计手段。众多的MySQL使用者通过Replication功能提升系统的扩展性后,通过 简单的增加价格低廉的硬件设备成倍 甚至成数量级地提高了原有系统的性能,是广大MySQL中低端使用者非常喜欢的功能之一,也是许多MySQL使用者选择MySQL最为重要的原因。
比较常规的MySQL Replication架构也有好几种,这里分别简单说明下
MySQL Replication架构一:常规复制架构--Master-slaves,是由一个Master复制到一个或多个Salve的架构模式,主要用于读压力大的应用数据库端廉价扩展解决方案,读写分离,Master主要负责写方面的压力。
MySQL Replication架构二:级联复制架构,即Master-Slaves-Slaves,这个也是为了防止Slaves的读压力过大,而配置一层二级 Slaves,很容易解决Master端因为附属slave太多而成为瓶劲的风险。
MySQL Replication架构三:Dual Master与级联复制结合架构,即Master-Master-Slaves,最大的好处是既可以避免主Master的写操作受到Slave集群的复制带来的影响,而且保证了主Master的单点故障。
以上就是比较常见的MySQL replication架构方案,大家可根据自己公司的具体环境来设计 ,Mysql 负载均衡可考虑用LVS或Haproxy来做,高可用HA软件我推荐Heartbeat。
MySQL Replication的不足:如果Master主机硬件故障无法恢复,则可能造成部分未传送到slave端的数据丢失。所以大家应该根据自己目前的网络 规划,选择自己合理的Mysql架构方案,跟自己的MySQL DBA和程序员多沟涌,多备份(备份我至少会做到本地和异地双备份),多测试,数据的事是最大的事,出不得半点差错,切记切记。
❼ sql 如何向数据库中写入的速度快
不要一行一行insert,这样很慢,用事务批量写入就会快很多
原理:一行行insert数据时,每次insert都相当于一次事务提交,而显式用一个事务批量提交时,只提交一次即可,速度自然就会快很多
❽ 如何提高mongo的写入速度
几个大型数据库的写入速度都很快的,性能主要看并发量的吧,比如100w的数据写入要多少秒,mongodb在数据量大的时候,并发还是杠杠的,比mysql要强,不过mongodb在数据统计上面还是有些缺陷的,没有mysql好用,这个只是个人观点,想要更加了解mongodb还需要自己多逛逛官网论坛,多敲敲键盘
❾ VBA 按条件筛选数据库记录导出Excel(如何加快写入速度)
你这样循环查询是不科学了,上万记录会慢死,应该一次性读出所有数据,然后去填写:
'建立已经字典,把数据库内容存入字典
setdaList=CreateObject("Scripting.Dictionary")
rs.Open"selectDA,B1,S1,M1,St1,R1from`A`",conn
DoWhileNotrs.EOF()
daList.Addrs(1),Array(rs(2),rs(3),rs(4),rs(5),rs(6))
rs.MoveNext
Loop
'填写EXCEL表
fori=2toCells(rows.count,"D").End(xlUp).Row
da=Cells(i,"D")
ifdaList.Exists(da)then
Cells(i,"E").resize(5,1)=daList(da)
else
Cells(i,"E").resize(5,1)=Empty
endif
nexti
❿ ORACLE11 极限写入速度53MB/S 怎么提高
无非是 ORACLE中插入出现了IO或者并发冲突的性能瓶颈, 如果你懂ORACLE调优那么直接看AWR对症下药即可,不懂的话 请一个ORACLE调优顾问