复列算法
Ⅰ 求归并排序算法!
归并排序。
1.这里,在把数组暂时复制到临时数组时,将第二个子数组中的顺序颠倒了一下。这样,两个子数组从两端开始处理,使得他们互相成为另一个数组的“检查哨”。 这个方法是由R.Sedgewick发明的归并排序的优化。
2.在数组小于某一阀值时,不继续归并,而直接使用插入排序,提高效率。这里根据Record的结构,将阀值定位 16。
#define THRESHOLD 16
typedef struct _Record{
int data; //数据
int key; //键值
}Record;
//供用户调用的排序 函数
void Sort(Record Array[], Record TempArray, int left, int right){
TwoWayMergeSort(Array, TempArray, left, right);
}
//归并排序
void TwoWayMergeSort(Record Array[], Record TempArray[],
int left, int right)
{
if(right <= left) return; //如果只含一个元素,直接返回
if( right-left+1 ){ //如果序列长度大于阀值,继续递归
int middle = (left + right)/2;
Sort(Array, TempArray, left, middle); //对左面进行递归
Sort(Array, TempArray, left, right, middle); //对右面进行递归
Merge(Array, TempArray, left, right, middle); //合并
}
else{
//如果序列长度小于阀值,采用直接插入排序,达到最佳效果
ImproveInsertSorter(&Array[left], right-left+1);
}
}
//归并过程
void Merge(Record Array[], Record TempArray[],
int left, int right, int middle)
{
int index1, index2; //两个子序列的起始位置
int k;
复制左边的子序列
for(int i=1; i<=middle; i++){
TempArray[i] = Array[i];
}
//复制右边的子序列,但顺序颠倒过来
for(int j=1; j<=right-middle; j++){
TempArray[right-j+1] = Array[j+middle];
}
//开始归并
for(index1=left, index2=right, k=left; k<=right; k++){
if(TempArray[index1].key<TempArray[index2].key){
Array[k] = TempArray[index++];
}
else{
Array[k] = TempArray[index2--];
}
}
}
//当长度小于阀值时 使用的直接插入排序的代码
void ImproveInsertSorter(Record Array[], int size){
Record TempRecord; //临时变量
for(int i=1; i<size; i++){
TempRecord = Array[i];
int j = i-1;
//从i开始往前寻找记录i的正确位置
while(j>=0 && TempRecord.key<Array[j].key){
Array[j+1] = Array[j];
j = j-1;
}
Array[j+1] = TempRecord;
}
}
终于敲完了。。。 第一次回答问题, 只是觉得好玩`
Ⅱ java双色球排列组合算法 - 根据复式列出所有单式号码
//C ( n , k )
public class SelectK {
public static int[] nums = {1, 2, 3,4,5,6,7};
public static ArrayList<ArrayList<Integer>> result = new ArrayList<>();
public static void select(ArrayList<Integer> inner, int start, int k) {
for(int i=start; i<nums.length; i++) {
inner.add(nums[i]);
if (inner.size() == k) {
result.add(new ArrayList<>(inner));
inner.remove(inner.size()-1);
continue;
}
select(inner, i+1, k);
inner.remove(inner.size()-1);
}
}
public static void main(String[] args) {
ArrayList<Integer> inner = new ArrayList<>();
int k = 6;
select(inner, 0, k);
for(ArrayList<Integer> each: result) {
System.out.println(StringUtils.join(each, ","));
}
}
}
Ⅲ 重复排序算法,5个1,6个2,7个3,求最快全排列的算法
求全排列非递归算法(生成算法):
1。求出第一个排列111112222223333333并输出
2。从后向前找到第一个升序s[i]<s[i+1]
3。从后向前找到第一个大于s[i]的s[j]
4。将s[i]与s[j]交换
5。将s[i]以后的部分逆置,输出这个排列;
6。如已是最后一个排列333333322222211111,算法结束;否则转2。
共有排列总数为:
18!/(5!*6!*7!)=14702688 种方案
Ⅳ 实序列的FFT算法
在以上讨论FFT算法中,均假定序列x(l)为复的,但实际问题中的序列大多为实的。当然,我们可以把实序列处理成虚部为零的复序列。因此,就要引进许多零参加运算。这样一来,在机器运算时间和存储单元方面都将造成很大的浪费。在本段中,我们介绍对实序列x(l)应用FFT算法的一个有效方法。
1.同时计算两个实序列的FFT算法
设有N=4的两个实序列x1(l)与x2(l)。为了求得它们的谱X1(m)与X2(m),我们用此二实序列构造成如下复序列
物探数字信号分析与处理技术
利用上一段的方法,可以求得复序列x(l)的谱X(m)。根据(7-3-1)得到
物探数字信号分析与处理技术
上式中的m用N-m代替,则得
物探数字信号分析与处理技术
将上式两端取共轭,根据对称性有
物探数字信号分析与处理技术
根据DFT的复共轭性质,对于实序列x1(l)与x2(l),有
物探数字信号分析与处理技术
于是从(7-3-4)得到
物探数字信号分析与处理技术
联立求解(7-3-2)和(7-3-6)便得到
物探数字信号分析与处理技术
例如设有两个N=4点的实序列,
物探数字信号分析与处理技术
我们用它们构造一个N=4点的复序列
物探数字信号分析与处理技术
利用FFT算法求X(m),m=0,1,2,3(图7-3-1),
图7-3-1 N=4点的FFT算法流程图
于是得到
物探数字信号分析与处理技术
因此从式(7-3-7)得到
物探数字信号分析与处理技术
物探数字信号分析与处理技术
2.实序列的FFT算法
设有N点的实序列x(l),l=0,1,2,…,N-1。按照点的奇偶编号,将它们分成N/2个点的两个子序列
物探数字信号分析与处理技术
设x1(l)的谱与x2(l)的谱分别为X1(m)与X2(m)
物探数字信号分析与处理技术
其中
于是可以将实序列x(l)的谱X(m),用两个子序列x1(l),x2(l)的谱X1(m),X2(m)来表示
物探数字信号分析与处理技术
其中
物探数字信号分析与处理技术
注意,x1(l),x2(l)与X1(m),X2(m)均以N/2为周期,
利用x1(l)、x2(l)构成如下复序列
物探数字信号分析与处理技术
利用FFT算法可以求得复序列 的谱 。根据(7-3-7)就求得两个实子序列的谱X1(m)与X2(m)
物探数字信号分析与处理技术
有了X1(m),X2(m),根据(7-3-10)就可求得X(m)。以上就是用FFT算法求实序列x(l)的谱X(m)的方法。必须指出,用公式(7-3-10)求X(m)时,第一,两个实子序列的谱X1(m),X2(m)及复序列x珓(l)的谱珘X(m)均是以N/2为周期的周期序列;第二,由于x
(l)是实序列,根据DFT的复共轭性质有X(m)=X*(N-m),m=0,1,…,N/2,故只需求得前(N/2)+1个点的X(m),就得到全部N个点的X(m)了
例如,有N=8点的实序列,
物探数字信号分析与处理技术
首先,按点的奇偶编号分成两个实子序列,
物探数字信号分析与处理技术
其次用它们构造如下复序列,
物探数字信号分析与处理技术
用FFT算法求此复序列的谱 (图7-3-2)
图7-3-2 N=4点的FFT算法流程图
于是得到:
根据周期性,有
物探数字信号分析与处理技术
根据(7-3-12)式,
物探数字信号分析与处理技术
根据周期性,有
物探数字信号分析与处理技术
故最终由(7-3-10)得到
物探数字信号分析与处理技术
Ⅳ (2)非数值计算常用经典算法
1、交换(两量交换借助第三者) 不借助第三个变量
参考:
http://blog.csdn.net/hackbuteer1/article/details/6531775
2、累加
累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。
例如:求1+2+3+……+100的和。
sum=0;i=1;
sum=sum+i;
i++;
3、累乘
累乘算法的要领是形如“s=s*A”的累乘式,此式必须出现在循环中才能被反复执行,从而实现累乘功能。“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为1。
例如:求10!
n=10;sum=1;
n>0
sum=sum*n;
n--;
也称为“枚举法”,即将可能出现的每一种情况一一测试,判断是否满足条件,一般采用循环来实现。
例如:用穷举法输出所有的水仙花数(即这样的三位正整数:其每位数位上的数字的立方和与该数相等,比如:13+53+33=153)。
参考:
http://www.cnblogs.com/fanyong/archive/2012/03/23/2413559.html
http://www.cnblogs.com/kkun/archive/2011/11/23/2260312.html
冒泡排序
假设要对含有n个数的序列进行升序排列,冒泡排序算法步骤是:
1、从存放序列的数组中的第一个元素开始到最后一个元素,依次对相邻两数进行比较,若前者大后者小,则交换两数的位置;
2、第一趟结束后,最大数就存放到数组的最后一个元素里了,然后从第一个元素开始到倒数第二个元素,依次对相邻两数进行比较,若前者大后者小,则交换两数的位置;
3、重复步骤1 n-1趟,每趟比前一趟少比较一次,即可完成所求。
(2)选择法排序
选择法排序是相对好理解的排序算法。假设要对含有n个数的序列进行升序排列,算法步骤是:
1、从数组存放的n个数中找出最小数的下标(算法见下面的“求最值”),然后将最小数与第1个数交换位置;
2、除第1个数以外,再从其余n-1个数中找出最小数(即n个数中的次小数)的下标,将此数与第2个数交换位置;
3、重复步骤1 n-1趟,即可完成所求。
(3)插入法排序
要想很好地掌握此算法,先请了解“有序序列的插入算法”,就是将某数据插入到一个有序序列后,该序列仍然有序。插入法排序的要领就是每读入一个数立即插入到最终存放的数组中,每次插入都使得该数组有序。
参考:
http://www.cnblogs.com/fanyong/archive/2012/03/23/2413553.html
**(4)归并排序 **
即将两个都升序(或降序)排列的数据序列合并成一个仍按原序排列的序列。
例如:有一个含有6个数据的升序序列和一个含有4个数据的升序序列,将二者合并成一个含有10个数据的升序序列。
参考: http://blog.csdn.net/cwj649956781/article/details/7409635
(1)顺序查找(即线性查找)
顺序查找的思路是:将待查找的量与数组中的每一个元素进行比较,若有一个元素与之相等则找到;若没有一个元素与之相等则找不到。
例如:任意读入10个数存放到数组a中,然后读入待查找数值,存放到x中,判断a中有无与x等值的数。
(2)折半查找(即二分法)
顺序查找的效率较低,当数据很多时,用二分法查找可以提高效率。使用二分法查找的前提是数列必须有序。
二分法查找的思路是:要查找的关键值同数组的中间一个元素比较,若相同则查找成功,结束;否则判别关键值落在数组的哪半部分,就在这半部分中按上述方法继续比较,直到找到或数组中没有这样的元素值为止。
例如:任意读入一个整数x,在升序数组a中查找是否有与x等值的元素。
参考: http://blog.csdn.net/shuilan0066/article/details/7608096
Ⅵ RAFT与PBFT
【一.raft算法】
因为网上已经有大量文章对raft算法进行过详细的介绍,因此这部分只会简单的阐述算法的基本原理和流程。raft算法包含三种角色,分别是:跟随者(follower),候选人(candidate)和领导者(leader)。集群中的一个节点在某一时刻只能是这三种状态的其中一种,这三种角色是可以随着时间和条件的变化而互相转换的。
raft算法主要有两个过程:一个过程是领导者选举,另一个过程是日志复制,其中日志复制过程会分记录日志和提交数据两个阶段。raft算法支持最大的容错故障节点是(N-1)/2,其中N为 集群中总的节点数量。
国外有一个动画介绍raft算法介绍的很透彻,链接地址在这里[1]。这个动画主要包含三部分内容,第一部分介绍简单版的领导者选举和日志复制的过程,第二部分内容介绍详细版的领导者选举和日志复制的过程,第三部分内容介绍的是如果遇到网络分区(脑裂),raft算法是如何恢复网络一致的。有兴趣的朋友可以结合这个动画来更好的理解raft算法。
【二.pbft算法】
pbft算法的提出主要是为了解决拜占庭将军问题。什么是拜占庭将军问题呢?拜占庭位于如今的土耳其的伊斯坦布尔,是古代东罗马帝国的首都。拜占庭罗马帝国国土辽阔,为了达到防御目的,每块封地都驻扎一支由将军统领的军队,每个军队都分隔很远,将军与将军之间只能靠信差传递消息。 在战争的时候,拜占庭军队内所有将军必需达成一致的共识,决定是否有赢的机会才去攻打敌人的阵营。但是,在军队内有可能存有叛徒和敌军的间谍,左右将军们的决定影响将军们达成一致共识。在已知有将军是叛徒的情况下,其余忠诚的将军如何达成一致协议的问题,这就是拜占庭将军问题。
下图列出了raft算法和pbft算法在适用环境,通信复杂度,最大容错节点数和流程上的对比。
关于两个算法的适用环境和最大容错节点数,前文已经做过阐述,这里不再细说。而对于算法通信复杂度,为什么raft是o(n),而pbft是o(n^2)呢?这里主要考虑算法的共识过程。
对于raft算法,核心共识过程是日志复制这个过程,这个过程分两个阶段,一个是日志记录,一个是提交数据。两个过程都只需要领导者发送消息给跟随者节点,跟随者节点返回消息给领导者节点即可完成,跟随者节点之间是无需沟通的。所以如果集群总节点数为 n,对于日志记录阶段,通信次数为n-1,对于提交数据阶段,通信次数也为n-1,总通信次数为2n-2,因此raft算法复杂度为O(n)。
对于pbft算法,核心过程有三个阶段,分别是pre-prepare(预准备)阶段,prepare(准备)阶段和commit(提交)阶段。对于pre-prepare阶段,主节点广播pre-prepare消息给其它节点即可,因此通信次数为n-1;对于prepare阶段,每个节点如果同意请求后,都需要向其它节点再 广播parepare消息,所以总的通信次数为n (n-1),即n^2-n;对于commit阶段,每个节点如果达到prepared状态后,都需要向其它节点广播commit消息,所以总的通信次数也为n (n-1),即n 2-n。所以总通信次数为(n-1)+(n 2-n)+(n 2-n),即2n 2-n-1,因此pbft算法复杂度为O(n^2)。
流程的对比上,对于leader选举这块,raft算法本质是谁快谁当选,而pbft算法是按编号依次轮流做主节点。对于共识过程和重选leader机制这块,为了更形象的描述这两个算法,接下来会把raft和pbft的共识过程比喻成一个团队是如何执行命令的过程,从这个角度去理解raft算法和pbft的区别。
一个团队一定会有一个老大和普通成员。对于raft算法,共识过程就是:只要老大还没挂,老大说什么,我们(团队普通成员)就做什么,坚决执行。那什么时候重新老大呢?只有当老大挂了才重选老大,不然生是老大的人,死是老大的鬼。
对于pbft算法,共识过程就是:老大向我发送命令时,当我认为老大的命令是有问题时,我会拒绝执行。就算我认为老大的命令是对的,我还会问下团队的其它成员老大的命令是否是对的,只有大多数人(2f+1)都认为老大的命令是对的时候,我才会去执行命令。那什么时候重选老大呢?老大挂了当然要重选,如果大多数人都认为老大不称职或者有问题时,我们也会重新选择老大。
Ⅶ 几种常用的算法简介
1、穷举法穷举法是最基本的算法设计策略,其思想是列举出问题所有的可能解,逐一进行判别,找出满足条件的解。
穷举法的运用关键在于解决两个问题:
在运用穷举法时,容易出现的问题是可能解过多,导致算法效率很低,这就需要对列举可能解的方法进行优化。
以题1041--纯素数问题为例,从1000到9999都可以看作是可能解,可以通过对所有这些可能解逐一进行判别,找出其中的纯素数,但只要稍作分析,就会发现其实可以大幅度地降低可能解的范围。根据题意易知,个位只可能是3、5、7,再根据题意可知,可以在3、5、7的基础上,先找出所有的二位纯素数,再在二位纯素数基础上找出三位纯素数,最后在三位纯素数的基础上找出所有的四位纯素数。
2、分治法分治法也是应用非常广泛的一种算法设计策略,其思想是将问题分解为若干子问题,从而可以递归地求解各子问题,再综合出问题的解。
分治法的运用关键在于解决三个问题:
我们熟知的如汉诺塔问题、折半查找算法、快速排序算法等都是分治法运用的典型案例。
以题1045--Square
Coins为例,先对题意进行分析,可设一个函数f(m,
n)等于用面值不超过n2的货币构成总值为m的方案数,则容易推导出:
f(m,
n)
=
f(m-0*n*n,
n-1)+f(m-1*n*n,
n-1)+f(m-2*n*n,
n-1)+...+f(m-k*n*n,
n-1)
这里的k是币值为n2的货币最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m,
1)
=
f(1,
n)
=
1
对于这样的题目,一旦分析出了递推公式,程序就非常好写了。所以在动手开始写程序之前,分析工作做得越彻底,逻辑描述越准确、简洁,写起程序来就会越容易。
3、动态规划法
动态规划法多用来计算最优问题,动态规划法与分治法的基本思想是一致的,但处理的手法不同。动态规划法在运用时,要先对问题的分治规律进行分析,找出终结子问题,以及子问题向父问题归纳的规则,而算法则直接从终结子问题开始求解,逐层向上归纳,直到归纳出原问题的解。
动态规划法多用于在分治过程中,子问题可能重复出现的情况,在这种情况下,如果按照常规的分治法,自上向下分治求解,则重复出现的子问题就会被重复地求解,从而增大了冗余计算量,降低了求解效率。而采用动态规划法,自底向上求解,每个子问题只计算一次,就可以避免这种重复的求解了。
动态规划法还有另外一种实现形式,即备忘录法。备忘录的基本思想是设立一个称为备忘录的容器,记录已经求得解的子问题及其解。仍然采用与分治法相同的自上向下分治求解的策略,只是对每一个分解出的子问题,先在备忘录中查找该子问题,如果备忘录中已经存在该子问题,则不须再求解,可以从备忘录中直接得到解,否则,对子问题递归求解,且每求得一个子问题的解,都将子问题及解存入备忘录中。
例如,在题1045--Square
Coins中,可以采用分治法求解,也可以采用动态规划法求解,即从f(m,
1)和f(1,
n)出发,逐层向上计算,直到求得f(m,
n)。
在竞赛中,动态规划和备忘录的思想还可以有另一种用法。有些题目中的可能问题数是有限的,而在一次运行中可能需要计算多个测试用例,可以采用备忘录的方法,预先将所有的问题的解记录下来,然后输入一个测试用例,就查备忘录,直接找到答案输出。这在各问题之间存在父子关系的情况下,会更有效。例如,在题1045--Square
Coins中,题目中已经指出了最大的目标币值不超过300,也就是说问题数只有300个,而且各问题的计算中存在重叠的子问题,可以采用动态规划法,将所有问题的解先全部计算出来,再依次输入测试用例数据,并直接输出答案。
4、回溯法回溯法是基于问题状态树搜索的求解法,其可适用范围很广。从某种角度上说,可以把回溯法看作是优化了的穷举法。回溯法的基本思想是逐步构造问题的可能解,一边构造,一边用约束条件进行判别,一旦发现已经不可能构造出满足条件的解了,则退回上一步构造过程,重新进行构造。这个退回的过程,就称之为回溯。
回溯法在运用时,要解决的关键问题在于:
回溯法的经典案例也很多,例如全排列问题、N后问题等。
5、贪心法贪心法也是求解最优问题的常用算法策略,利用贪心法策略所设计的算法,通常效率较高,算法简单。贪心法的基本思想是对问题做出目前看来最好的选择,即贪心选择,并使问题转化为规模更小的子问题。如此迭代,直到子问题可以直接求解。
基于贪心法的经典算法例如:哈夫曼算法、最小生成树算法、最短路径算法等。
Ⅷ 一维实序列的快速傅里叶变换(FFT)
通过前面的分析,我们认识到傅里叶变换本身是复数运算,地球物理获取的数据大多数是实数,对于实数的变换原则上可直接套用复序列的FFT算法,但那样是把实数序列当作虚部为零的复数对待,显然需要存储虚部的零并进行无功的运算,既浪费了一倍的计算内存,又降低了约一半的运算速度。
为了不浪费不可不设的虚部内存和必然出现的复数运算,可否将一个实序列分为两个子实序列,分别作为实部与虚部构成一个复数序列,然后用复序列的FFT算法求其频谱,对合成的复序列频谱进行分离和加工得到原实序列的频谱呢?答案是肯定的,实现这一过程思路就是实序列FFT算法的基本思想。
1.实序列的傅里叶变换性质
对于一个N个样本的实序列x(k),其频谱为X(j),用Xr(j)和Xi(j)表示X(j)的实部和虚部, 表示X(j)的共轭,则
证明:已知 则
地球物理数据处理基础
上式两端取共轭,并注意到x(k)是实序列,则
地球物理数据处理基础
这就是实序列的傅里叶变换具有复共轭性。
其同样具有周期性,即
地球物理数据处理基础
2.一维实序列的FFT算法
(1)同时计算两个实序列的FFT算法
已知两个实序列h(k),g(k)(k=0,1,…,N-1),例如重磁异常平面数据中的两条剖面,或地震勘探中的两道地震记录,可以人为地构成一个复序列:
地球物理数据处理基础
设h(k)的频谱为H(j)=Hr(j)+iHi(j)
g(k)的频谱为G(j)=Gr(j)+iGi(j)
y(k)的频谱为Y(j)=Yr(j)+i Yi(j)
利用上节的复序列FFT算法,求得Y(j),即Yr(j)和Yi(j)已知,来寻找Hr(j),Hi(j),Gr(j),Gi(j)与Yr(j),Yi(j)之间的关系。
对式(8-22)作傅里叶变换:
地球物理数据处理基础
由于H(j),G(j)本身是复序列,所以不能仅从上式分离出H(j)和G(j)。应用Y(j)的周期性,容易得到
Y(N-j)=H(-j)+iG(-j)
上式取共轭:
地球物理数据处理基础
由于h(k),g(k)为实序列,对上式右端应用复共轭定理,得
地球物理数据处理基础
对式(8-23)展开,得
地球物理数据处理基础
对式(8-24)展开,并应用共轭关系,得
地球物理数据处理基础
把式(8-25)和式(8-26)与Y(j)=Yr(j)+iYi(j)进行对比,有
地球物理数据处理基础
整理得
地球物理数据处理基础
因此,对于两个实序列,通过构造一个复序列,应用复序列的FFT算法和式(8-28)的分离加工,即可得到两个实序列的频谱。
(2)计算2 N个数据点的实序列FFT算法
设有2N点的实序列u(k)(k=0,1,…,2N-1),首先按k的偶、奇分成两个子实序列,并构成复序列,即
地球物理数据处理基础
通过调用复序列FFT算法,求得y(k)的频谱为Y(j)。另记h(k),g(k)的频谱为H(j)和G(j)。
利用前面式(8-23)和式(8-24),容易求得
地球物理数据处理基础
下面分析用H(j),G(j)形成u(k)频谱的问题。记u(k)(k=0,1,…,2 N-1)的频谱为V(j),分析V(j),H(j),G(j)之间的关系,根据定义
地球物理数据处理基础
利用式(8-31)和式(8-34)可换算出u(k)的前N个频谱V(j)(j=0,1,…,N-1),还要设法求u(k)的后N个频谱V(N+j)(j=0,1,…,N-1)。利用实序列其频谱的复共轭和周期性:
(1)H(N)=H(0),G(N)=G(0),WN1=-1,得
地球物理数据处理基础
(2)由于u(k)(k=0,1,…,2N-1)是实序列,同样利用实序列其频谱的复共轭和周期性,用已求出的前N个频谱V(j)表示出后面的N-1个频谱V(N+j):
地球物理数据处理基础
由于0<2N-j<N,所以可从V(j)(j=0,1,…,N-1)中选出V(2N-j)(j=N+1,N+2,…,2 N-1),并直接取其共轭 即可得到V(N+1)~V(2 N-1),从而完成整个实序列频谱的计算。
总结以上叙述,一维实序列u(k)(k=0,1,…,2N-1)的FFT计算编程步骤如下:
(1)按偶、奇拆分实序列u(k),并构造复序列:
地球物理数据处理基础
(2)调用复序列的FFT计算y(k)的频谱Y(j)(j=0,1,…,N-1);
(3)用下式计算形成h(k),g(k)的频谱H(j)和G(j);
地球物理数据处理基础
(4)用下式换算实序列u(k)的频谱V(j)(j=0,1,…,2 N-1):
地球物理数据处理基础
[例3]求实序列样本u(k)={1,2,1,1,3,2,1,2}(k=0,1,…,7)的频谱。
解:按偶、奇拆分实序列u(k),按式(8-37)构造复序列c(j)(j=0,1,2,3),即
c(0)=1+2i; c(1)=1+i; c(2)=3+2i; c(3)=1+2i。
(1)调用复序列FFT求c(j)(j=0,1,2,3)的频谱Z(k)(k=0,1,2,3),得
Z(0)=6+7i; Z(1)=-3; Z(2)=2+i; Z(3)=-1。
地球物理数据处理基础
(3)运用公式(8-38)计算H(j),G(j):
地球物理数据处理基础
(4)根据式(8-39)求出u(k)(k=0,1,…,7)的8个频谱V(j)(j=0,1,…,7):
地球物理数据处理基础
地球物理数据处理基础
由上例可见,完成全部2 N个实序列频谱的计算只需做N次FFT计算,相比直接用复序列的FFT算法节省了约一半的计算量。
Ⅸ 风靡全球的十大算法
作者 | George Dvorsky
编译 | 深度学习这件小事
1 排序算法
所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。一个优秀的算法可以节省大量的资源。
稳定的
冒泡排序(bubble sort) — O(n^2) 鸡尾酒排序(Cocktail sort,双向的冒泡排序) — O(n^2) 插入排序(insertion sort)— O(n^2) 桶排序(bucket sort)— O(n); 需要 O(k) 额外空间 计数排序(counting sort) — O(n+k); 需要 O(n+k) 额外空间 合并排序(merge sort)— O(nlog n);需要 O(n) 额外空间 原地合并排序— O(n^2) 二叉排序树排序 (Binary tree sort) — O(nlog n)期望时间; O(n^2)最坏时间;需要 O(n) 额外空间 鸽巢排序(Pigeonhole sort)— O(n+k); 需要 O(k) 额外空间 基数排序(radix sort)— O(n·k); 需要 O(n) 额外空间 Gnome 排序— O(n^2) 图书馆排序— O(nlog n) withhigh probability,需要(1+ε)n额外空间不稳定的
选择排序(selection sort)— O(n^2) 希尔排序(shell sort)— O(nlog n) 如果使用最佳的现在版本 组合排序— O(nlog n) 堆排序(heapsort)— O(nlog n) 平滑排序— O(nlog n) 快速排序(quicksort)— O(nlog n) 期望时间,O(n^2) 最坏情况;对于大的、乱数列表一般相信是最快的已知排序 Introsort—O(nlog n) Patience sorting— O(nlog n+k) 最坏情况时间,需要额外的 O(n+ k) 空间,也需要找到最长的递增子串行(longest increasing subsequence)不实用的
Bogo排序— O(n× n!) 期望时间,无穷的最坏情况。 Stupid sort— O(n^3); 递归版本需要 O(n^2)额外存储器 珠排序(Bead sort) — O(n) or O(√n),但需要特别的硬件 Pancake sorting— O(n),但需要特别的硬件 stooge sort——O(n^2.7)很漂亮但是很耗时2 傅立叶变换与快速傅立叶变换
傅立叶是一位法国数学家和物理学家,原名是JeanBaptiste Joseph Fourier(1768-1830), Fourier于1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。当时审查这个论文拉格朗日坚决反对此论文的发表,而后在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。直到拉格朗日死后15年这个论文才被发表出来。谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷多的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正余弦曲线信号输入后,输出的仍是正余弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正余弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
3 Dijkstra 算法
Dijkstra算法是典型的算法。Dijkstra算法是很有代表性的算法。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。
4 RSA算法变换
RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准。今天只有短的RSA钥匙才可能被强力方式解破。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战。
5 安全哈希算法
一种对输入信息(例如消息)进行摘要的算法。摘要过程能够完成下列特点:不同的输入信息绝对不会具有相同的指纹:相近输入信息经过摘要之后的输出信息具有较大的差异,同时计算上很难生产一个与给定输入具有相同指纹的输入。(即不可逆)。
6 整数因式分解
这是在计算机领域被大量使用的数学算法,没有这个算法,信息加密会更不安全。该算法定义了一系列步骤,得到将一合数分解为更小因子的质数分解式。这被认为是一种FNP问题,它是NP分类问题的延伸,极其难以解决。许多加密协议(如RSA算法)都基于这样一个原理:对大的合数作因式分解是非常困难的。如果一个算法能够快速地对任意整数进行因式分解,RSA的公钥加密体系就会失去其安全性。量子计算的诞生使我们能够更容易地解决这类问题,同时它也打开了一个全新的领域,使得我们能够利用量子世界中的特性来保证系统安全。
7 链接分析
链接分析,源于对Web结构中超链接的多维分析。当前其应用主要体现在网络信息检索、网络计量学、数据挖掘、Web结构建模等方山。作为Google的核心技术之一,链接分析算法应用已经显现出j惊人的商业价值。
8 比例积分微分算法
你是否曾经用过飞机、汽车、卫星服务或手机网络?你是否曾经在工厂工作或是看见过机器人?如果回答是肯定的,那么你应该已经见识过这个算法了。大体上,这个算法使用一种控制回路反馈机制,将期望输出信号和实际输出信号之间的错误最小化。无论何处,只要你需要进行信号处理,或者你需要一套电子系统,用来自动化控制机械、液压或热力系统,这个算法都会有用武之地。可以这样说,如果没有这个算法,现代文明将不复存在。
9 数据压缩算法
在现今的电子信息技术领域,正发生着一场有长远影响的数字化革命。由于数字化的多媒体信息尤其是数字视频、音频信号的数据量特别庞大,如果不对其进行有效的压缩就难以得到实际的应用。因此,数据压缩技术已成为当今数字通信、广播、存储和多媒体娱乐中的一项关键的共性技术。
10 随机数生成
在统计学的不同技术中需要使用随机数,比如在从统计总体中抽取有代表性的样本的时候,或者在将实验动物分配到不同的试验组的过程中,或者在进行蒙特卡罗模拟法计算的时候等等。
Ⅹ excel同一个算法的公式在表格里多次运用,不想在每一个表格里重复列公式,怎么弄
1、拖动复制即可,对于公式中应用的不会根据行或者列增加怎变化的单元格可在前面加$,比如$A1、A$2、$A$3。
2、设置了函数的单元格复制,粘贴是默认的粘贴公式的,你也可以在复制后,在目标单元格点击右键选择“选择性粘贴”,有诸多粘贴方式。