当前位置:首页 » 操作系统 » 算法复杂度为n的算法

算法复杂度为n的算法

发布时间: 2023-01-23 08:51:20

算法的时间复杂度O(n)到底怎么算

看循环或者递归的层数。

比如该函数为O(n)

intf(intx,inty)
{
inti,j;
for(i=0;i<x;i++)printf("%d ",y);
}

而该函数为O(n2)

intf(intx,inty)
{
inti,j;
for(i=0;i<x;i++)for(j=0;j<y;j++)printf("%d ",y);
}

Ⅱ 设计n个数的排序算法,并要求计算算法复杂度

冒泡排序的算法时间复杂度上o(n^2
)
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是o(n^2)的。

Ⅲ 某算法的时间复杂度为O(n),表明该算法的:

C、执行时间与n成正比。

A选项,算法的时间复杂度与问题规模没有任何关系。故A选项错误。

B选项,任何算法的执行时间都几乎不可能完全等于。故B选项错误。

C选项,如果一个算法的时间复杂度为,的值增加,的值也会随之增加,那么执行时间肯定就是与成正比的。故C选项正确。

D选项,一个算法的时间复杂度与这个问题的数据规模没有关系,故D选项也错误。



(3)算法复杂度为n的算法扩展阅读:

算法的时间复杂度通常用大O符号表述,定义为T[n] = O(f(n))。称函数T(n)以f(n)为界或者称T(n)受限于f(n)。

如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n)。T(n)称为这一算法的“时间复杂度”。当输入量n逐渐加大时,时间复杂度的极限情形称为算法的“渐近时间复杂度”。

Ⅳ 求计算算法的复杂度 (Python写的逻辑)

(a) 算法复杂度为O(n),因为只有一个while循环,且i<n,所以复杂度是线性级,仅跟n有关
(b) 算法复杂度为O(n²),实际上算法复杂度为nxn/2 = n²/2,因为有for循环的嵌套
(c) 算法复杂度为O(n),因为只有while循环,尽管里面i=ix2,但是这是常数级操作
(d) 算法复杂度为O(log i),这是对数级操作,每次i除以2,所以是log(i)base(2)
(e) 算法复杂度为O(n log n)
(f) 算法复杂度为O(2^i),这是一个递归算法,为指数级
(g) 算法复杂度为O(n 2^n),这是一个交换数据的算法,是一个递归+一个for 循环

Ⅳ 时间复杂度o(nlogn)的算法是什么

时间复杂度o(nlogn)的算法是采用“分治思想”,将要排序的数组从中间分成前后两个部分,然后对前后两个部分分别进行排序,再将排序好的两部分合并在一起,这样数组就有序。

每次划分区域都选择中间点进行划分,所以递归公式可以写成:T(n) = T(n/2) + T(n/2) + n, T(1) = C(常数) //每次合并都要调用Merge()函数,时间复杂度为O(n),等价T(n) = 2kT(n/2k) + k * n, 递归的最终状态为T(1)即n/2k = 1,所以k = log2n。

原理分析:

1、运用了分治的思想。选取分区值,将待排序列分为两个前后两部分,前部分数据元素的值小于等于分区值,后部分的数据元素的值大于等于分区值;继续对前后两部分分别进行分区,直到分区大小为1。

2、交换操作的执行次数可以由时间复杂度分析过程得出,Merge()中总的交换次数为n * logn,因为不管两个子序列的大小,子序列中的各个元素都会先放入临时数组temp中,再重新放回原序列;比较操作的次数小于等于交换操作次数,最大交换次数为n * logn。

Ⅵ 【算法笔记】算法的平均时间复杂度A(n)的公式及示例

算法平均时间复杂度计算公式

其中:

举例:检索问题,数组 有 个元素,每个元素为从1到n的整数。若待检索元素在 中(例如1,2,3,4,5),则比较次数为其本身。若待检索元素位于 的空隙中(例如0.5,1.5,2.5),则比较次数为 ,也就是从头到尾比较一遍。若位于 和位于 的空隙的待检索元素数量各占一半,检索的平均时间复杂度是多少?

位于 的情况:假设 在 的概率为 ,则 在每个位置的概率为 ,若 的值为 ,则需要比较 次。平均时间复杂度为

位于 的空隙的情况: 不在 的概率为 ,每种情况都要比较 次,则该情况的平均时间复杂度为

综上,结合等差数列求和公式有:

当 ,

Ⅶ 如何计算算法复杂度

问题一:程序中的时间复杂度是怎么计算的? 算法复杂度的介绍,见网络:
ke./view/7527
时间复杂度
时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
计算方法
1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
例:算法:
for(i=1;i>

问题二:如何计算算法的时间复杂度 求解算法的时间复杂度的具体步骤是:⑴找出算法中的基本语句;算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。⑵计算基本语句的执行次数的数量级;只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。⑶用大Ο记号表示算法的时间性能。将基本语句执行次数的数量级放入大Ο记号中。如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:for(i=1;i 问题三:C语言算法的时间复杂度如何计算啊? 看看这个 每个循环都和上一层循环的参数有关。 所以要用地推公式: 设i(n)表示第一层循环的i为n时的循环次数,注意到他的下一层循环次数刚好就是n,分别是0,1,2...n-1 所以,把每一层循环设一个函数分别为:j(n),k(n),t(n) 则有 i(n)=j(0)+...+j(n-1) j(n)=k(0)+...+k(n-1) k(n)=t(0)+...+t(n-1) i(0)=j(0)=k(0)=0 t(n)=1 而总循环数是i(0)+i(1)...+i(n-1) 可以根据递推条件得出准确值 所以算法复杂度是O(i(0)+i(1)...+i(n-1))
记得采纳啊

问题四:如何计算算法的时间复杂度和空间复杂度 是说明一个程序根据其数据n的规模大小 所使用的大致时间和空间
说白了 就是表示 如果随着n的增长 时间或空间会以什么样的方式进行增长

for(int i = 0; i 问题五:一个算法的时间复杂度是什么函数? 关于n的函数,n是问题的规模

问题六:请问递归算法的时间复杂度如何计算呢? 递归算法的时间复杂度分析 收藏
在算法分析中,当一个算法中包含递归调用时,其时间复杂度的分析会转化为一个递归方程求解。实际上,这个问题是数学上求解渐近阶的问题,而递归方程的形式多种多样,其求解方法也是不一而足,比较常用的有以下四种方法:
(1)代入法(Substitution Method)

代入法的基本步骤是先推测递归方程的显式解,然后用数学归纳法来验证该解是否合理。

(2)迭代法(Iteration Method)

迭代法的基本步骤是迭代地展开递归方程的右端,使之成为一个非递归的和式,然后通过对和式的估计来达到对方程左端即方程的解的估计。

(3)套用公式法(Master Method)

这个方法针对形如“T(n) = aT(n/b) + f(n)”的递归方程。这种递归方程是分治法的时间复杂性所满足的递归关系,即一个规模为n的问题被分成规模均为n/b的a个子问题,递归地求解这a个子问题,然后通过对这a个子间题的解的综合,得到原问题的解。

(4)差分方程法(Difference Formula Method)
可以将某些递归方程看成差分方程,通过解差分方程的方法来解递归方程,然后对解作出渐近阶估计。

下面就以上方法给出一些例子说明。

一、代入法

大整数乘法计算时间的递归方程为:T(n) = 4T(n/2) + O(n),其中T(1) = O(1),我们猜测一个解T(n) = O(n2 ),根据符号O的定义,对n>n0,有T(n) >

问题七:如何计算时间复杂度 如何计算时间复杂度
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大 O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以 上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n^2)
2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i>

问题八:算法的时间复杂度 以下是考研时常用的计算方法,实际上最简单的方法采用多项式最大阶的方法,如:
f(n)=a1*n^m+a2*n^(m-1)+.......an-1*n+an
的时间复杂度为:T(f(n))=O(n^m)
采用时间步法,找一个函数g(n),找一个自然数n0,使f(n)T(n)=O(n)
(2)6n^2-12n+1=12)=7n^2=7*g(n)==>T(n)=O(n^2)
(3)n(n+1)(n+2)/6=n0=2时)=n0=4)=2*g(n)===>T(n)=O(n^3)
(4)2^(n+1)+100nT(n)=O(2^n)

Ⅷ 算法的时间复杂度如何计算

求解算法的时间复杂度的具体步骤是:
⑴ 找出算法中的基本语句;
算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
⑵ 计算基本语句的执行次数的数量级;
只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
⑶ 用大Ο记号表示算法的时间性能。
将基本语句执行次数的数量级放入大Ο记号中。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
常见的算法时间复杂度由小到大依次为:
Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
这只能基本的计算时间复杂度,具体的运行还会与硬件有关。
参考博客地址:http://blog.csdn.net/xingqisan/article/details/3206303

热点内容
随机启动脚本 发布:2025-07-05 16:10:30 浏览:535
微博数据库设计 发布:2025-07-05 15:30:55 浏览:31
linux485 发布:2025-07-05 14:38:28 浏览:310
php用的软件 发布:2025-07-05 14:06:22 浏览:760
没有权限访问计算机 发布:2025-07-05 13:29:11 浏览:436
javaweb开发教程视频教程 发布:2025-07-05 13:24:41 浏览:723
康师傅控流脚本破解 发布:2025-07-05 13:17:27 浏览:246
java的开发流程 发布:2025-07-05 12:45:11 浏览:696
怎么看内存卡配置 发布:2025-07-05 12:29:19 浏览:288
访问学者英文个人简历 发布:2025-07-05 12:29:17 浏览:837