android線程查看
A. 安卓怎麼查看線程在哪查看線程怎麼更新線程說得清楚點,看網上的不懂
我想查看下面這句話所說的線程:
「迅雷一裝好後,以後你系統啟動,在你的系統背後,都會啟動甫梗催凰詘好挫瞳旦困兩個線程,Thunder.exe和Issue.exe,但你在系統的右下角的工具欄里是看不到迅雷已經悄悄的啟動了.只有在線程里才能看到」
如果線程就是進程 那我在進程里也沒看到Issue.exe進程啊 (我家有迅雷)
B. Android雜談:systrace簡單查看一個應用的啟動流程
連接手機,啟動Andriod Device Monitor,點擊一下下圖箭頭指向那個圖標
設置抓取時間和抓取內容,點擊OK就開始抓取了,隨意啟動操作下瀏覽器,5s後trace.html就生成了。
生成的trace.html要用chrome瀏覽器打開,瀏覽器輸入網址輸入 chrome://tracing/ ,然後把trace.html拉進去就可以了。結果如下。
整個視圖布局:
1.CPU佔用情況,上圖可以看到有8個cpu
2.進程trace
3.每個進程的線程trace,線程主要看下主線程,即UI線程。
看下瀏覽器UI線程的流程,大概了解下瀏覽器啟動的流程。
首先是出現「POSTFORK」,這個其實是在Fork一個子進程,誰的子進程呢?Zoygote的。
然後依次是
RuntimeInit :准備虛擬機資源
ActivityThreadMain :Activity主線程入口
bindApplication:建立AMS與應用的binder通信,可以看到他執行了很多子方法,包括打開應用的odex,資源等
activityStart:這是回調onactivitystart了,但這時界面應該還是不可見的。
看下圖,activityStart執行後,渲染線程RenderThread才開始工作,所以這是才開始渲染,界面才開始可見。
那這個應用啟動花了多少時間了?我們看一下,以POSTFORK到activityStart為准,總共花了615.176ms!!!!牛逼!!
這篇文章,介紹了systrace的抓取與查看方法。簡單分析了下一個應用啟動的systrace。用處不大,僅供吐槽。
C. Android 中的「子線程」解析
Android 中線程可分為 主線程 和 子線程 兩類,其中主線程也就是 UI線程 ,它的主要這作用就是運行四大組件、處理界面交互。子線程則主要是處理耗時任務,也是我們要重點分析的。
首先 java 中的各種線程在 Android 里是通用的,Android 特有的線程形態也是基於 Java 的實現的,所以有必要先簡單的了解下 Java 中的線程,本文主要包括以下內容:
在 Java 中要創建子線程可以直接繼承 Thread 類,重寫 run() 方法:
或者實現 Runnable 介面,然後用Thread執行Runnable,這種方式比較常用:
簡單的總結下:
Callable 和 Runnable 類似,都可以用來處理具體的耗時任務邏輯的,但是但具體的差別在哪裡呢?看一個小例子:
定義 MyCallable 實現了 Callable 介面,和之前 Runnable 的 run() 方法對比下, call() 方法是有返回值的哦,泛型就是返回值的類型:
一般會通過線程池來執行 Callable (線程池相關內容後邊會講到),執行結果就是一個 Future 對象:
可以看到,通過線程池執行 MyCallable 對象返回了一個 Future 對象,取出執行結果。
Future 是一個介面,從其內部的方法可以看出它提供了取消任務(有坑!!!)、判斷任務是否完成、獲取任務結果的功能:
Future 介面有一個 FutureTask 實現類,同時 FutureTask 也實現了 Runnable 介面,並提供了兩個構造函數:
用 FutureTask 一個參數的構造函數來改造下上邊的例子:
FutureTask 內部有一個 done() 方法,代表 Callable 中的任務已經結束,可以用來獲取執行結果:
所以 Future + Callable 的組合可以更方便的獲取子線程任務的執行結果,更好的控制任務的執行,主要的用法先說這么多了,其實 AsyncTask 內部也是類似的實現!
注意, Future 並不能取消掉運行中的任務,這點在後邊的 AsyncTask 解析中有提到。
Java 中線程池的具體的實現類是 ThreadPoolExecutor ,繼承了 Executor 介面,這些線程池在 Android 中也是通用的。使用線程池的好處:
常用的構造函數如下:
一個常規線程池可以按照如下方式來實現:
執行任務:
基於 ThreadPoolExecutor ,系統擴展了幾類具有新特性的線程池:
線程池可以通過 execute() 、 submit() 方法開始執行任務,主要差別從方法的聲明就可以看出,由於 submit() 有返回值,可以方便得到任務的執行結果:
要關閉線程池可以使用如下方法:
IntentService 是 Android 中一種特殊的 Service,可用於執行後台耗時任務,任務結束時會自動停止,由於屬於系統的四大組件之一,相比一般線程具有較高的優先順序,不容易被殺死。用法和普通 Service 基本一致,只需要在 onHandleIntent() 中處理耗時任務即可:
至於 HandlerThread,它是 IntentService 內部實現的重要部分,細節內容會在 IntentService 源碼中說到。
IntentService 首次創建被啟動的時候其生命周期方法 onCreate() 會先被調用,所以我們從這個方法開始分析:
這里出現了 HandlerThread 和 ServiceHandler 兩個類,先搞明白它們的作用,以便後續的分析。
首先看 HandlerThread 的核心實現:
首先它繼承了 Thread 類,可以當做子線程來使用,並在 run() 方法中創建了一個消息循環系統、開啟消息循環。
ServiceHandler 是 IntentService 的內部類,繼承了 Handler,具體內容後續分析:
現在回過頭來看 onCreate() 方法主要是一些初始化的操作, 首先創建了一個 thread 對象,並啟動線程,然後用其內部的 Looper 對象 創建一個 mServiceHandler 對象,將子線程的 Looper 和 ServiceHandler 建立了綁定關系,這樣就可以使用 mServiceHandler 將消息發送到子線程去處理了。
生命周期方法 onStartCommand() 方法會在 IntentService 每次被啟動時調用,一般會這里處理啟動 IntentService 傳遞 Intent 解析攜帶的數據:
又調用了 start() 方法:
就是用 mServiceHandler 發送了一條包含 startId 和 intent 的消息,消息的發送還是在主線程進行的,接下來消息的接收、處理就是在子線程進行的:
當接收到消息時,通過 onHandleIntent() 方法在子線程處理 intent 對象, onHandleIntent() 方法執行結束後,通過 stopSelf(msg.arg1) 等待所有消息處理完畢後終止服務。
為什麼消息的處理是在子線程呢?這里涉及到 Handler 的內部消息機制,簡單的說,因為 ServiceHandler 使用的 Looper 對象就是在 HandlerThread 這個子線程類里創建的,並通過 Looper.loop() 開啟消息循環,不斷從消息隊列(單鏈表)中取出消息,並執行,截取 loop() 的部分源碼:
dispatchMessage() 方法間接會調用 handleMessage() 方法,所以最終 onHandleIntent() 就在子線程中劃線執行了,即 HandlerThread 的 run() 方法。
這就是 IntentService 實現的核心,通過 HandlerThread + Hanlder 把啟動 IntentService 的 Intent 從主線程切換到子線程,實現讓 Service 可以處理耗時任務的功能!
AsyncTask 是 Android 中輕量級的非同步任務抽象類,它的內部主要由線程池以及 Handler 實現,在線程池中執行耗時任務並把結果通過 Handler 機制中轉到主線程以實現UI操作。典型的用法如下:
從 Android3.0 開始,AsyncTask 默認是串列執行的:
如果需要並行執行可以這么做:
AsyncTask 的源碼不多,還是比較容易理解的。根據上邊的用法,可以從 execute() 方法開始我們的分析:
看到 @MainThread 註解了嗎?所以 execute() 方法需要在主線程執行哦!
進而又調用了 executeOnExecutor() :
可以看到,當任務正在執行或者已經完成,如果又被執行會拋出異常!回調方法 onPreExecute() 最先被執行了。
傳入的 sDefaultExecutor 參數,是一個自定義的串列線程池對象,所有任務在該線程池中排隊執行:
可以看到 SerialExecutor 線程池僅用於任務的排隊, THREAD_POOL_EXECUTOR 線程池才是用於執行真正的任務,就是我們線程池部分講到的 ThreadPoolExecutor :
再回到 executeOnExecutor() 方法中,那麼 exec.execute(mFuture) 就是觸發線程池開始執行任務的操作了。
那 executeOnExecutor() 方法中的 mWorker 是什麼? mFuture 是什麼?答案在 AsyncTask 的構造函數中:
原來 mWorker 是一個 Callable 對象, mFuture 是一個 FutureTask 對象,繼承了 Runnable 介面。所以 mWorker 的 call() 方法會在 mFuture 的 run() 方法中執行,所以 mWorker 的 call() 方法在線程池得到執行!
同時 doInBackground() 方法就在 call() 中方法,所以我們自定義的耗時任務邏輯得到執行,不就是我們第二部分講的那一套嗎!
doInBackground() 的返回值會傳遞給 postResult() 方法:
就是通過 Handler 將最終的耗時任務結果從子線程發送到主線程,具體的過程是這樣的, getHandler() 得到的就是 AsyncTask 構造函數中初始化的 mHandler , mHander 又是通過 getMainHandler() 賦值的:
可以在看到 sHandler 是一個 InternalHandler 類對象:
所以 getHandler() 就是在得到在主線程創建的 InternalHandler 對象,所以
就可以完成耗時任務結果從子線程到主線程的切換,進而可以進行相關UI操作了。
當消息是 MESSAGE_POST_RESULT 時,代表任務執行完成, finish() 方法被調用:
如果任務沒有被取消的話執行 onPostExecute() ,否則執行 onCancelled() 。
如果消息是 MESSAGE_POST_PROGRESS , onProgressUpdate() 方法被執行,根據之前的用法可以 onProgressUpdate() 的執行需要我們手動調用 publishProgress() 方法,就是通過 Handler 來發送進度數據:
進行中的任務如何取消呢?AsyncTask 提供了一個 cancel(boolean mayInterruptIfRunning) ,參數代表是否中斷正在執行的線程任務,但是呢並不靠譜, cancel() 的方法注釋中有這么一段:
大致意思就是調用 cancel() 方法後, onCancelled(Object) 回調方法會在 doInBackground() 之後被執行而 onPostExecute() 將不會被執行,同時你應該 doInBackground() 回調方法中通過 isCancelled() 來檢查任務是否已取消,進而去終止任務的執行!
所以只能自己動手了:
AsyncTask 整體的實現流程就這些了,源碼是最好的老師,自己跟著源碼走一遍有些問題可能就豁然開朗了!
D. 如何檢查Android後台服務線程是否正在運行
Android系統提供了一個函數ActivityManager.getRunningServices可以列出當前正在運行的後台服務線程
private boolean isServiceRunning() {
ActivityManager manager = (ActivityManager) getSystemService(ACTIVITY_SERVICE);
for (RunningServiceInfo service : manager.getRunningServices(Integer.MAX_VALUE)) {
if ("com.example.MyService".equals(service.service.getClassName())) {
return true;
}
}
return false;
}
這個方法是可靠的,因為這是由Android系統提供的服務查詢辦法。
所以以來於OnDestroy或者OnXXX方法,甚或是Binders以及靜態變數的方法都是不可靠的,因為作為一個開發者,你永遠不知道Android系統什麼時候會殺掉你的進程來釋放內存,那些回調函數很可能根本沒機會被調用。
另外,關於如果希望手工檢查所有後台服務的運行狀態,見如何觀察和控制正在運行的Android後台服務.
E. Android中的線程池
線程池的好處
1、重用線程池中的線程,避免線程的創建與銷毀帶來的性能開銷
2、能有效控制線程池的最大並發數,避免大量線程因搶占資源而導致的阻塞
3、能對線程進行簡單的管理,提供定時或者指定間隔時間、循環執行等操作
線程池的概率來自於java的Executor介面,實現類是ThreadPoolExecutor, 它提供一系列的參數來配置線程池,以此構建不同的線程池。Android的線程池分4類,都是通過Executors所提供的工廠方法來得到。
ThreadPoolExecutor有四個構造函數,下面這個是最常用的
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnnable> workQueue, ThreadFactory threadFactory)
corePoolSize
線程池中的核心線程數,默認情況下核心線程會在線程池中一直存活,即使他們處於閑置狀態。如果設置ThreadPoolExecutor 中的allowCoreThreadTimeOut = true, 核心線程在等待新任務到來時有超時機制,時間超過keepAliveTime所指定的時間後,核心線程會終止。
maximumPoolSize
最大線程數
keepAliveTime
非核心線程閑置的超時時間,超過這個時間,非核心線程會被回收。核心線程則要看allowCoreThreadTimeOut屬性的值。
unit
時間單位
workQueue
線程池中的工作隊列
threadFactory
線程工廠,為線程池提供創建新線程的功能。
舉個例子,我們常用的okhttp內部也是使用了線程池,它的ThreadPoolExecutor主要是定義在Dispatcher類裡面。 使用的是CachedThreadPool。
executorService = ThreadPoolExecutor(0, Int.MAX_VALUE, 60, TimeUnit.SECONDS, SynchronousQueue(), ThreadFactory("okhttp Dispatcher", false))
1、FixedThreadPool
通過Executors的newFixedThreadPool()創建,這是一個線程數量固定的線程池,裡面所有的線程都是核心線程。
public static ExecutorService newFixedThreadPool(int nThreads){
return new ThreadPoolExecutor(nThreads, nThreads, 0, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())
}
2、CachedThreadPool
通過Executors的newCacheThreadPool()創建,這是一個線程數量不定的線程池,裡面所有的線程都是非核心線程。最大線程數是無限大,當線程池中的線程都處於活動狀態時,新的task會創建新的線程來處理,否則就使用空閑的線程處理,所有的線程都是60s的超時時間,超時後會自動回收。
public static ExecutorService newFixedThreadPool(){
return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>())
}
3、ScheledThreadPool
通過Executors的newScheledThreadPool()創建, 核心線程固定,非核心線程無限大,當非核心線程空閑時,會立即被回收。適合做定時任務或者固定周期的重復任務。
public static ExecutorService newScheledThreadPool(int corePoolSize){
return new ThreadPoolExecutor(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.SECONDS, new DelayedWorkQueue())
}
4、SingleThreadExcecutor
通過Executors的newSingleThreadPool()創建,內部只有一個核心線程。
public static ExecutorService newFixedThreadPool(){
return new ThreadPoolExecutor(1, 1, 0, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())
}
課外知識:LinkedBlockingQueue
LinkedBlockingQueue是由鏈表組成的阻塞隊列,內部head 指向隊列第一個元素,last指向最後一個元素。入隊和出隊都會加鎖阻塞,都是使用了不同的鎖。
DelayedWorkQueue
延時隊列,隊內元素必須是Delayed的實現類。對內元素會按照Delayed時間進行排序,對內元素只有在delayed時間過期了才能出隊。
入隊的時候不阻塞隊列,出隊的時候,如果隊列為空或者隊列里所有元素都等待時間都沒有到期,則該線程進入阻塞狀態。
F. android啟動後怎麼查看其裡面的進程和線程
使用ddms查看,非常詳細。
G. Android UI線程
思考:
先必須了解下面2個問題
1.顧名思義 UI線程 就是刷新UI 所在線程
2.UI是單線程刷新
1.對Activity 來說 UI線程就是其主線程
2.對View來說 UI線程就是創建ViewRootImpl所在的線程
可以通過 WindowManager 內部會創建ViewRootImpl對象
好了,進入主題。我們來慢慢揭開面紗。
我們可以分別從幾個方面切入
我們可能都有使用過 runOnUiThread 現在來看看的源碼實現。
可以從上面的源碼 看到
不是UI線程 就用Handler切到Handler所在的線程中,如果是UI線程直接就調用run方法。
Activity的創建:
1.Activity創建:mInstrumentation.newActivity
2.創建Context :ContextImpl (r)
我們經常用這個方法乾的事情就是,要麼在onCreate中獲取View寬高的值。要麼就是在子線程中做一些耗時操作 ,然後post切到對應View所在的線程 來繪制UI操作。那麼這個對應的線程就是UI線程了。
那麼這個UI線程就一定是主線程嗎?
接來繼續來看。它的源碼View:post
mAttachInfo 在dispatchAttachedToWindow 中被賦值 ,也就是在ViewRootImpl創建的時候,所以是創建ViewRootImpl所在的線程。
attachInfo 上面時候為null 呢?在ViewRootImpl 還沒來得及創建的時候,ViewRootImpl 創建是在 「onResume" 之後。所以在 Activity 的 onCreate 去View.post 那麼AttachInfo 是為null 。
當 AttachInfo == null 那麼會調用 getRunQueue().post(action) 。
最終這個Runnable 被 緩存到 HandlerActionQueue 中。
直到ViewRootImpl 的 performTraversals 中 調用dispatchAttachedToWindow(mAttachInfo, 0);, 那麼才會去處理 RunQueue() 中的Runnable。
來張圖 便於理解這個流程
我們有時候去子線程操作UI的時候(如:requestLayout),會很經常見到下面的 報錯日誌:
Only the original thread that created a view hierarchy can touch its views
為什麼會報這個錯誤呢?
翻譯一下:只有創建視圖層次結構的原始線程才能接觸到它的視圖。
也就是操作UI的線程要和ViewRootImpl創建的線程是同一個線程才行,並不是只有主線程才能更新UI啊。
ViewRootImpl創建的線程?那麼 ViewRootImpl 在哪裡被創建的呢?
從上圖可以看到ViewRootImpl創建最開始是從 ActivityThread 的HandleResumeActivity中開始 一直 ViewRootImpl 創建,也就是說ViewRootImpl 對應的UI線程和 ActivityThread 在同一個線程 也就是主線程。
好了 通過上面的講解,上面的問題相信你可以自己回答啦~
H. Android一個APP裡面最少有幾個線程
https://www.jianshu.com/p/92bff8d6282f
https://www.jianshu.com/p/8a820d93c6aa
Android一個進程裡面最少包含5個線程,分別為:
下圖是創建的一個僅有hello World!頁面的工程,線程包含以下的這些。
查看 VMRuntime 的源碼發現 startHeapTaskProcessor()、runHeapTasks()均是native方法。
在Android studio中點擊 Profile 圖標,點擊 CPU ,顯示如下圖,點擊 Record ,然後再點擊 Stop ,即可生成。
I. android啟動後怎麼查看其裡面的進程和線程
1)一個 Android 程序開始運行時,會單獨啟動一個Process。
默認情況下,所有這個程序中的Activity或者Service都會跑在這個Process。
默認情況下,一個Android程序也只有一個Process,但一個Process下卻可以有許多個Thread。
2)一個 Android 程序開始運行時,就有一個主線程Main Thread被創建。該線程主要負責UI界面的顯示、更新和控制項交互,所以又叫UI Thread。
3)一個Android程序創建之初,一個Process呈現的是單線程模型--即MainThread,所有的任務都在一個線程中運行,所以,MainThread所調用的每一個函數,其耗時應該越短越好,而對於比較耗時的工作,應該交給子線程去做,以避免主線程(UI線程)被阻塞,導致程序出現ANR(Application not response)
一個Activity就運行在一個線程中嗎?或者編碼時,如果不是明確安排在不同線程中的兩個Activity,其就都是在同一個線程中?那從一個Activity跳轉到另一個Activity時,是不是跳出的那個Activity就處在睡眠狀態了?
【答】 每個Activity都有一個Process屬性,可以指定該Activity是屬於哪個進程的。當然如果不明確指明,應該就是從屬於默認進程(Application指定的,如其未指定,應該就是默認主進程)。
Android中有Task的概念,而同一個Task的各個Activity會形成一個棧,只有站定的Activity才有機會與用戶交互。
原文地址:Android中的進程與線程 原文作者:江鵬
當應用程序的組件第一次運行時,Android將啟動一個只有一個執行線程的Linux進程。默認,應用程序所有的組件運行在這個進程和線程中。然而,你可以安排組件運行在其他進程中,且你可以為進程衍生出其它線程。本文從下面幾點來介紹Android的進程與線程:
1、進程
組件運行於哪個進程中由清單文件控制。組件元素——<activity>、<service>、<receiver>、<provider>,都有一個process屬性可以指定組件運行在哪個進程中。這個屬性可以設置為每個組件運行在自己的進程中,或者某些組件共享一個進程而其他的不共享。他們還可以設置為不同應用程序的組件運行在同一個進程中——假設這些應用程序共享同一個Linux用戶ID且被分配了同樣的許可權。<application>元素也有process屬性,為所有的組件設置一個默認值。
所有的組件都在特定進程的主線程中實例化,且系統調用組件是由主線程派遣。不會為每個實例創建單獨的線程,因此,對應這些調用的方法——諸如View.onKeyDown()報告用用戶的行為和生命周期通知,總是運行在進程的主線程中。這意味著,沒有組件當被系統調用時應該執行很長時間或阻塞操作(如網路操作或循環計算),因為這將阻塞進程中的其它組件。你可以為長操作衍生獨立的線程。
public boolean onKeyDown(int keyCode,KeyEvent event):默認實現KeyEvent.Callback.onKeyMultiple(),當按下視圖的KEYCODE_DPAD_CENTER或KEYCODE_ENTER然後釋放時執行,如果視圖可用且可點擊。
參數
keyCode-表示按鈕被按下的鍵碼,來自KeyEvent
event-定義了按鈕動作的KeyEvent對象
返回值
如果你處理事件,返回true;如果你想下一個接收者處理事件,返回false。
當內存剩餘較小且其它進程請求較大內存並需要立即分配,Android要回收某些進程,進程中的應用程序組件會被銷毀。當他們再次運行時,會重新開始一個進程。
當決定終結哪個進程時,Android會權衡他們對用戶重要性的相對權值。例如,與運行在屏幕可見的活動進程相比(前台進程),它更容易關閉一個進程,它的活動在屏幕是不可見(後台進程)。決定是否終結進程,取決於運行在進程中的組件狀態。關於組件的狀態,將在後面一篇——組件生命周期中介紹。
2、線程
雖然你可能會將你的應用程序限制在一個進程中,但有時候你會需要衍生一個線程做一些後台工作。因為用戶界面必須很快地響應用戶的操作,所以活動寄宿的線程不應該做一些耗時的操作如網路下載。任何不可能在短時間完成的操作應該分配到別的線程。
線程在代碼中是用標準的Java線程對象創建的,Android提供了一些方便的類來管理線程——Looper用於在線程中運行消息循環、Handler用戶處理消息、HandlerThread用戶設置一個消息循環的線程。
Looper類
該類用戶在線程中運行消息循環。線程默認沒有消息循環,可以在線程中調用prepare()創建一個運行循環;然後調用loop()處理消息直到循環結束。大部分消息循環交互是通過Handler類。下面是一個典型的執行一個Looper線程的例子,分別使用prepare()和loop()創建一個初始的Handler與Looper交互:
1. Android中進程與進程、線程與線程之間如何通信?
1)一個 Android 程序開始運行時,會單獨啟動一個Process。
默認情況下,所有這個程序中的Activity或者Service都會跑在這個Process。
默認情況下,一個Android程序也只有一個Process,但一個Process下卻可以有許多個Thread。
2)一個 Android 程序開始運行時,就有一個主線程Main Thread被創建。該線程主要負責UI界面的顯示、更新和控制項交互,所以又叫UI Thread。
3)一個Android程序創建之初,一個Process呈現的是單線程模型--即MainThread,所有的任務都在一個線程中運行,所以,MainThread所調用的每一個函數,其耗時應該越短越好,而對於比較耗時的工作,應該交給子線程去做,以避免主線程(UI線程)被阻塞,導致程序出現ANR(Application not response)
一個Activity就運行在一個線程中嗎?或者編碼時,如果不是明確安排在不同線程中的兩個Activity,其就都是在同一個線程中?那從一個Activity跳轉到另一個Activity時,是不是跳出的那個Activity就處在睡眠狀態了?
【答】 每個Activity都有一個Process屬性,可以指定該Activity是屬於哪個進程的。當然如果不明確指明,應該就是從屬於默認進程(Application指定的,如其未指定,應該就是默認主進程)。
Android中有Task的概念,而同一個Task的各個Activity會形成一個棧,只有站定的Activity才有機會與用戶交互。
原文地址:Android中的進程與線程 原文作者:江鵬
當應用程序的組件第一次運行時,Android將啟動一個只有一個執行線程的Linux進程。默認,應用程序所有的組件運行在這個進程和線程中。然而,你可以安排組件運行在其他進程中,且你可以為進程衍生出其它線程。本文從下面幾點來介紹Android的進程與線程:
1、進程
組件運行於哪個進程中由清單文件控制。組件元素——<activity>、<service>、<receiver>、<provider>,都有一個process屬性可以指定組件運行在哪個進程中。這個屬性可以設置為每個組件運行在自己的進程中,或者某些組件共享一個進程而其他的不共享。他們還可以設置為不同應用程序的組件運行在同一個進程中——假設這些應用程序共享同一個Linux用戶ID且被分配了同樣的許可權。<application>元素也有process屬性,為所有的組件設置一個默認值。
所有的組件都在特定進程的主線程中實例化,且系統調用組件是由主線程派遣。不會為每個實例創建單獨的線程,因此,對應這些調用的方法——諸如View.onKeyDown()報告用用戶的行為和生命周期通知,總是運行在進程的主線程中。這意味著,沒有組件當被系統調用時應該執行很長時間或阻塞操作(如網路操作或循環計算),因為這將阻塞進程中的其它組件。你可以為長操作衍生獨立的線程。
public boolean onKeyDown(int keyCode,KeyEvent event):默認實現KeyEvent.Callback.onKeyMultiple(),當按下視圖的KEYCODE_DPAD_CENTER或KEYCODE_ENTER然後釋放時執行,如果視圖可用且可點擊。
參數
keyCode-表示按鈕被按下的鍵碼,來自KeyEvent
event-定義了按鈕動作的KeyEvent對象
返回值
如果你處理事件,返回true;如果你想下一個接收者處理事件,返回false。
當內存剩餘較小且其它進程請求較大內存並需要立即分配,Android要回收某些進程,進程中的應用程序組件會被銷毀。當他們再次運行時,會重新開始一個進程。
當決定終結哪個進程時,Android會權衡他們對用戶重要性的相對權值。例如,與運行在屏幕可見的活動進程相比(前台進程),它更容易關閉一個進程,它的活動在屏幕是不可見(後台進程)。決定是否終結進程,取決於運行在進程中的組件狀態。關於組件的狀態,將在後面一篇——組件生命周期中介紹。
2、線程
雖然你可能會將你的應用程序限制在一個進程中,但有時候你會需要衍生一個線程做一些後台工作。因為用戶界面必須很快地響應用戶的操作,所以活動寄宿的線程不應該做一些耗時的操作如網路下載。任何不可能在短時間完成的操作應該分配到別的線程。
線程在代碼中是用標準的Java線程對象創建的,Android提供了一些方便的類來管理線程——Looper用於在線程中運行消息循環、Handler用戶處理消息、HandlerThread用戶設置一個消息循環的線程。
Looper類
該類用戶在線程中運行消息循環。線程默認沒有消息循環,可以在線程中調用prepare()創建一個運行循環;然後調用loop()處理消息直到循環結束。大部分消息循環交互是通過Handler類。下面是一個典型的執行一個Looper線程的例子,分別使用prepare()和loop()創建一個初始的Handler與Looper交互:
2.1、遠程過程調用(Remote procere calls,RPCs)
Android有一個輕量級的遠程過程調用機制——方法在本地調用卻在遠程(另外一個進程中)執行,結果返回給調用者。這需要將方法調用和它伴隨的數據分解為操作系統能夠理解的層次,從本地進程和地址空間傳輸到遠程進程和地址空間,並重新組裝調用。返回值以相反方向傳輸。Android提供了做這些工作的所有代碼,這樣我們可以專注於定義和執行RPC介面本身。
一個RPC介面僅包含方法。所有的方法同步地執行(本地方法阻塞直到遠程方法執行完成),即使是沒有返回值。簡言之,該機制工作原理如下:首先,你用簡單的IDL(interface definition language,介面定義語言)聲明一個你想實現的RPC介面。從這個聲明中,aidl工具生成一個Java介面定義,提供給本地和遠程進程。它包含兩個內部類,如下圖所示:
內部類有管理你用IDL定義的介面的遠程過程調用所需要的所有代碼。這兩個內部類都實現了IBinder介面。其中之一就是在本地由系統內部使用,你寫代碼可以忽略它。另外一個是Stub,擴展自Binder類。除了用於有效地IPC(interprocess communication)調用的內部代碼,內部類在RPC介面聲明中還包含方法聲明。你可以定義Stub的子類實現這些方法,如圖中所示。
通常情況下,遠程過程有一個服務管理(因為服務能通知系統關於進程和它連接的其它進程的信息)。它有由aidl工具生成的介面文件和Stub子類實現的RPC方法。服務的客戶端僅有由aidl工具生成的介面文件。
下面介紹服務如何與它的客戶端建立連接:
· 服務的客戶端(在本地端的)應該實現onServiceConnected() 和onServiceDisconnected() 方法,因此當與遠程服務建立連接成功和斷開連接是會通知它。然後調用bindService() 建立連接。
· 服務的onBind()方法將實現為接受或拒絕連接,者取決於它接受到的意圖(該意圖傳送到binServive())。如果連接被接受,它返回一個Stub子類的實例。
· 如果服務接受連接,Android調用客戶端的onServiceConnected()方法且傳遞給它一個IBinder對象,返回由服務管理的Stub子類的一個代理。通過代理,客戶端可以調用遠程服務。
這里只是簡單地描述,省略了一些RPC機制的細節。你可以查閱相關資料或繼續關注Android開發之旅,後面將為你奉上。
2.2、線程安全方法
在一些情況下,你實現的方法可能會被不止一個線程調用,因此必須寫成線程安全的。這對遠程調用方法是正確的——如上一節討論的RPC機制。當從IBinder進程中調用一個IBinder對象中實現的一個方法,這個方法在調用者的線程中執行。然而,當從別的進程中調用,方法將在Android維護的IBinder進程中的線程池中選擇一個執行,它不在進程的主線程中執行。例如,一個服務的onBind()方法在服務進程的主線程中被調用,在onBind()返回的對象中執行的方法(例如,實現RPC方法的Stub子類)將在線程池中被調用。由於服務可以有一個以上的客戶端,所以同時可以有一個以上的線程在執行同一個IBinder方法。因此,IBinder的方法必須是線程安全的。
同樣,一個內容提供者可以接受其它進程產生的數據請求。雖然ContentResolver 和 ContentProvider 類隱藏進程通信如何管理的,對應哪些請求的ContentResolver 方法——query()、insert()、delete()、update()、getType(),在內容提供者的進程的線程池中被調用,而不是在這一進程的主線程中。因為這些方法可以同時從任意數量的線程中調用,他們也必須實現為線程安全的。
J. Android中的線程狀態 - AsyncTask詳解
在操作系統中,線程是操作系統調度的最小單元,同時線程又是一種受限的系統資源,即線程不可能無限制地產生,並且 線程的創建和銷毀都會有相應的開銷。 當系統中存在大量的線程時,系統會通過會時間片輪轉的方式調度每個線程,因此線程不可能做到絕對的並行。
如果在一個進程中頻繁地創建和銷毀線程,顯然不是高效的做法。正確的做法是採用線程池,一個線程池中會緩存一定數量的線程,通過線程池就可以避免因為頻繁創建和銷毀線程所帶來的系統開銷。
AsyncTask是一個抽象類,它是由Android封裝的一個輕量級非同步類(輕量體現在使用方便、代碼簡潔),它可以在線程池中執行後台任務,然後把執行的進度和最終結果傳遞給主線程並在主線程中更新UI。
AsyncTask的內部封裝了 兩個線程池 (SerialExecutor和THREAD_POOL_EXECUTOR)和 一個Handler (InternalHandler)。
其中 SerialExecutor線程池用於任務的排隊,讓需要執行的多個耗時任務,按順序排列 , THREAD_POOL_EXECUTOR線程池才真正地執行任務 , InternalHandler用於從工作線程切換到主線程 。
1.AsyncTask的泛型參數
AsyncTask是一個抽象泛型類。
其中,三個泛型類型參數的含義如下:
Params: 開始非同步任務執行時傳入的參數類型;
Progress: 非同步任務執行過程中,返回下載進度值的類型;
Result: 非同步任務執行完成後,返回的結果類型;
如果AsyncTask確定不需要傳遞具體參數,那麼這三個泛型參數可以用Void來代替。
有了這三個參數類型之後,也就控制了這個AsyncTask子類各個階段的返回類型,如果有不同業務,我們就需要再另寫一個AsyncTask的子類進行處理。
2.AsyncTask的核心方法
onPreExecute()
這個方法會在 後台任務開始執行之間調用,在主線程執行。 用於進行一些界面上的初始化操作,比如顯示一個進度條對話框等。
doInBackground(Params...)
這個方法中的所有代碼都會 在子線程中運行,我們應該在這里去處理所有的耗時任務。
任務一旦完成就可以通過return語句來將任務的執行結果進行返回,如果AsyncTask的第三個泛型參數指定的是Void,就可以不返回任務執行結果。 注意,在這個方法中是不可以進行UI操作的,如果需要更新UI元素,比如說反饋當前任務的執行進度,可以調用publishProgress(Progress...)方法來完成。
onProgressUpdate(Progress...)
當在後台任務中調用了publishProgress(Progress...)方法後,這個方法就很快會被調用,方法中攜帶的參數就是在後台任務中傳遞過來的。 在這個方法中可以對UI進行操作,在主線程中進行,利用參數中的數值就可以對界面元素進行相應的更新。
onPostExecute(Result)
當doInBackground(Params...)執行完畢並通過return語句進行返回時,這個方法就很快會被調用。返回的數據會作為參數傳遞到此方法中, 可以利用返回的數據來進行一些UI操作,在主線程中進行,比如說提醒任務執行的結果,以及關閉掉進度條對話框等。
上面幾個方法的調用順序:
onPreExecute() --> doInBackground() --> publishProgress() --> onProgressUpdate() --> onPostExecute()
如果不需要執行更新進度則為onPreExecute() --> doInBackground() --> onPostExecute(),
除了上面四個方法,AsyncTask還提供了onCancelled()方法, 它同樣在主線程中執行,當非同步任務取消時,onCancelled()會被調用,這個時候onPostExecute()則不會被調用 ,但是要注意的是, AsyncTask中的cancel()方法並不是真正去取消任務,只是設置這個任務為取消狀態,我們需要在doInBackground()判斷終止任務。就好比想要終止一個線程,調用interrupt()方法,只是進行標記為中斷,需要在線程內部進行標記判斷然後中斷線程。
3.AsyncTask的簡單使用
這里我們模擬了一個下載任務,在doInBackground()方法中去執行具體的下載邏輯,在onProgressUpdate()方法中顯示當前的下載進度,在onPostExecute()方法中來提示任務的執行結果。如果想要啟動這個任務,只需要簡單地調用以下代碼即可:
4.使用AsyncTask的注意事項
①非同步任務的實例必須在UI線程中創建,即AsyncTask對象必須在UI線程中創建。
②execute(Params... params)方法必須在UI線程中調用。
③不要手動調用onPreExecute(),doInBackground(Params... params),onProgressUpdate(Progress... values),onPostExecute(Result result)這幾個方法。
④不能在doInBackground(Params... params)中更改UI組件的信息。
⑤一個任務實例只能執行一次,如果執行第二次將會拋出異常。
先從初始化一個AsyncTask時,調用的構造函數開始分析。
這段代碼雖然看起來有點長,但實際上並沒有任何具體的邏輯會得到執行,只是初始化了兩個變數,mWorker和mFuture,並在初始化mFuture的時候將mWorker作為參數傳入。mWorker是一個Callable對象,mFuture是一個FutureTask對象,這兩個變數會暫時保存在內存中,稍後才會用到它們。 FutureTask實現了Runnable介面,關於這部分內容可以看這篇文章。
mWorker中的call()方法執行了耗時操作,即result = doInBackground(mParams);,然後把執行得到的結果通過postResult(result);,傳遞給內部的Handler跳轉到主線程中。在這里這是實例化了兩個變數,並沒有開啟執行任務。
那麼mFuture對象是怎麼載入到線程池中,進行執行的呢?
接著如果想要啟動某一個任務,就需要調用該任務的execute()方法,因此現在我們來看一看execute()方法的源碼,如下所示:
調用了executeOnExecutor()方法,具體執行邏輯在這個方法裡面:
可以 看出,先執行了onPreExecute()方法,然後具體執行耗時任務是在exec.execute(mFuture),把構造函數中實例化的mFuture傳遞進去了。
exec具體是什麼?
從上面可以看出具體是sDefaultExecutor,再追溯看到是SerialExecutor類,具體源碼如下:
終於追溯到了調用了SerialExecutor 類的execute方法。SerialExecutor 是個靜態內部類,是所有實例化的AsyncTask對象公有的,SerialExecutor 內部維持了一個隊列,通過鎖使得該隊列保證AsyncTask中的任務是串列執行的,即多個任務需要一個個加到該隊列中,然後執行完隊列頭部的再執行下一個,以此類推。
在這個方法中,有兩個主要步驟。
①向隊列中加入一個新的任務,即之前實例化後的mFuture對象。
②調用 scheleNext()方法,調用THREAD_POOL_EXECUTOR執行隊列頭部的任務。
由此可見SerialExecutor 類僅僅為了保持任務執行是串列的,實際執行交給了THREAD_POOL_EXECUTOR。
THREAD_POOL_EXECUTOR又是什麼?
實際是個線程池,開啟了一定數量的核心線程和工作線程。然後調用線程池的execute()方法。執行具體的耗時任務,即開頭構造函數中mWorker中call()方法的內容。先執行完doInBackground()方法,又執行postResult()方法,下面看該方法的具體內容:
該方法向Handler對象發送了一個消息,下面具體看AsyncTask中實例化的Hanlder對象的源碼:
在InternalHandler 中,如果收到的消息是MESSAGE_POST_RESULT,即執行完了doInBackground()方法並傳遞結果,那麼就調用finish()方法。
如果任務已經取消了,回調onCancelled()方法,否則回調 onPostExecute()方法。
如果收到的消息是MESSAGE_POST_PROGRESS,回調onProgressUpdate()方法,更新進度。
InternalHandler是一個靜態類,為了能夠將執行環境切換到主線程,因此這個類必須在主線程中進行載入。所以變相要求AsyncTask的類必須在主線程中進行載入。
到此為止,從任務執行的開始到結束都從源碼分析完了。
AsyncTask的串列和並行
從上述源碼分析中分析得到,默認情況下AsyncTask的執行效果是串列的,因為有了SerialExecutor類來維持保證隊列的串列。如果想使用並行執行任務,那麼可以直接跳過SerialExecutor類,使用executeOnExecutor()來執行任務。
四、AsyncTask使用不當的後果
1.)生命周期
AsyncTask不與任何組件綁定生命周期,所以在Activity/或者Fragment中創建執行AsyncTask時,最好在Activity/Fragment的onDestory()調用 cancel(boolean);
2.)內存泄漏
3.) 結果丟失
屏幕旋轉或Activity在後台被系統殺掉等情況會導致Activity的重新創建,之前運行的AsyncTask(非靜態的內部類)會持有一個之前Activity的引用,這個引用已經無效,這時調用onPostExecute()再去更新界面將不再生效。
自己是從事了七年開發的Android工程師,不少人私下問我,2019年Android進階該怎麼學,方法有沒有?
沒錯,年初我花了一個多月的時間整理出來的學習資料,希望能幫助那些想進階提升Android開發,卻又不知道怎麼進階學習的朋友。【 包括高級UI、性能優化、架構師課程、NDK、Kotlin、混合式開發(ReactNative+Weex)、Flutter等架構技術資料 】,希望能幫助到您面試前的復習且找到一個好的工作,也節省大家在網上搜索資料的時間來學習。