当前位置:首页 » 操作系统 » 螺旋式算法

螺旋式算法

发布时间: 2023-03-19 14:36:11

❶ 数学思想方法的演算方法

既然数学的本质是经验性与演绎性在实践基础上的辩证统一,那么能否对数学的本质进一步作出哲学概括呢?即用简洁的语言表达数学的本质,就像拉卡托斯说的“数学是拟经验的科学”那样。为此,本文提出,数学是一门演算的科学(其中“演”表示演绎,“算”表示计算或算法,“演算”表示演与算这对矛盾的对立统一)。在此,必须说明三点:何以如此概括?“演算”能否反映数学研究的特点以及能否反映数学本质的辩证性?
1.何以如此概括?
首先,从理论上讲,数学本质是数学观的一个重要问题,而数学观与数学方法论是统一的,所以可以通过方法论来分析数学观。数学认识对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在,数学研究除了像自然科学那样仅仅采用观察、实验、归纳的方法外,还必须采用演绎法。因此,可以通过研究数学认识方法来反映数学认识的本质。
其次,从事实上看,数学知识的经验性表明数学是适应社会实践需要而产生的,是解决实际问题的经验积累。社会实践提出的数学问题都要求给出定量的回答,而要作出定量的回答就必须进行具体的计算,所以计算表征了数学经验知识的特点。而对于各种具体的计算方法及其一般概括的“算法”(包括公式、原理、法则),也都可以用“算”来概括、反映数学知识的经验性在方法论上的计算或算法特点。同时,数学知识的演绎性反映数学认识在方法论上的演绎特点,所以,可以用“演”来反映数学知识的演绎性。因此,我们可以用“演算”来反映数学本质的经验性与演绎性。
第三,为避免概括数学本质的片面性。自从数学分为应用数学与纯粹数学以后,许多数学家认为,数学来源于经验是很早以前的事,现在已经不是了,而是变成一门演绎科学了。而一般人也接受这种观点。但这样强调数学的演绎性特点,却忽视了数学具有经验性质的一面。为了避免这种片面性,这里特别通过数学方法论来概括和反映数学的本质。
2.“演算”反映了数学研究的特点
数学研究对象的特殊性产生了数学研究特有的问题:计算与证明。它们成为数学研究的两项主要工作。关于“证明”。数学对象的特殊性使得数学成果不能像自然科学成果那样通过实验来证实,而必须通过逻辑演绎来证明,否则数学家是不予承认的。所以,数学家如何把自己的成果表达成一系列的演绎推理(即证明)就成为重要工作。证明成为数学研究工作的重要特点。关于“计算”。数学本身就是起源于计算,即使数学发展到高度抽象理论的今天,也不能没有计算。数学家在证明一个定理之前,必须经过大量的具体计算,进行各种试验或实验,并加以分析、归纳,才能形成证明的思路和方法。只有在这时候,才能从逻辑上进行综合论证,表达为一系列的演绎推理过程,即证明。从应用数学来看,更是需要大量的计算,所以人们才发明各种计算机。在电子计算机广泛应用的今天,计算的规模更大了,以致在数学中出现数值实验。因此,计算成为数学研究的另一项重要工作。
既然“计算与证明”是数学研究的两项主要工作和特点,那么“数学是演算的科学”这一概括是否反映出这一特点?“证明”是从一定的前提(基本概念和公理)出发,按照逻辑规则所进行的一种演绎推理。而“演(绎)”正可以反映“证明”这一特点。而“算”显然更可以直接反映“计算”或“算法”及其特点。由此可见,“演算”反映了数学研究的计算和证明这两项基本工作及其特点。
3.“演”与“算”的对立统一反映数学性质的辩证性
首先,从数学发展的宏观来看。数学史告诉我们,数学起源于“算”,即起源于物体个数、田亩面积、物体长度等的计算。要计算就要有计算方法,当各种计算方法积累到一定数量的时候,数学家就进行分类,概括出适用于某类问题的计算公式、法则、原理,统称为算法。所以数学的童年时期叫做算术,它表现为一种经验知识。当欧几里得建立数学史上第一个公理系统时,才出现“演绎法”。此后,“演”与“算”便构成了数学发展中的一对基本矛盾,推动着数学的发展。这在西方数学思想史中表现最为突出。大致说来,在欧几里得以前,数学思想主要是算法;欧几里得所处的亚历山大里亚前期,数学主要思想已由算法转向演绎法;从亚历山大里亚后期到18世纪,数学主要思想再次由演绎法转向算法;19世纪到20世纪上半叶,数学主要思想又由算法转向演绎法;电子计算机的应用促进了计算数学的发展及其与之交叉的诸如计算流体力学、计算几何等边缘学科的产生以及数学实验的出现。这一切又使算法思想重新得到发展,成为与演绎法并驾齐驱的思想。可以预言,随着计算机作为数学研究工具地位的确立,算法思想将成为今后相当长一个时期数学的主要思想。算法思想与演绎思想在数学发展过程中的这种更迭替代,从一个侧面体现了“演”与“算”这对矛盾在一定条件下的相互转化。所以,有的数学史工作者从方法论的角度把数学的发展概括为算法倾向与演绎倾向螺旋式交替上升的过程。
其次,从数学研究的微观来看。“演”中有“算”,这充分表明了我们上面所分析的“证明”中包含着“计算”,包含着“算”向“演”转化。“算”中有“演”,这充分表现在算术和代数中。算术和代数表现为“算”,但是,算术和代数的“算”,并不是自由地计算,而是要遵循基本的四则运算及其规律,即计算要按照一定的计算规则,就像证明要遵守推理规则一样。所以“算”中包含着“演”,包含着“演”向“算”的转化。“演”与“算”的这种对立统一更充分地体现在计算机的数值计算和定理证明中。这种“算”与“演”的对立统一关系,从一个侧面反映了数学的经验性与演绎性的辩证关系,反映了数学性质的辩证性。
综上所述,既然“演算”概括了数学研究的特点,反映了数学的经验性与演绎性及其辩证关系,我们就有理由把它作为对数学本质的概括,说“数学是一门演算的科学”。

❷ 普通外螺纹的底径怎么算

普通外螺纹的底径的计算公式:

螺纹底径=公称直径—1.08252*螺距。

以M30×2的螺纹为例子:

螺纹公称直径 d=30;

螺纹中径 d2=d-0.6495*t=30-0.64945*2(t是螺距)=28.7011;

螺纹小径 d1=d-1.0825*t=30-1.0825*2=27.835;

以上是牙形为 60°算法。

一般在车削加工时对外螺纹底径的计算简化为:公称直径-螺距-0.2~0.5mm (0.2~0.5mm 根据公称直径的大小确定,不同的直径大小不相同的数值)

d3=d-2(0.5P+ac),d3为小径,d为公称直径,P为螺距,ac为牙顶间隙;

d1=d,d1为大径,d为公称直径;

d2=d-0.5P,d2为中径,d为公称直径,P为螺距。

(内螺纹):D4=d+2ac,D4为大径,d为公称直径,ac为牙顶间隙;

D1=d3+2ac=d-P,D1为小径,d为公称直径,P为螺距;

D2=d2=d-0.5P,D2为中径,d为公称直径,P为螺距。

即内螺纹的大/小径等于外螺纹大/小径加上两倍郑散牙顶间隙,内外螺纹的中径相等。

拓展资料:

螺纹的主要几何参数 :

1、外径(大径),与外螺纹牙顶或内螺纹牙底相重合的假想圆柱体直径。螺纹的公称直径即大径。

2、内径(小径),与外螺纹牙底或内螺纹牙顶相重合的假想圆柱体直径。

3、中径,母线通过牙型上凸起和沟槽两者宽度相等的假想圆柱体直径。、

4、螺距,相邻牙在中径线上对应两点间的轴向距离。

5、导程,同一螺旋线上相邻牙在中径线上对应两点间的轴向距离。

6、牙型角,螺纹牙型上相邻两牙侧间的夹角。

7、螺纹升角,中径圆柱上螺旋线的切线与垂直于螺纹轴线的平面之间的夹角。

8、工作高度,两相配合螺纹牙型上相激汪互重合部分在垂直于螺纹轴线方向上的距明丛仔离等。螺纹的公称直径除管螺纹以管子内径为公称直径外,其余都以外径为公称直径。螺纹已标准化,有米制(公制)和英制两种。国际标准采用米制,中国也采用米制。

❸ 股票螺旋周期的计算

<转>
用螺旋历法预测股票涨跌周期

螺旋历法:用神奇数字(1、2、3、5、8、13、21、34.....)的开方乘以月球围绕地球一周的天数(即农历一个月)得到的天数。

螺旋历法认为当市场运行到以上天数时就会出现逆转。

螺旋历法的基本公式就是螺旋从中心开始按费氏比率1.618向外发展,它的形状从不改变。螺旋的大小由中心点和起始点决定,每当螺旋旋转了一周,它就可增长1.618倍。
对数螺旋的基本公式为:Cota=2/π×Inp

民谚有“晴冬至,烂年关”一说。即冬至下雨,正月初一必晴。据气象资料,数百年来无一例外。可见此谚暗合天道,指明周期的必然性。可惜2002年发生意外,冬至和正月初一都是大晴天。是否是小概率事件,或周期异变。

如是前者,可以不加理会。如是后者,则关系重大。用于股市,表明数年来既定周期不再有效,股市已迈入新周期。若以老方法测市将大错特错。

周期有其发展——消亡的模式。每一周期必有一螺旋中心,近中心关键点较密集,远中心关键点较松散,且中心到两端的“长度”相近。

原来想论述神奇数字的运用,忽然觉得话还是从头说比较易懂。

时间回溯到公元前5世纪,古希腊的雅典,世纪八大建筑奇迹之一 —— 巴特农神庙正在建造。建筑师应用了黄金分割率,即费波那基数的比例之一。

时间前进到公元1202年,意大利斜塔之城—比萨,罗奈德·费波那基。费氏和罗马皇帝论道时,提出着名的“兔子繁衍问题”。

时间前进到公元1844年,加·拉姆研究欧几里德学说,提出Fn与算法的关系——费波那基数列开始应用。

时间前进到公元1905年,笛莫傅提出Fn=1/5{〔(1+√5)/2〕’-〔(1-√5)/2〕’}其中 ’表示 n 。等式由比奈证明,因此称为比奈公式。——费波那基数比例之一的通项公式见诸于世。

此时出现了费波那基数列的升华,鲁卡斯在狂飙突进后,正式提出“费波那基数列”这一称呼。伟大的鲁卡斯——鲁卡斯在数学界不算伟大,但在证券市场技术流派眼里他将十分伟大,这是我的预言。此言将在数年后变成现实。因为鲁卡斯在对费氏数研究的同时,发表了辉煌的“鲁卡斯数列”。(

这里要解释一下什么是费氏数列。费氏数列如下1、1、2、3、5、8、13、21……即任意相邻两项的和等于下一项。再解释一下什么是鲁卡斯数列。鲁卡斯数列如下1、3、4、7、11、18、29、47……他有费氏数列的一般特征,但又不同。

为什么说“鲁卡斯数列是辉煌的”,因为有了鲁氏数列、费氏数列两组“神奇数列”的相互验证,使一些分析可以去“孤”从“众”,预测中的误差点将大副减少。预测成功率提高实不能以道里计算。

费氏数比率:∮=1.618 , ∮*∮=2.618 , 1/∮=0.618……

将上述比率用于空间点位(用于Y轴),联系形态即为波浪理论。

将上述比率用于时间(用于X轴),即为螺旋历法。

怎么将鲁卡斯数用于股市?我们向嘉路兰学习。遵循他的思路或许有所收获。

嘉路兰于87股灾后发现了着名的螺旋历法。他的灵感可能来源于波浪理论,艾略特将形态与费氏比率∮结合。嘉路兰于是想到了将∮用于时间。

他遇到第一个问题——费氏数在第11项后变化越来越大,由于相邻两数差值太大,使许多关键点被忽略。嘉路兰用平方根把变化速度减缓。

他遇到第二个问题——费氏方根变化又太小了。前10项几乎粘在一起,用于测算意义不大。嘉路兰想到在平方根前乘一个常数。

他遇到第三个问题——用哪个数值作这个常数。在大量的比较、计算、总结后。嘉路兰幸运的发现了太阴月周期与股市的关系。这只能解释为幸运之神的眷顾,他成功了。

这个神奇的公式Bn=E√Fn。即周期日数是月球从圆到缺一循环时与费氏方根的乘积。E是太阴月周期29.5306天。用这么多笔墨解释嘉路兰的思维,是为将鲁卡斯数依样画葫芦,仿制另一个螺旋历法——鲁卡斯螺旋历。

阿里郎老师的螺旋历法

螺旋历法: 29.5
12
10
15
18
22 ...每月多少天都要计算在内。

螺旋历法只是一个辅助的方法,大家可以看一个股票比如000028,咱们找到最近相应的一个低点,2006年的11月13日, (11月份是小月30天,30天减去已经过去的13天,11月还剩下17天,这样第一个基数29.5减去17等于12.5日大约在12月13日.)那么000028下个变盘日大约就是12月13日。

以12月13日为准加下个基数12,那么下个变盘日就是12月25日.再在此基础上加上下个基数10,下个变盘日就是1月4日。

以1月4日为准再加下个基数15.得出的下个变盘日是1月19日。

以1月19日为准再加上18.得出的下一个变盘日是2月6日...

依次类推,这样对股票的敏感位置基本可以做到心中有数,结合当时股票的趋势和指标可以帮助大家分析股票的走势。

螺旋历法既可以找相对近期低点为准,也可以找近期相对高点为准计算。

❹ 请问在线师傅,斜齿轮的螺旋的简易计算方法

1、有螺旋角的斜齿轮主要是为了增加齿轮的重合度、使运转保持平稳的作用,但是,过大的螺旋角又会悉历产生严睁茄搜重的轴向力,所以,在保持最小重合度的情况下,尽量减小齿轮的螺旋角β。
2、在设计中,一般齿轮的螺旋角β=8度—16度为宜,人字齿轮的螺旋角β=25度—40度
3、外啮合的齿轮,两齿轮的螺旋角旋向相反
4、内啮合的齿轮,两齿轮的螺旋角旋向相同
5、满纳激足重合度时的最小螺旋角算法可按照下列算式进行计算:
tgβ=πD/Zb
式中:
π——圆周率(π=3.14)
β——螺旋角
D—分度圆直径
Z—齿数
b—轮齿宽度
6、对于测绘加工的齿轮来说,螺旋角的大小只能进行测量了,因为涉及到与另外一个齿轮的啮合问题,,如果是两个啮合的齿轮一起重新制作,则可以根据上面的计算公式确定一个

❺ 螺旋线长度的计算方法

绕圆柱的螺线长度很简单,将圆柱的侧面展开,结果就是一段段直线段,将这些直线段的长度求和即可。
圆锥螺线展开后就很麻烦,似乎没有初等算法。

高等数学的话,可以建立直角坐标系后,将xyz都表示成一个参数t的函数,然后曲线长度就是一个积分。

从圆锥底面中心开始,设沿高的方向为z轴,那么x和y可以表示成z的函数x=x(z),y=y(z),z从0到h。
于是曲线长度就是∫^h_0 √(x'^2+y'^2+1)dz。

❻ 求螺旋箍筋计算方法,但是可以帮我把字母跟数字表明意思吗我看不懂。谢谢了......

楼上说前面2个公式意义不大,纯属乱扯!第一个公式是最精确的算法只不过太麻烦了!用的很少,至于第2个和第3个公式都是用勾股定理来的;把螺旋箍筋的一段想象成直角三角形!但是不是完全精确的。第一个公瞎没式你不用管他怎么来的,用的时候你直接带值进去就可以了!!后面2个公式里面的L表茄神扰示的是总长颤旦其他的和前面第一个基本都一样。

❼ 柱外侧纵向钢筋配筋率谁知道正确的计算方法。

配筋率都是一样的算法,想知道的面积配筋率就是这个截面内的钢筋面积除以这整个截茄简面的面积ρ=As/bh0。
配筋率,影响构件受力特征的一个参数,指钢筋混凝土构件中纵向受力钢筋的面积与构件的有效面积之比。
【基本含义】
慎纳宽配筋率是钢筋混凝土构件中纵向受力(拉或压)钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。受拉钢筋配筋率、受压钢筋配筋率分别计算。钢筋混凝土构件最小配筋率如下:
受压构件:全部纵向钢筋 0.6%;一侧纵向钢筋 0.2%
受弯构件、偏心受拉、轴心受拉构件一侧的受拉钢筋 0.2%
【计算公式】
1.ρ=A(s)/A。 此处括号内实为角标,,下同。式中:A(s)为受拉或受压区纵向钢筋的截面面积;A根据受力性质不同而含义不同,分别为:1. 受压构件的全部纵筋和一侧纵向钢筋以及轴心受拉构件、小偏心受拉构件一侧受拉钢筋的配筋率计算中,A取构件的全截面面积;2. 受弯构件、大偏心受拉构件一侧受拉钢筋的配筋率计算中,A取构件的全截面面积扣除受压翼缘面积(b'(f)-b)h'f后的截面面积。
最小配筋率是指,当宽亮梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρ(min)。最小配筋率是根据构件截面的极限抗弯承载力M(u)与使混凝土构件受拉区正好开裂的弯矩M(cr)相等的原则确定。最小配筋率取0.2%和0.45f(t)/f(y)二者中的较大值。
最大配筋率ρ (max)=ξ(b)f(c)/f(y),结构设计的时候要满足最大配筋率的要求,当构件配筋超过最大配筋率时塑性变小,不利于抗震。
配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。
2.箍筋面积配筋率:面积配筋率(ρsv):
配置在同一截面(b×s,b为矩形截面构件宽度,s为箍筋间距)内箍筋各肢的全部截面面积与该截面面积的的比率。 其中,箍筋面积Asv=单肢箍筋的截面面积Asv1×肢数n。
计算公式为:ρsv=Asv/(bs)=(n×Asv1)/(b×s)。
最小配筋率:梁:ρsv,min=0.24×ft/fyv;
弯剪扭构件:ρsv,min=0.28×ft/fyv。箍筋体积配筋率
体积配箍率(ρv):箍筋体积与相应的混凝土构件体积的比率。
计算公式为:方格网式配筋:ρv=(n1×As1×l1+n2×As2×l2)/(Acor×s);螺旋式配筋:ρv=(4×Ass1)/(dcor×s)(见《混凝土结构设计规范GB50010-2002》第90页)。
式中,l1和l2为混凝土核心面积内的长度,即需减去保护层厚度。
柱箍筋加密区最小配筋率计算公式为:ρv,min=λv×fc/fyv;λv为最小配箍特征值,fc为混凝土轴心抗压强度设计值,fyv为箍筋及拉筋抗拉强度设计值。其中,fc≥16.7N/mm^2(《混凝土结构设计规范》、《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》均有此规定),fyv≤360N/mm^2(《混凝土结构设计规范》无此规定,《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》有此规定)。(建筑抗震设计规范GB50011-2010已取消fyv≤360N/mm^2的规定。)

❽ 螺距怎么计算

螺距计算方法如下:

1、公制螺纹,如M20X1.5,其中1.5mm就是螺距,不用计算;

2、英制和美制螺纹的算法是,用25.4mm除以一英寸内的牙数,就是螺距。

对于普通螺纹,牙型角为60度,那么就有了牙高=0.833螺距的公式,而螺距是不能用公式算出来的,而是国标规定的定值,不同直径的螺纹有着不同的螺距,而且有粗扣细扣之分,只能死记硬背。

螺距是国家规定的,牙型角60度是定值,已有两个已知条件,那么用三角函数即可得出牙高=0.833螺距。

拓展资料

螺距:沿螺旋线方向量得的,相邻两螺纹之间的距离。一般指在螺纹螺距中螺纹上相邻两牙在中径线上对应两点间的轴向距离。

螺纹导程,是螺纹上任意一点沿同一条螺旋线转一周所移动的轴向距离,符号S。单线螺纹的螺距等于导程;如果是双线螺纹,由图可知一个导程包括两个螺距,则螺距等于导程/2;若是三线螺纹,则螺距等于导程/3。因此螺距和导程之间的关系可以用下式表示:螺距=导程/线数,即S=nP。

❾ 为什么中国古代数学会形成算法思想它对后世的影响如何

数学的发展包括了两大主要活动:证明定理和创造算法。定理证明是希腊人首倡,后构成数学发展中演绎倾向的脊梁;算法创造昌盛于古代和中世纪的中国、印度,形成了数学发展中强烈的算法倾向。统观数学的历史将会发现,数学的发展并非总是演绎倾向独占鳌头。在数学史上,算法倾向与演绎倾向总是交替地取得主导地位。古代巴比伦和埃及式的原始算法时期,被希腊式的演绎几何所接替,而在中世纪,希腊数学衰落下去,算法倾向在中国、印度等东方国度繁荣起来;东方数学在文艺复兴前夕通过阿拉伯传播到欧洲,对近代数学兴起产生了深刻影响。事实上,作为近代数学诞生标志的解析几何与微积分,从思想方法的渊源看都不能说是演绎倾向而是算法倾向的产物。

从微积分的历史可以知道,微积分的产生是寻找解决一系列实际问题的普遍算法的结果6。这些问题包括:决定物体的瞬时速度、求极大值与极小值、求曲线的切线、求物体的重心及引力、面积与体积计算等。从16世纪中开始的100多年间,许多大数学家都致力于获得解决这些问题的特殊算法。牛顿与莱布尼兹的功绩是在于将这些特殊的算法统一成两类基本运算——微分与积分,并进一步指出了它们的互逆关系。无论是牛顿的先驱者还是牛顿本人,他们所使用的算法都是不严格的,都没有完整的演绎推导。牛顿的流数术在逻辑上的瑕疵更是众所周知。对当时的学者来说,首要的是找到行之有效的算法,而不是算法的证明。这种倾向一直延续到18世纪。18世纪的数学家也往往不管微积分基础的困难而大胆前进。如泰勒公式,欧拉、伯努利甚至19世纪初傅里叶所发现的三角展开等,都是在很长时期内缺乏严格的证明。正如冯·诺伊曼指出的那样:没有一个数学家会把这一时期的发展看作是异端邪道;这个时期产生的数学成果被公认为第一流的。并且反过来,如果当时的数学家一定要在有了严密的演绎证明之后才承认新算法的合理性,那就不会有今天的微积分和整个分析大厦了。

现在再来看一看更早的解析几何的诞生。通常认为,笛卡儿发明解析几何的基本思想,是用代数方法来解几何问题。这同欧氏演绎方法已经大相径庭了。而事实上如果我们去阅读笛卡儿的原着,就会发现贯穿于其中的彻底的算法精神。《几何学》开宗明义就宣称:“我将毫不犹豫地在几何学中引进算术的术语,以便使自己变得更加聪明”。众所周知,笛卡儿的《几何学》是他的哲学着作《方法论》的附录。笛卡儿在他另一部生前未正式发表的哲学着作《指导思维的法则》(简称《法则》)中曾强烈批判了传统的主要是希腊的研究方法,认为古希腊人的演绎推理只能用来证明已经知道的事物,“却不能帮助我们发现未知的事情”。因此他提出“需要一种发现真理的方法”,并称之为“通用数学”(mathesis universakis)。笛卡儿在《法则》中描述了这种通用数学的蓝图,他提出的大胆计划,概而言之就是要将一切科学问题转化为求解代数方程的数学问题:

任何问题→数学问题→代数问题→方程求解而笛卡儿的《几何学》,正是他上述方案的一个具体实施和示范,解析几何在整个方案中扮演着重要的工具作用,它将一切几何问题化为代数问题,这些代数问题则可以用一种简单的、几乎自动的或者毋宁说是机械的方法去解决。这与上面介绍的古代中国数学家解决问题的路线可以说是一脉相承。

因此我们完全有理由说,在从文艺复兴到17世纪近代数学兴起的大潮中,回响着东方数学特别是中国数学的韵律。整个17—18世纪应该看成是寻求无穷小算法的英雄年代,尽管这一时期的无穷小算法与中世纪算法相比有质的飞跃。而从19世纪特别是70年代直到20世纪中,演绎倾向又重新在比希腊几何高得多的水准上占据了优势。因此,数学的发展呈现出算法创造与演绎证明两大主流交替繁荣、螺旋式上升过程:

演绎传统——定理证明活动

算法传统——算法创造活动

中国古代数学家对算法传统的形成与发展做出了毋容置疑的巨大贡献。

我们强调中国古代数学的算法传统,并不意味中国古代数学中没有演绎倾向。事实上,在魏晋南北朝时期一些数学家的工作中,已出现具有相当深度的论证思想。如赵爽勾股定理证明、刘徽“阳马”一种长方锥体体积证明、祖冲之父子对球体积公式的推导等等,均可与古希腊数学家相应的工作媲美。赵爽勾股定理证明示意图“弦图”原型,已被采用作2002年国际数学家大会会标。令人迷惑的是,这种论证倾向随着南北朝的结束,可以说是戛然而止。囿于篇幅和本文重点,对这方面的内容这里不能详述,有兴趣的读者可参阅参考文献3。

3 古为今用,创新发展

到了20世纪,至少从中叶开始,电子计算机的出现对数学的发展带来了深远影响,并孕育出孤立子理论、混沌动力学、四色定理证明等一系列令人瞩目的成就。借助计算机及有效的算法猜测发现新事实、归纳证明新定理乃至进行更一般的自动推理……,这一切可以说已揭开了数学史上一个新的算法繁荣时代的伟大序幕。科学界敏锐的有识之士纷纷预见到数学发展的这一趋势。在我国,早在上世纪50年代,华罗庚教授就亲自领导建立了计算机研制组,为我国计算机科学和数学的发展奠定了基础。吴文俊教授更是从70年代中开始,毅然由原先从事的拓扑学领域转向定理机器证明的研究,并开创了现代数学的崭新领域——数学机械化。被国际上誉为“吴方法”的数学机械化方法已使中国在数学机械化领域处于国际领先地位,而正如吴文俊教授本人所说:“几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻,”他的工作“主要是受中国古代数学的启发”。“吴方法”,是中国古代数学算法化、机械化精髓的发扬光大。

计算机影响下算法倾向的增长,自然也引起一些外国学者对中国古代数学中算法传统的兴趣。早在上世纪70年代初,着名的计算机科学家D.E.Knuth就呼吁人们关注古代中国和印度的算法5。多年来这方面的研究取得了一定进展,但总的来说还亟待加强。众所周知,中国古代文化包括数学是通过着名的丝绸之路向西方传播的,而阿拉伯地区是这种文化传播的重要中转站。现存有些阿拉伯数学与天文着作中包含有一定的中国数学与天文学知识,如着名的阿尔·卡西《算术之钥》一书中有相当数量的数学问题显示出直接或间接的中国来源,而根据阿尔·卡西本人记述,他所工作的天文台中就有不少来自中国的学者。

然而长期以来由于“西方中心论”特别是“希腊中心论”的影响以及语言文字方面的障碍,有关资料还远远没有得到发掘。正是为了充分揭示东方数学与欧洲数学复兴的关系,吴文俊教授特意从他荣获的国家最高科学奖中拨出专款成立了“吴文俊数学与天文丝路基金”,鼓励支持年轻学者深入开展这方面的研究,这是具有深远意义之举。

❿ 螺旋钢管计算公式

螺旋钢管重量分为理算重量和实际重量。

理论重量(Kg/米)=(钢管-壁厚)*壁厚*0.0246615

实际重量(Kg/米)=(钢管-实际壁厚)*实际壁厚*0.0246615

举例说明一下:

325*8的螺旋钢管理论=(325-8)*8*0.0246615=62.5Kg/米

部标325*8实际7个厚=(325-7)*7*0.0246615=54.9Kg/米

(10)螺旋式算法扩展阅读:

螺旋钢管在出厂之前应做机械性能试验和压扁试验以及扩口试验,并要达到标准规定的要求。直缝钢管的质量检测方法如下:

1、从表面上判断,也就是在外观检验。焊接接头的外观检验是一种手续简便而又应用广泛的检验方法,是成品检验的一个重要内容,主要是发现焊缝表面的缺陷和戚雀尺寸上的偏差。一般通过肉眼观察,借助标准样板、量规和放大镜等工具进行检验。若焊缝表面出现缺陷,焊缝内部便有存在缺陷的可能。

2、物理方法的检验:物理的检验方法是利用一些物理现象进行测定或检验的方法。材料或工件内部缺陷情况的检查,一般都是采用无损探伤的方法。无损探伤有超声波探伤、射线探伤高宴早、渗透探伤、磁力探伤等。

3、受压容器的强度检验:受祥困压容器,除进行密封性试验外,还要进行强度试验。常见有水压试验和气压试验两种。它们都能检验在压力下工作的容器和管道的焊缝致密性。气压试验比水压试验更为灵敏和速,同时试验后的产品不用排水处理,对于排水困难的产品尤为适用。但试验的危险性比水压试验大。进行试验时,必须遵守相应的安全技术措施,以防试验过程中发生事故。

4、致密性检验:贮存液体或气体的焊接容器,其焊缝的不致密缺陷,如贯穿性的裂纹、气孔、夹渣、未焊透和疏松组织等,可用致密性试验来发现。致密性检验方法有:煤油试验、载水试验、水冲试验等。

热点内容
xp安装php 发布:2025-05-13 18:04:30 浏览:180
sqlserver介绍 发布:2025-05-13 17:58:00 浏览:3
云闪付安卓版哪个版本好用 发布:2025-05-13 17:57:16 浏览:186
我的世界服务器如何卡穿墙 发布:2025-05-13 17:52:41 浏览:736
为什么游戏更新连接不到服务器 发布:2025-05-13 17:44:09 浏览:786
谷歌play商店如何连接服务器 发布:2025-05-13 17:38:11 浏览:481
ssl认证服务器搭建 发布:2025-05-13 17:33:42 浏览:890
cpul2缓存 发布:2025-05-13 17:32:09 浏览:450
编译是语言的特点 发布:2025-05-13 17:31:36 浏览:583
原神怎么看服务器版本 发布:2025-05-13 17:09:14 浏览:73