當前位置:首頁 » 存儲配置 » 常用存儲校驗

常用存儲校驗

發布時間: 2022-06-24 05:12:09

① excel數據校驗的方法主要有哪些

您好,奇偶校驗」。內存中最小的單位是比特,也稱為「位」,位有隻有兩種狀態分別以1和0來標示,每8個連續的比特叫做一個位元組(byte)。不帶奇偶校驗的內存每個位元組只有8位,如果其某一位存儲了錯誤的值,就會導致其存儲的相應數據發生變化,進而導致應用程序發生錯誤。而奇偶校驗就是在每一位元組(8位)之外又增加了一位作為錯誤檢測位。在某位元組中存儲數據之後,在其8個位上存儲的數據是固定的,因為位只能有兩種狀態1或0,假設存儲的數據用位標示為1、1、 1、0、0、1、0、1,那麼把每個位相加(1+1+1+0+0+1+0+1=5),結果是奇數,那麼在校驗位定義為1,反之為0。當CPU讀取存儲的數據時,它會再次把前8位中存儲的數據相加,計算結果是否與校驗位相一致。從而一定程度上能檢測出內存錯誤,奇偶校驗只能檢測出錯誤而無法對其進行修正,同時雖然雙位同時發生錯誤的概率相當低,但奇偶校驗卻無法檢測出雙位錯誤。
MD5的全稱是Message-Digest Algorithm 5,在90年代初由MIT的計算機科學實驗室和RSA Data Security Inc 發明,由 MD2/MD3/MD4 發展而來的。MD5的實際應用是對一段Message(位元組串)產生fingerprint(指紋),可以防止被「篡改」。舉個例子,天天安全網提供下載的MD5校驗值軟體WinMD5.zip,其MD5值是,但你下載該軟體後計算MD5 發現其值卻是,那說明該ZIP已經被他人修改過,那還用不用該軟體那你可自己琢磨著看啦。
MD5廣泛用於加密和解密技術上,在很多操作系統中,用戶的密碼是以MD5值(或類似的其它演算法)的方式保存的,用戶Login的時候,系統是把用戶輸入的密碼計算成MD5值,然後再去和系統中保存的MD5值進行比較,來驗證該用戶的合法性。
MD5校驗值軟體WinMD5.zip漢化版,使用極其簡單,運行該軟體後,把需要計算MD5值的文件用滑鼠拖到正在處理的框里邊,下面將直接顯示其MD5值以及所測試的文件名稱,可以保留多個文件測試的MD5值,選定所需要復制的MD5值,用CTRL+C就可以復制到其它地方了。

② 存儲器的測試

存儲器測試的目的是確認在存儲設備中的每一個存儲位置都在工作。換一句話說,如果你把數50存儲在一個具體的地址,你希望可以找到存儲在那裡的那個數,直到另一個數寫入。任何存儲器測試的基本方法是,往存儲器寫入一些數據,然後根據內存設備的地址,校驗讀回的數據。如果所有讀回的數據和那些寫入的數據是一樣的,那麼就可以說存儲設備通過了測試。只有通過認真選擇的一組數據你才可以確信通過的結果是有意義的。
當然,像剛才描述的有儲器的測試不可避免地具有破壞性。在內存測試過程中,你必須覆蓋它原先的內容。因為重寫非易失性存儲器內容通常來說是不可行的,這一部分描述的測試通常只適用於RAM 的測試。 一,普通的存儲器問題
在學習具體的測試演算法之前,你應該了解可能遇到的各種存儲器問題。在軟體工程師中一個普遍的誤解是,大部分的存儲器問題發生在晶元的內部。盡管這類問題一度是一個主要的問題,但是它們在日益減少。存儲設備的製造商們對於每一個批量的晶元都進行了各種產品後期測試。因此,即使某一個批量有問題,其中某個壞晶元進人到你的系統的可能性是微乎其微的。
你可能遇到的一種類型的存儲晶元問題是災難性的失效。這通常是在加工好之後晶元受到物理或者是電子損傷造成的。災難性失效是少見的,通常影響晶元中的大部分。因為一大片區域受到影響,所以災難性的失效當然可以被合適的測試演算法檢測到。
存儲器出問題比較普遍的原因是電路板故障。典型的電路板故障有:
(1)在處理器與存儲設備之間的連線問題
(2)無存儲器晶元
(3)存儲器晶元的不正確插人
二,測試策略
最好有三個獨立的測試:數據匯流排的測試、地址匯流排的測試以及設備的測試。前面兩個測試針對電子連線的問題以及晶元的不正確插入;第三個測試更傾向於檢測晶元的有無以及災難性失效。作為一個意外的結果,設備的測試也可以發現控制匯流排的問題,盡管它不能提供關於問題來源的有用信息。
執行這三個測試的順序是重要的。正確的順序是:首先進行數據匯流排測試,接著是地址匯流排測試,最後是設備測試。那是因為地址匯流排測試假設數據匯流排在正常工作,除非數據匯流排和地址匯流排已知是正常的,否則設備測試便毫無意義。如果任何測試失敗,你都應該和一個硬體工程師一起確定問題的來源。通過查看測試失敗處的數據值或者地址,應該能夠迅速地找出電路板上的問題。
1,數據匯流排測試
我們首先要測試的就是數據匯流排。我們需要確定任何由處理器放置在數據匯流排上的值都被另一端的存儲設備正確接收。最明顯的測試方法就是寫人所有可能的數據值並且驗證存儲設備成功地存儲了每一個。然而,那並不是最有效率的測試方法。一個更快的測試方法是一次測試匯流排上的一位。如果每一個數據上可被設置成為 0 和1,而不受其他數據位的影響,那麼數據匯流排就通過了測試。
2,地址匯流排測試
在確認數據匯流排工作正常之後,你應該接著測試地址匯流排。記住地址匯流排的問題將導致存儲器位置的重疊。有很多可能重疊的地址。然而,不必要測試每一個可能的組合。你應該努力在測試過程中分離每一個地址位。你只需要確認每一個地址線的管腳都可以被設置成0和 1,而不影響其他的管腳。
3,設備測試
一旦你知道地址和數據匯流排是正確的,那麼就有必要測試存儲設備本身的完整性。要確認的是設備中的每一位都能夠保持住0和 1。這個測試實現起來十分簡單,但是它花費的時間比執行前面兩項測試花費的總時間還要長。
對於一個完整的設備測試,你必須訪問(讀和寫)每一個存儲位置兩次。你可以自由地選擇任何數據作為第一步測試的數據,只要在進行第二步測試的時候把這個值求反即可。因為存在沒有存儲器晶元的可能性,所以最好選擇一組隨著地址變化(但是不等於地址)的數。優化措施
市場上並不缺少提高數據存儲效率的新技術,然而這些新技術絕大多數都是關注備份和存檔的,而非主存儲。但是,當企業開始進行主存儲數據縮減時,對他們來說,了解主存儲優化所要求的必要條件十分重要。
主存儲,常常被稱為1級存儲,其特徵是存儲活躍數據――即經常被存取並要求高性能、低時延和高可用性的數據。主存儲一般用於支持關鍵任務應用,如資料庫、電子郵件和交易處理。大多數關鍵應用具有隨機的數據取存模式和不同的取存要求,但它們都生成機構用來運營它們的業務的大量的數據。因此,機構製作數據的許多份拷貝,復制數據供分布使用,庫存數據,然後為安全保存備份和存檔數據。
絕大多數數據是起源於主數據。隨著數據存在的時間增加,它們通常被遷移到二級和三級存儲保存。因此,如果機構可以減少主數據存儲佔用空間,將能夠在數據生命期中利用這些節省下來的容量和費用。換句話說,更少的主存儲佔用空間意味著更少的數據復制、庫存、存檔和備份。
試圖減少主存儲佔用空間存儲管理人員可以考慮兩種減少數據的方法:實時壓縮和數據去重。
直到不久前,由於性能問題,數據壓縮一直沒有在主存儲應用中得到廣泛應用。然而,Storwize等廠商提供利用實時、隨機存取壓縮/解壓技術將數據佔用空間壓縮15:1的解決方案。更高的壓縮率和實時性能使壓縮解決方案成為主存儲數據縮減的可行的選擇。
在備份應用中廣泛採用的數據去重技術也在被應用到主存儲。目前為止,數據去重面臨著一大挑戰,即數據去重處理是離線處理。這是因為確定數量可能多達數百萬的文件中的多餘的數據塊需要大量的時間和存儲處理器做大量的工作,因此非常活躍的數據可能受到影響。當前,推出數據去重技術的主要廠商包括NetApp、Data Domain和OcarinaNetworks。 一、零性能影響
與備份或存檔存儲不同,活躍數據集的性能比能夠用某種形式的數據縮減技術節省的存儲容量更為關鍵。因此,選擇的數據縮減技術必須不影響到性能。它必須有效和簡單;它必須等價於「撥動一個開關,就消耗更少的存儲」。
活躍存儲縮減解決方案只在需要去重的數據達到非活躍狀態時才為活躍存儲去重。換句話說,這意味著實際上只對不再被存取但仍保存在活躍存儲池中的文件――近活躍存儲級――進行去重。
去重技術通過建議只對輕I/O工作負載去重來避免性能瓶頸。因此,IT基礎設施的關鍵組件的存儲沒有得到優化。資料庫排在關鍵組件清單之首。由於它們是1級存儲和極其活躍的組件並且幾乎始終被排除在輕工作負載之外,去重處理從來不分析它們。因此,它們在主存儲中占據的空間沒有得到優化。
另一方面,實時壓縮系統實時壓縮所有流經壓縮系統的數據。這導致節省存儲容量之外的意外好處:存儲性能的提高。當所有數據都被壓縮時,每個I/O請求提交的數據量都有效地增加,硬碟空間增加了,每次寫和讀操作都變得效率更高。
實際結果是佔用的硬碟容量減少,總體存儲性能顯著提高。
主存儲去重的第二個好處是所有數據都被減少,這實現了包括資料庫在內的所有數據的容量節省。盡管Oracle環境的實時數據壓縮可能造成一些性能問題,但迄今為止的測試表明性能提高了。
另一個問題是對存儲控制器本身的性能影響。人們要求今天的存儲控制器除了做伺服硬碟外,還要做很多事情,包括管理不同的協議,執行復制和管理快照。再向這些功能增加另一個功能可能會超出控制器的承受能力――即使它能夠處理額外的工作負載,它仍增加了一個存儲管理人員必須意識到可能成為潛在I/O瓶頸的過程。將壓縮工作交給外部專用設備去做,從性能問題中消除了一個變數,而且不會給存儲控制器造成一點影響。
二、高可用性
許多關注二級存儲的數據縮減解決方案不是高可用的。這是由於它們必須立即恢復的備份或存檔數據不像一級存儲中那樣關鍵。但是,甚至在二級存儲中,這種概念也逐漸不再時興,高可用性被作為一種選擇添加到許多二級存儲系統中。
可是,高可用性在主存儲中並不是可選的選項。從數據縮減格式(被去重或被壓縮)中讀取數據的能力必須存在。在數據縮減解決方案中(其中去重被集成到存儲陣列中),冗餘性是幾乎總是高可用的存儲陣列的必然結果。
在配件市場去重系統中,解決方案的一個組件以數據的原始格式向客戶機提供去重的數據。這個組件就叫做讀出器(reader)。讀出器也必須是高可用的,並且是無縫地高可用的。一些解決方案具有在發生故障時在標准伺服器上載入讀出器的能力。這類解決方案經常被用在近活躍的或更合適的存檔數據上;它們不太適合非常活躍的數據集。
多數聯機壓縮系統被插入系統中和網路上,放置(邏輯上)在交換機與存儲之間。因此,它們由於網路基礎設施級上幾乎總是設計具有的高可用性而取得冗餘性。沿著這些路徑插入聯機專用設備實現了不需要IT管理人員付出額外努力的無縫的故障切換;它利用了已經在網路上所做的工作。
三、節省空間
部署這些解決方案之一必須帶來顯著的容量節省。如果減少佔用容量的主存儲導致低於標準的用戶性能,它沒有價值。
主數據不具有備份數據通常具有的高冗餘存儲模式。這直接影響到總體容量節省。這里也有兩種實現主數據縮減的方法:數據去重和壓縮。
數據去重技術尋找近活躍文件中的冗餘數據,而能取得什麼水平的數據縮減將取決於環境。在具有高冗餘水平的環境中,數據去重可以帶來顯著的ROI(投資回報),而另一些環境只能取得10%到20%的縮減。
壓縮對所有可用數據都有效,並且它在可以為高冗餘數據節省更多的存儲容量的同時,還為主存儲應用常見的更隨機的數據模式始終帶來更高的節省。
實際上,數據模式冗餘度越高,去重帶來的空間節省就越大。數據模式越隨機,壓縮帶來的空間節省就越高。
四、獨立於應用
真正的好處可能來自所有跨數據類型(不管產生這些數據是什麼應用或數據有多活躍)的數據縮減。雖然實際的縮減率根據去重數據的水平或數據的壓縮率的不同而不同,但所有數據都必須合格。
當涉及存檔或備份時,應用特有的數據縮減具有明確的價值,並且有時間為這類數據集定製縮減過程。但是對於活躍數據集,應用的特殊性將造成性能瓶頸,不會帶來顯著的容量縮減的好處。
五、獨立於存儲
在混合的廠商IT基礎設施中,跨所有平台使用同樣的數據縮減工具的能力不僅將進一步增加數據縮減的ROI好處,而且還簡化了部署和管理。每一個存儲平台使用一種不同的數據縮減方法將需要進行大量的培訓,並造成管理級上的混亂。
六、互補
在完成上述所有優化主存儲的工作後,當到了備份主存儲時,最好讓數據保持優化的格式(被壓縮或去重)。如果數據在備份之前必須擴展恢復為原始格式,這將是浪費資源。
為備份擴展數據集將需要:
使用存儲處理器或外部讀出器資源解壓數據;
擴展網路資源以把數據傳送給備份目標;
把額外的資源分配給保存備份數據的備份存儲設備。

③ 數據校驗的方法主要有哪些

奇偶校驗」。內存中最小的單位是比特,也稱為「位」,位有隻有兩種狀態分別以1和0來標示,每8個連續的比特叫做一個位元組(byte)。不帶奇偶校驗的內存每個位元組只有8位,如果其某一位存儲了錯誤的值,就會導致其存儲的相應數據發生變化,進而導致應用程序發生錯誤。而奇偶校驗就是在每一位元組(8位)之外又增加了一位作為錯誤檢測位。在某位元組中存儲數據之後,在其8個位上存儲的數據是固定的,因為位只能有兩種狀態1或0,假設存儲的數據用位標示為1、1、 1、0、0、1、0、1,那麼把每個位相加(1+1+1+0+0+1+0+1=5),結果是奇數,那麼在校驗位定義為1,反之為0。當CPU讀取存儲的數據時,它會再次把前8位中存儲的數據相加,計算結果是否與校驗位相一致。從而一定程度上能檢測出內存錯誤,奇偶校驗只能檢測出錯誤而無法對其進行修正,同時雖然雙位同時發生錯誤的概率相當低,但奇偶校驗卻無法檢測出雙位錯誤。

④ 常用數據校驗方法有哪些

奇偶校驗」。內存中最小的單位是比特,也稱為「位」,位有隻有兩種狀態分別以1和0來標示,每8個連續的比特叫做一個位元組(byte)。不帶奇偶校驗的內存每個位元組只有8位,如果其某一位存儲了錯誤的值,就會導致其存儲的相應數據發生變化,進而導致應用程序發生錯誤。而奇偶校驗就是在每一位元組(8位)之外又增加了一位作為錯誤檢測位。在某位元組中存儲數據之後,在其8個位上存儲的數據是固定的,因為位只能有兩種狀態1或0,假設存儲的數據用位標示為1、1、 1、0、0、1、0、1,那麼把每個位相加(1+1+1+0+0+1+0+1=5),結果是奇數,那麼在校驗位定義為1,反之為0。當CPU讀取存儲的數據時,它會再次把前8位中存儲的數據相加,計算結果是否與校驗位相一致。從而一定程度上能檢測出內存錯誤,奇偶校驗只能檢測出錯誤而無法對其進行修正,同時雖然雙位同時發生錯誤的概率相當低,但奇偶校驗卻無法檢測出雙位錯誤。

MD5的全稱是Message-Digest Algorithm 5,在90年代初由MIT的計算機科學實驗室和RSA Data Security Inc 發明,由 MD2/MD3/MD4 發展而來的。MD5的實際應用是對一段Message(位元組串)產生fingerprint(指紋),可以防止被「篡改」。舉個例子,天天安全網提供下載的MD5校驗值軟體WinMD5.zip,其MD5值是,但你下載該軟體後計算MD5 發現其值卻是,那說明該ZIP已經被他人修改過,那還用不用該軟體那你可自己琢磨著看啦。

MD5廣泛用於加密和解密技術上,在很多操作系統中,用戶的密碼是以MD5值(或類似的其它演算法)的方式保存的,用戶Login的時候,系統是把用戶輸入的密碼計算成MD5值,然後再去和系統中保存的MD5值進行比較,來驗證該用戶的合法性。

MD5校驗值軟體WinMD5.zip漢化版,使用極其簡單,運行該軟體後,把需要計算MD5值的文件用滑鼠拖到正在處理的框里邊,下面將直接顯示其MD5值以及所測試的文件名稱,可以保留多個文件測試的MD5值,選定所需要復制的MD5值,用CTRL+C就可以復制到其它地方了。
參考資料:http://..com/question/3933661.html

CRC演算法原理及C語言實現 -來自(我愛單片機)

摘 要 本文從理論上推導出CRC演算法實現原理,給出三種分別適應不同計算機或微控制器硬體環境的C語言程序。讀者更能根據本演算法原理,用不同的語言編寫出獨特風格更加實用的CRC計算程序。
關鍵詞 CRC 演算法 C語言
1 引言
循環冗餘碼CRC檢驗技術廣泛應用於測控及通信領域。CRC計算可以靠專用的硬體來實現,但是對於低成本的微控制器系統,在沒有硬體支持下實現CRC檢驗,關鍵的問題就是如何通過軟體來完成CRC計算,也就是CRC演算法的問題。
這里將提供三種演算法,它們稍有不同,一種適用於程序空間十分苛刻但CRC計算速度要求不高的微控制器系統,另一種適用於程序空間較大且CRC計算速度要求較高的計算機或微控制器系統,最後一種是適用於程序空間不太大,且CRC計算速度又不可以太慢的微控制器系統。
2 CRC簡介
CRC 校驗的基本思想是利用線性編碼理論,在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的監督碼(既CRC碼)r位,並附在信息後邊,構成一個新的二進制碼序列數共(k+r)位,最後發送出去。在接收端,則根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。
16位的CRC碼產生的規則是先將要發送的二進制序列數左移16位(既乘以 )後,再除以一個多項式,最後所得到的余數既是CRC碼,如式(2-1)式所示,其中B(X)表示n位的二進制序列數,G(X)為多項式,Q(X)為整數,R(X)是余數(既CRC碼)。
(2-1)
求CRC 碼所採用模2加減運演算法則,既是不帶進位和借位的按位加減,這種加減運算實際上就是邏輯上的異或運算,加法和減法等價,乘法和除法運算與普通代數式的乘除法運算是一樣,符合同樣的規律。生成CRC碼的多項式如下,其中CRC-16和CRC-CCITT產生16位的CRC碼,而CRC-32則產生的是32位的CRC碼。本文不討論32位的CRC演算法,有興趣的朋友可以根據本文的思路自己去推導計算方法。
CRC-16:(美國二進制同步系統中採用)
CRC-CCITT:(由歐洲CCITT推薦)
CRC-32:

接收方將接收到的二進制序列數(包括信息碼和CRC碼)除以多項式,如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤,關於其原理這里不再多述。用軟體計算CRC碼時,接收方可以將接收到的信息碼求CRC碼,比較結果和接收到的CRC碼是否相同。

3 按位計算CRC
對於一個二進制序列數可以表示為式(3-1):
(3-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(3-2)所示:
(3-2)
可以設: (3-3)
其中 為整數, 為16位二進制余數。將式(3-3)代入式(3-2)得:

(3-4)
再設: (3-5)
其中 為整數, 為16位二進制余數,將式(3-5)代入式(3-4),如上類推,最後得到:
(3-6)
根據CRC的定義,很顯然,十六位二進制數 既是我們要求的CRC碼。
式(3 -5)是編程計算CRC的關鍵,它說明計算本位後的CRC碼等於上一位CRC碼乘以2後除以多項式,所得的余數再加上本位值除以多項式所得的余數。由此不難理解下面求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,0x1021與多項式有關。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned char i;
unsigned int crc=0;
while(len--!=0) {
for(i=0x80; i!=0; i/=2) {
if((crc&0x8000)!=0) {crc*=2; crc^=0x1021;} /* 余式CRC乘以2再求CRC */
else crc*=2;
if((*ptr&i)!=0) crc^=0x1021; /* 再加上本位的CRC */
}
ptr++;
}
return(crc);
}
[code]
按位計算CRC雖然代碼簡單,所佔用的內存比較少,但其最大的缺點就是一位一位地計算會佔用很多的處理器處理時間,尤其在高速通訊的場合,這個缺點更是不可容忍。因此下面再介紹一種按位元組查錶快速計算CRC的方法。
4 按位元組計算CRC
不難理解,對於一個二進制序列數可以按位元組表示為式(4-1),其中 為一個位元組(共8位)。
(4-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(4-2)
可以設: (4-3)
其中 為整數, 為16位二進制余數。將式(4-3)代入式(4-2)得:
(4-4)
因為:
(4-5)
其中 是 的高八位, 是 的低八位。將式(4-5)代入式(4-4),經整理後得:
(4-6)
再設: (4-7)
其中 為整數, 為16位二進制余數。將式(4-7)代入式(4-6),如上類推,最後得:
(4-
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(4 -7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組余式CRC碼的低8位左移8位後,再加上上一位元組CRC右移8位(也既取高8位)和本位元組之和後所求得的CRC碼,如果我們把8位二進制序列數的CRC全部計算出來,放如一個表裡,採用查表法,可以大大提高計算速度。由此不難理解下面按位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[256]={ /* CRC余式表 */
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x 1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};

crc=0;
while(len--!=0) {
da=(uchar) (crc/256); /* 以8位二進制數的形式暫存CRC的高8位 */
crc<<=8; /* 左移8位,相當於CRC的低8位乘以 */
crc^=crc_ta[da^*ptr]; /* 高8位和當前位元組相加後再查表求CRC ,再加上以前的CRC */
ptr++;
}
return(crc);
}
很顯然,按位元組求CRC時,由於採用了查表法,大大提高了計算速度。但對於廣泛運用的8位微處理器,代碼空間有限,對於要求256個CRC余式表(共512位元組的內存)已經顯得捉襟見肘了,但CRC的計算速度又不可以太慢,因此再介紹下面一種按半位元組求CRC的演算法。
5 按半位元組計算CRC
同樣道理,對於一個二進制序列數可以按位元組表示為式(5-1),其中 為半個位元組(共4位)。
(5-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(5-2)
可以設: (5-3)
其中 為整數, 為16位二進制余數。將式(5-3)代入式(5-2)得:
(5-4)
因為:
(5-5)
其中 是 的高4位, 是 的低12位。將式(5-5)代入式(5-4),經整理後得:
(5-6)
再設: (5-7)
其中 為整數, 為16位二進制余數。將式(5-7)代入式(5-6),如上類推,最後得:
(5-
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(5 -7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組CRC碼的低12位左移4位後,再加上上一位元組余式CRC右移4位(也既取高4位)和本位元組之和後所求得的CRC碼,如果我們把4位二進制序列數的CRC全部計算出來,放在一個表裡,採用查表法,每個位元組算兩次(半位元組算一次),可以在速度和內存空間取得均衡。由此不難理解下面按半位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
unsigned cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[16]={ /* CRC余式表 */
0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
}

crc=0;
while(len--!=0) {
da=((uchar)(crc/256))/16; /* 暫存CRC的高四位 */
crc<<=4; /* CRC右移4位,相當於取CRC的低12位)*/
crc^=crc_ta[da^(*ptr/16)]; /* CRC的高4位和本位元組的前半位元組相加後查表計算CRC,
然後加上上一次CRC的余數 */
da=((uchar)(crc/256))/16; /* 暫存CRC的高4位 */
crc<<=4; /* CRC右移4位, 相當於CRC的低12位) */
crc^=crc_ta[da^(*ptr&0x0f)]; /* CRC的高4位和本位元組的後半位元組相加後查表計算CRC,
然後再加上上一次CRC的余數 */
ptr++;
}
return(crc);
}
[code]
5 結束語
以上介紹的三種求CRC的程序,按位求法速度較慢,但佔用最小的內存空間;按位元組查表求CRC的方法速度較快,但佔用較大的內存;按半位元組查表求CRC的方法是前兩者的均衡,即不會佔用太多的內存,同時速度又不至於太慢,比較適合8位小內存的單片機的應用場合。以上所給的C程序可以根據各微處理器編譯器的特點作相應的改變,比如把CRC余式表放到程序存儲區內等。[/code]

hjzgq 回復於:2003-05-15 14:12:51
CRC32演算法學習筆記以及如何用java實現 出自:csdn bootcool 2002年10月19日 23:11 CRC32演算法學習筆記以及如何用java實現

CRC32演算法學習筆記以及如何用java實現

一:說明

論壇上關於CRC32校驗演算法的詳細介紹不多。前幾天偶爾看到Ross N. Williams的文章,總算把CRC32演算法的來龍去脈搞清楚了。本來想把原文翻譯出來,但是時間參促,只好把自己的一些學習心得寫出。這樣大家可以更快的了解CRC32的主要思想。由於水平有限,還懇請大家指正。原文可以訪問:http://www.repairfaq.org/filipg/LINK/F_crc_v31.html 。

二:基本概念及相關介紹

2.1 什麼是CRC

在遠距離數據通信中,為確保高效而無差錯地傳送數據,必須對數據進行校驗即差錯控制。循環冗餘校驗CRC(Cyclic Rendancy Check/Code)是對一個傳送數據塊進行校驗,是一種高效的差錯控制方法。

CRC校驗採用多項式編碼方法。多項式乘除法運算過程與普通代數多項式的乘除法相同。多項式的加減法運算以2為模,加減時不進,錯位,如同邏輯異或運算。

2.2 CRC的運算規則

CRC加法運算規則:0+0=0

0+1=1

1+0=1

1+1=0 (注意:沒有進位)

CRC減法運算規則:

0-0=0

0-1=1

1-0=1

1-1=0

CRC乘法運算規則:

0*0=0

0*1=0

1*0=0

1*1=1

CRC除法運算規則:

1100001010 (注意:我們並不關心商是多少。)

_______________

10011 11010110110000

10011,,.,,....

-----,,.,,....

10011,.,,....

10011,.,,....

-----,.,,....

00001.,,....

00000.,,....

-----.,,....

00010,,....

00000,,....

-----,,....

00101,....

00000,....

-----,....

01011....

00000....

-----....

10110...

10011...

-----...

01010..

00000..

-----..

10100.

10011.

-----.

01110

00000

-----

1110 = 余數

2.3 如何生成CRC校驗碼

(1) 設G(X)為W階,在數據塊末尾添加W個0,使數據塊為M+ W位,則相應的多項式為XrM(X);

(2) 以2為模,用對應於G(X)的位串去除對應於XrM(X)的位串,求得余數位串;

(3) 以2為模,從對應於XrM(X)的位串中減去余數位串,結果就是為數據塊生成的帶足夠校驗信息的CRC校驗碼位串。

2.4 可能我們會問那如何選擇G(x)

可以說選擇G(x)不是一件很容易的事。一般我們都使用已經被大量的數據,時間檢驗過的,正確的,高效的,生成多項式。一般有以下這些:

16 bits: (16,12,5,0) [X25 standard]

(16,15,2,0) ["CRC-16"]

32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]

三: 如何用軟體實現CRC演算法

現在我們主要問題就是如何實現CRC校驗,編碼和解碼。用硬體實現目前是不可能的,我們主要考慮用軟體實現的方法。

以下是對作者的原文的翻譯:

我們假設有一個4 bits的寄存器,通過反復的移位和進行CRC的除法,最終該寄存器中的值就是我們所要求的余數。

3 2 1 0 Bits

+---+---+---+---+

Pop <-- | | | | | <----- Augmented message(已加0擴張的原始數據)

+---+---+---+---+

1 0 1 1 1 = The Poly

(注意: The augmented message is the message followed by W zero bits.)

依據這個模型,我們得到了一個最最簡單的演算法:

把register中的值置0.

把原始的數據後添加r個0.

While (還有剩餘沒有處理的數據)

Begin

把register中的值左移一位,讀入一個新的數據並置於register的0 bit的位置。

If (如果上一步的左移操作中的移出的一位是1)

register = register XOR Poly.

End

現在的register中的值就是我們要求的crc余數。

我的學習筆記:

可為什麼要這樣作呢?我們從下面的實例來說明:

1100001010

_______________

10011 11010110110000

10011,,.,,....

-----,,.,,....

-》 10011,.,,....

10011,.,,....

-----,.,,....

-》 00001.,,....

00000.,,....

-----.,,....

00010,,....

00000,,....

-----,,....

00101,....

00000,....

我們知道G(x)的最高位一定是1,而商1還是商0是由被除數的最高位決定的。而我們並不關心商究竟是多少,我們關心的是余數。例如上例中的G(x)有5 位。我們可以看到每一步作除法運算所得的余數其實就是被除數的最高位後的四位於G(x)的後四位XOR而得到的。那被除數的最高位有什麼用呢?我們從打記號的兩個不同的余數就知道原因了。當被除數的最高位是1時,商1然後把最高位以後的四位於G(x)的後四位XOR得到余數;如果最高位是0,商0然後把被除數的最高位以後的四位於G(x)的後四位XOR得到余數,而我們發現其實這個余數就是原來被除數最高位以後的四位的值。也就是說如果最高位是0就不需要作XOR的運算了。到這我們總算知道了為什麼先前要這樣建立模型,而演算法的原理也就清楚了。

以下是對作者的原文的翻譯:

可是這樣實現的演算法卻是非常的低效。為了加快它的速度,我們使它一次能處理大於4 bit的數據。也就是我們想要實現的32 bit的CRC校驗。我們還是假設有和原來一樣的一個4 "bit"的register。不過它的每一位是一個8 bit的位元組。

3 2 1 0 Bytes

+----+----+----+----+

Pop <-- | | | | | <----- Augmented message

+----+----+----+----+

1<------32 bits------> (暗含了一個最高位的「1」)

根據同樣的原理我們可以得到如下的演算法:

While (還有剩餘沒有處理的數據)

Begin

檢查register頭位元組,並取得它的值

求不同偏移處多項式的和

register左移一個位元組,最右處存入新讀入的一個位元組

把register的值和多項式的和進行XOR運算

End

我的學習筆記:

可是為什麼要這樣作呢? 同樣我們還是以一個簡單的例子說明問題:

假設有這樣的一些值:

當前register中的值: 01001101

4 bit應該被移出的值:1011

生成多項式為: 101011100

Top Register

---- --------

1011 01001101

1010 11100 + (CRC XOR)

-------------

0001 10101101

首4 bits 不為0說明沒有除盡,要繼續除:

0001 10101101

1 01011100 + (CRC XOR)

-------------

0000 11110001

^^^^

首4 bits 全0說明不用繼續除了。

那按照演算法的意思作又會有什麼樣的結果呢?

1010 11100

1 01011100+

-------------

1011 10111100

1011 10111100

1011 01001101+

-------------

0000 11110001

現在我們看到了這樣一個事實,那就是這樣作的結果和上面的結果是一致的。這也說明了演算法中為什麼要先把多項式的值按不同的偏移值求和,然後在和 register進行異或運算的原因了。另外我們也可以看到,每一個頭位元組對應一個值。比如上例中:1011,對應01001101。那麼對於 32 bits 的CRC 頭位元組,依據我們的模型。頭8 bit就該有 2^8個,即有256個值與它對應。於是我們可以預先建立一個表然後,編碼時只要取出輸入數據的頭一個位元組然後從表中查找對應的值即可。這樣就可以大大提高編碼的速度了。

+----+----+----+----+

+-----< | | | | | <----- Augmented message

| +----+----+----+----+

| ^

| |

| XOR

| |

| 0+----+----+----+----+

v +----+----+----+----+

| +----+----+----+----+

| +----+----+----+----+

| +----+----+----+----+

| +----+----+----+----+

| +----+----+----+----+

+-----> +----+----+----+----+

+----+----+----+----+

+----+----+----+----+

+----+----+----+----+

+----+----+----+----+

255+----+----+----+----+

以下是對作者的原文的翻譯:

上面的演算法可以進一步優化為:

1:register左移一個位元組,從原始數據中讀入一個新的位元組.

2:利用剛從register移出的位元組作為下標定位 table 中的一個32位的值

3:把這個值XOR到register中。

4:如果還有未處理的數據則回到第一步繼續執行。

用C可以寫成這樣:

r=0;

while (len--)
r = ((r << | p*++) ^ t[(r >> 24) & 0xFF];

可是這一演算法是針對已經用0擴展了的原始數據而言的。所以最後還要加入這樣的一個循環,把W個0加入原始數據。

我的學習筆記:

注意不是在預處理時先加入W個0,而是在上面演算法描述的循環後加入這樣的處理。

for (i=0; i<W/4; i++)
r = (r << ^ t[(r >> 24) & 0xFF];
所以是W/4是因為若有W個0,因為我們以位元組(8位)為單位的,所以是W/4個0 位元組。注意不是循環w/8次
以下是對作者的原文的翻譯:
1:對於尾部的w/4個0位元組,事實上它們的作用只是確保所有的原始數據都已被送入register,並且被演算法處理。
2:如果register中的初始值是0,那麼開始的4次循環,作用只是把原始數據的頭4個位元組送入寄存器。(這要結合table表的生成來看)。就算 register的初始值不是0,開始的4次循環也只是把原始數據的頭4個位元組把它們和register的一些常量XOR,然後送入register中。

3A xor B) xor C = A xor (B xor C)

總上所述,原來的演算法可以改為:

+-----<Message (non augmented)
|
v 3 2 1 0 Bytes
| +----+----+----+----+
XOR----<| | | | |
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+----->+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+

演算法:

1:register左移一個位元組,從原始數據中讀入一個新的位元組.

2:利用剛從register移出的位元組和讀入的新位元組XOR從而產生定位下標,從table中取得相應的值。

3:把該值XOR到register中

4:如果還有未處理的數據則回到第一步繼續執行。

我的學習筆記:

對這一演算法我還是不太清楚,或許和XOR的性質有關,懇請大家指出為什麼?

謝謝。

到這,我們對CRC32的演算法原理和思想已經基本搞清了。下章,我想著重根據演算法思想用java語言實現。

hjzgq 回復於:2003-05-15 14:14:51
數學演算法一向都是密碼加密的核心,但在一般的軟路加密中,它似乎並不太為人們所關心,因為大多數時候軟體加密本身實現的都是一種編程上的技巧。但近幾年來隨著序列號加密程序的普及,數學演算法在軟體加密中的比重似乎是越來越大了。

我們先來看看在網路上大行其道的序列號加密的工作原理。當用戶從網路上下載某個Shareware -- 共享軟體後,一般都有使用時間上的限制,當過了共享軟體的試用期後,你必須到這個軟體的公司去注冊後方能繼續使用。注冊過程一般是用戶把自己的私人信息(一般主要指名字)連同信用卡號碼告訴給軟體公司,軟體公司會根據用戶的信息計算出一個序列碼出來,在用戶得到這個序列碼後,按照注冊需要的步驟在軟體中輸入注冊信息和注冊碼,其注冊信息的合法性由軟體驗證通過後,軟體就會取消掉本身的各種限制。這種加密實現起來比較簡單,不需要額外的成本,用戶購買也非常方便,在網上的軟體80%都是以這種方式來保護的。

我們可以注意到軟體驗證序列號的合法性過程,其實就是驗證用戶名與序列號之間的換算關系是否正確的過程。其驗證最基本的有兩種,一種是按用戶輸入的姓名來生成注冊碼,再同用戶輸入的注冊碼相比較,公式表示如下:

序列號 = F(用戶名稱)

⑤ 什麼是校驗內存它是叫做ECC內存嗎

ECC內存即糾錯內存,簡單的說,其具有發現錯誤,糾正錯誤的功能,一般多應用在高檔台式電腦/伺服器及圖形工作站上,這將使整個電腦系統在工作時更趨於安全穩定。

為了能檢測和糾正內存軟錯誤,首先出現的是內存「奇偶校驗」。內存中最小的單位是比特,也稱為「位」,位有隻有兩種狀態分別以1和0來標示,每8個連續的比特叫做一個位元組(byte)。不帶奇偶校驗的內存每個位元組只有8位,如果其某一位存儲了錯誤的值,就會導致其存儲的相應數據發生變化,進而導致應用程序發生錯誤。而奇偶校驗就是在每一位元組(8位)之外又增加了一位作為錯誤檢測位。在某位元組中存儲數據之後,在其8個位上存儲的數據是固定的,因為位只能有兩種狀態1或0,假設存儲的數據用位標示為1、1、1、0、0、1、0、1,那麼把每個位相加(1+1+1+0+0+1+0+1=5),結果是奇數。對於偶校驗,校驗位就定義為1,反之則為0;對於奇校驗,則相反。當CPU讀取存儲的數據時,它會再次把前8位中存儲的數據相加,計算結果是否與校驗位相一致。從而一定程度上能檢測出內存錯誤,奇偶校驗只能檢測出錯誤而無法對其進行修正,同時雖然雙位同時發生錯誤的概率相當低,但奇偶校驗卻無法檢測出雙位錯誤。

ECC(Error Checking and Correcting,錯誤檢查和糾正)內存,它同樣也是在數據位上額外的位存儲一個用數據加密的代碼。當數據被寫入內存,相應的ECC代碼與此同時也被保存下來。當重新讀回剛才存儲的數據時,保存下來的ECC代碼就會和讀數據時產生的ECC代碼做比較。如果兩個代碼不相同,他們則會被解碼,以確定數據中的那一位是不正確的。然後這一錯誤位會被拋棄,內存控制器則會釋放出正確的數據。被糾正的數據很少會被放回內存。假如相同的錯誤數據再次被讀出,則糾正過程再次被執行。重寫數據會增加處理過程的開銷,這樣則會導致系統性能的明顯降低。如果是隨機事件而非內存的缺點產生的錯誤,則這一內存地址的錯誤數據會被再次寫入的其他數據所取代。

使用ECC校驗的內存,會對系統的性能造成不小的影響,不過這種糾錯對伺服器等應用而言是十分重要的,帶ECC校驗的內存價格比普通內存要昂貴許多。

⑥ 磁表面存儲器一般用什麼校驗方式發現

fast-track這個字意思是快速磁軌。
track這個字,意思是磁軌。
當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。
磁碟上的磁軌是一組記錄密度不同的同心圓。磁表面存儲器是在不同形狀(如盤狀、帶狀等)的載體上,塗有磁性材料層,工作時,靠載磁體高速運動,由磁頭在磁層上進行讀寫操作,信息被記錄在磁層上,這些信息的軌跡就是磁軌。磁碟的磁軌是一個個同心圓,磁帶的磁軌是沿磁帶長度方向的直線,這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會產生相互影響,同時也為磁頭的讀寫帶來困難。一張老式1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
硬碟的物理結構一般由磁頭與碟片、電動機、主控晶元與排線等部件組成;當主電動機帶動碟片旋轉時,副電動機帶動一組(磁頭)到相對應的碟片上並確定讀取正面還是反面的碟面,磁頭懸浮在碟面上畫出一個與碟片同心的圓形軌道(磁軌或稱柱面),這時由磁頭的磁感線圈感應碟面上的磁性與使用硬碟廠商指定的讀取時間或數據間隔定位扇區,從而得到該扇區的數據內容。
母音字母a在重讀閉音節中,發短母音/æ/的音,發音時,舌端靠近下齒,舌前部抬高,舌位低,是四個前母音中舌位最低的,但開口最大的一個,屬於短母音,但是,在實際發音中有相當的長度,牙床介於半開和開之間,不圓唇。這個音出現在字首、字中位置,如:
mat 墊子
map 地圖
bag 袋子,包
cat 貓
hat 寬邊的帽子
fan 風扇
bat 球拍,蝙蝠
apple 蘋果
希望我能幫助你解疑釋惑。

⑦ 內存有那幾種校驗方式各自的適用范圍是是什麼

對於內存的奇偶校驗(Parity)要從比特概念說起,比特(bit)是內存中的最小單位,也稱「位」,它只有兩個狀態分別以1 和0表示。規定將8個連續的比特叫做一個位元組(byte)。非奇偶校驗內存的每個位元組只有8位,若它的某一位存儲了錯誤的數值。就會使其中存儲的相應數據發生改變而導致應用程序發生錯誤。而奇偶校驗內存在每一位元組(8位)外又額外增加了一位作為錯誤檢測之用。比如一個位元組中存儲了某一數值「10011110」,把該數值的每一位相加,即 1+0+0+1+1+1+1+0-5,若其結果是奇數,校驗位就定義為1, 反之則為0。當CPU讀取儲存的數據時,它會再次相加前8位中存儲的數據 ,計算結果是否與校驗位相一致。當CPU發現二者不同時就作出一定的反應。現在主板都可以使用帶奇偶校驗位或不帶奇偶校驗位兩種內存條,但要注意兩種不能混用。

而ECC(Error Chechng and CorreCting)內存,它也是在原來的數據位上外加位來實現的。如8位數據,則需1位用干Parity檢驗,5位用於ECC,這額外的5位是用來重建錯誤的數據的。當數據的位數增加一倍Parity也增加一倍,而ECC只需增加一位,當數據為64位時所用的ECC和Party位數相同(都為8)。在那些Parity只能檢測到錯誤的地方,ECC可以糾正絕大多數錯誤。若工作正常時,一般不會發覺數據出過錯,只有經過內存的糾錯後,計算機的操作指令才可以繼續執行。

SPD(Serial Presence Detecl串列存在探測),它是1個8針的SOIC封裝(3mm x 4mm)256位元組的EEPROM(Electrcally Erasable Programmable ROM電可擦寫可編程只讀存儲器)晶元。型號多為24LC01B,位置一般處在內存條正面的右側,裡面記錄了諸如內存的速度、容量、電壓與行、列地址帶寬等參數信息。當開機時PC的BIOS將自動讀取SPD中記錄的信息,如果沒有SPD,就容易出現死機或致命錯誤的現象。它是識別PC100內存的一個重要標志。個別硬體廠商為了降低生產成本,又要從表面上符合PC100標准,於是就在PCB板上焊上一片空的SPD,這樣就有可能導致在100MHz以上外頻不能正常工作。

⑧ 存儲過程實現數據校驗,求助

在存儲過程使用where ,或判斷rowcount行數,來驗證存儲過程中數據的正確性。

存儲過程事務框架編寫方法分享

sql">[email protected]@rowcount!=預計所影響的行數
begin
gotoerr;//回滾事務
end

請試一試!

⑨ 什麼叫內存ECC數據校驗

ECC(Error Checking and Correcting,錯誤檢查和糾正),ECC內存即自我檢查錯誤並糾錯內存,簡單的說,其具有發現錯誤,糾正錯誤的功能,一般多應用在高檔電腦或者伺服器及圖形工作站上,這將使整個電腦系統在工作時更趨於安全穩定。
ECC內存即糾錯內存,是在數據位上額外的位存儲一個用數據加密的代碼。當數據被寫入內存,相應的ECC代碼與此同時也被保存下來。當重新讀回剛才存儲的數據時,保存下來的ECC代碼就會和讀數據時產生的ECC代碼做比較。如果兩個代碼不相同,他們則會被解碼,以確定數據中的那一位是不正確的。然後這一錯誤位會被拋棄,內存控制器則會釋放出正確的數據。被糾正的數據很少會被放回內存。假如相同的錯誤數據再次被讀出,則糾正過程再次被執行。重寫數據會增加處理過程的開銷,這樣則會導致系統性能的明顯降低。如果是隨機事件而非內存的缺點產生的錯誤,則這一內存地址的錯誤數據會被再次寫入的其他數據所取代。

使用ECC校驗的內存,會對系統的性能造成不小的影響,不過這種糾錯對伺服器等應用而言是十分重要的,帶ECC校驗的內存價格比普通內存要昂貴許多,一般用戶不建議使用!

⑩ 計算機組成原理 存儲器校驗 提高訪存速度 考不考

存儲器校驗,多半不會考,提高訪存速度可能會出吧,去年的大綱上好像有的,你再看看,不過這些東西肯定是很重要的,考不考都應該搞懂了

熱點內容
資料庫管理系統的工作 發布:2022-06-29 02:51:50 瀏覽:765
日本qq上傳頭像失敗 發布:2022-06-29 02:47:12 瀏覽:482
力度384控台編程視頻1 發布:2022-06-29 02:47:10 瀏覽:852
酷博linux 發布:2022-06-29 02:47:07 瀏覽:871
光遇安卓從哪個季節開始的有任務的 發布:2022-06-29 02:44:02 瀏覽:339
編程地牢 發布:2022-06-29 02:41:25 瀏覽:153
雲存儲結構模型是什麼 發布:2022-06-29 02:39:39 瀏覽:724
批量上傳js 發布:2022-06-29 02:38:17 瀏覽:396
行業b2b網站源碼 發布:2022-06-29 02:38:14 瀏覽:138
游戲引擎源碼 發布:2022-06-29 02:35:53 瀏覽:345