分層存儲技術
❶ 計算機採用分層次存儲體系結構的原因 答完整
在計算機網路技術中,網路的體系結構指的是通信系統的整體設計,它的目的是為網路硬體、軟體、協議、存取控制和拓撲提供標准。現在廣泛採用的是開放系統互連OSI(Open System Interconnection)的參考模型,它是用物理層、數據鏈路層、網路層、傳送層、對話層、表示層和應用層七個層次描述網路的結構。你應該注意的是,網路體系結構的優劣將直接影響匯流排、介面和網路的性能。而網路體系結構的關鍵要素恰恰就是協議和拓撲。目前最常見的網路體系結構有FDDI、乙太網、令牌環網和快速乙太網等。
採用分層次的結構原因:各層功能相對獨立,各層因技術進步而做的改動不會影響到其他層,從而保持體 系結構的穩定性
❷ 如何利用固態硬碟進行存儲分層
固態硬碟不是用來存儲的,它的優勢在讀取,所以,固態硬碟要用來安裝操作系統和常用的軟體。
存儲的事情,交給機械硬碟來做。
❸ 海康磐石自動配置
提供配置向導。
提供配置向導、自動搜索、一鍵配置等功能,用戶可快速完成系統配置,提供豐富的告警管理方式,支持指示燈、手機簡訊以及郵件等告警的方式,提升設備維護效率。
海康威視磐石產品簡介:磐石DS-A81系列產品是海康威視面向安防市場推出的高安全高性價比磁碟陣列。VRAID2.0技術,實現空間和數據的精細化管理,從底層保護數據安全。SAS3.0內部高速傳輸通道,結合對冷熱數據的分層存儲技術,提供高速帶寬體驗。周期性批量換盤,使產品具有超高可用性。適用於數據安全要求高,且維護成本低(可實現無人值守)的存儲項目。
❹ 什麼是ILM
ILM是英文Information Lifecycle Management的縮寫,其中文意思是信息生命周期管理。ILM是主動預防性的信息管理方法,幫助企業以最低的總體擁有成本,在信息生命周期的每一階段都能獲得信息的最大價值。
ILM使企業可以根據商務、監管和法律方面的要求對數字化及非數字化信息進行分類、搜索、存檔、恢復和刪除。不同類型的信息在生命周期的不同點具有不同的價值。即使對於給定的數據類型(如電子郵件),從其屬於關鍵任務的必要信息到最後處置,在信息價值方面都存在著很大的差異。
現在,企業需要更加全面的技術管理大量類型的信息,包括非結構內容(如電子郵件),以及很少訪問或根本不訪問,但根據企業或監管機構要求又必須保存數據。
企業已認識到,有些信息屬於「關鍵任務」信息,有些則屬於「關鍵業務」信息。電子郵件可以是含有結構信息的重要注釋,也可以是「非關鍵性業務」注釋或簡報。而這些文檔可以是初稿、修訂版或終稿。理想情況下,這些不同類型的信息應該按訪問、存儲及最終處置的相應方法加以管理。由企業制定的方針確定不同信息類型的管理方法。這些即定方針應該根據監管條例和業務優先程度的變化,以及推出的新技術定期進行評估。
採用ILM技術建立分層存儲環境後,這些保存規則對企業具有多方面的好處。包括:
在整個生命周期中對信息進行智能化管理,必要時可解構可用的存儲空間; 取消很少訪問或根本不訪問的信息提高應用軟體的性能,降低存儲資源的成本; 隨著企業方針的調整可以根據業務價值保存信息資產;信息生命周期自動化管理可以減少人工數據管理的錯誤及相應的資源;以優化存儲和訪問的方式管理信息,充分利用分層存儲的效率來整合現有存儲,可以為今後存儲的擴展制定完善的計劃。然而有效管理ILM過程需要以下解決方案:
* 支持關鍵業務流程按照保存規則管理信息。
* 強制實行企業方針管理。
* 支持分層存儲,包括頁面。
* 集成內容和記錄管理軟體管理信息,作為創建到處置過程中的重用資產。
* 採用有助於保護信息的技術。
* 現有IT基礎設施進行一體化調整,包括存儲整合,基礎設施簡化及業務連續性。
* 實施具有各種靈活功能和擴展選項的模塊
❺ 什麼是存儲器的分層結構
存儲器的分層結構是指微機的存儲器系統由寄存器、Cache、主存儲器、磁碟、光碟等多個層次由上至下排列組成。分層結構的頂端,存儲訪問速度最快,單位價格最高,存儲容量最小。自上而下速度越來越低,而容量越來越大,單位價格越來越低。
❻ 存儲系統層次結構包含哪些層
第一層:通用寄存器堆 第二層:指令與數據緩沖棧 第三層:高速緩沖存儲器 第四層:主儲存器(DRAM) 第五層:聯機外部儲存器(硬磁碟機) 第六層:離線外部儲存器(磁帶、光碟存儲器等) 這就是存儲器的層次結構~~~ 主要體現在訪問速度~~~ 1,設置多個存儲器並且使他們並行工作。本質:增添瓶頸部件數目,使它們並行工作,從而減緩固定瓶頸。 2,採用多級存儲系統,特別是Cache技術,這是一種減輕存儲器帶寬對系統性能影響的最佳結構方案。本質:把瓶頸部件分為多個流水線部件,加大操作時間的重疊、提高速度,從而減緩固定瓶頸。 3,在微處理機內部設置各種緩沖存儲器,以減輕對存儲器存取的壓力。增加CPU中寄存器的數量,也可大大緩解對存儲器的壓力。本質:緩沖技術,用於減緩暫時性瓶頸。
❼ 計算機 存儲器為什麼要分層 分層結構有什麼好處
存儲器是計算機的核心部件之一。如何以合理的價格搭建出容量和速度都滿足要求的存儲系統,始終是計算機體系結構設計中的關鍵問題之一。
計算機中有不同容量,不同速度的存儲器,你怎麽辦?要把它們組織管理在一起,按照一定的體系結構組織起來,
以解決存儲容量、存取速度和價格之
間的矛盾。存儲器一分錢一分貨,親
設計讓整個存儲系統速度接近M1而價格和容量接近Mn
❽ 分層存儲與虛擬化技術的分層存儲
分層存儲其實已經不是一個新鮮的概念,而是已經在計算機存儲領域應用多年。其與計算機的發明與發展相伴相生。在馮-諾依曼提出計算機的模型「存儲程序」時就已經包含了分層存儲的概念。「存儲程序」原理,是將根據特定問題編寫的程序存放在計算機存儲器中,然後按存儲器中的存儲程序的首地址執行程序的第一條指令,以後就按照該程序的規定順序執行其他指令,直至程序結束執行。在這里的外存儲器與內存儲器,就是一個分層存儲的最初模型。
分層存儲(Tiered Storage),也稱為層級存儲管理(Hierarchical Storage Management),廣義上講,就是將數據存儲在不同層級的介質中,並在不同的介質之間進行自動或者手動的數據遷移,復制等操作。同時,分層存儲也是信息生命周期管理的一個具體應用和實現。
而實際上,將相同成本及效率的存儲介質放在不同層級之間進行數據遷移復制在實用性及成本上並不是有效的數據存儲方式。因此,在不同的層級之間使用有差別的存儲介質,以期在相同成本下,既滿足性能的需要又滿足容量的需要。這種存儲介質上的差別主要是在存取速度上及容量上。存取速度快的介質通常都是存儲單位成本(每單位存儲容量成本,如1元/GB)高,而且容量相對來講比較低。相應的,存取速度慢的介質通常是為了滿足容量與成本方面的要求,既在相同的成本下可以得到更大的容量。所以,從這方面來說,分層存儲其實是一種在高速小容量層級的介質層與低速大容量層級的介質層之間進行一種自動或者手動數據遷移、復制、管理等操作的一種存儲技術及方案。
一般來說,分層存儲中,我們將存取速度最快的那一層的介質層稱為第0層(Tier 0),依次為第1層,第2層等等。理論上說,層級的劃分可以有很多層,但是在實踐中,最多的層級在5層左右。過多的層級會增加數據及介質管理的難道及可用性。因此在層級的設置上有一個拐點,即層級達到一個特定的層數時,會導致成本的上升,而使得可用性、可靠性都會相應下降。通常層級的設定在2-4層之間。如下圖所示: 在計算機系統中,CPU 的運行速度往往要比內存速度快上好幾百倍甚至更多,為了更多地榨取CPU的計算能力,就需要在訪問數據的速度上進行提升,否則內存的速度將成為整個系統的性能短板。因此在這樣的思想下,CPU慢慢發展出來1級或者2級這樣的存儲緩存。實際也表明,緩存的存在確實對於系統性能的提升起到了巨大的推動作用。
相應的,內存的訪問速度又是硬碟訪問速度的幾百倍甚至更多,也是基於CPU類似的指導思想,我們能不能在存儲之間也進行這樣的分層(或者說緩存)以期提高系統的I/O性能,以滿足應用對系統提出的更多高I/O的需求呢?
從某種意義上說,內存其實也就是充當了CPU與外部存儲之間的另一個級別的緩存。作為用戶來講,我們當然希望所有需要用到的數據都最好是存在最高速的存儲當中。但是這樣近乎是烏托邦式的理想至少在當前來說是不現實的。在技術上的難度不說,成本的壓力就會使得用戶喘不過氣來,再一個就是有沒有必要的問題,因為有的數據根本都不需要一直存於這樣的存儲中。在計算機界中有一個很有名的理論,就是說,加上一個中間層,就可以解決計算機中許多的問題。而這個「中間層」也正是我們所尋求的,實際也證明這樣的中間層確實取得了非常好的效果。
據IDC數據預測,到2012年,信息數據的增長將會達到50%的復合年增長率,這個增長主要源於越來越來多數據內容生成並存儲,經濟全球化使用商業各個部門及與商業夥伴之間需要保持連接,使得更多的數據被生成,復制及保存。法規遵從及管理,還有容災與備份都使得數據的增長持續上升。天下沒有一勞永逸的解決方案,我們需要根據不同的數據存儲需求,設計不同的存儲方案。比如歸檔,我們可以將數據存儲在磁帶上,比如需要頻繁訪問的實時數據我們可以放在內存或者SSD(固態硬碟)設備中,對於容災或者備份,我們可以使用大容量低成本的存儲來應對。正所謂好鋼用在刀刃上,用戶也希望把資金投向更能產生效益的存儲上。
除了需要滿足不同的存儲需求,還有出於對於高性能高吞吐量應用的支持。因為有的應用需要這樣存儲系統。特別是現在風頭正勁的虛擬化技術。為了在一台設備上支持更多的虛擬應用,就需要系統支持更大的吞吐量以及更高的性能。全部採用高速介質在成本上現在依然不是可行的,也不是必須的。因為根據數據局部性原理,往往被頻繁訪問的數據是局部而有限的。為了應對部份這樣的數據而全採用高速存儲實在是過於奢侈。如果我們針對這部份數據另開小灶來解決不是更好?所以分層存儲在這里就可以大展拳腳。我們把高頻率訪問的數據放在高速存儲介質上,而其他的數據放在速度較慢一些的介質上,這實際上就是提高了系統的吞吐量。 從計算機系統角度來說,最上層的存儲層應該是CPU內的各類型寄存器,其次是CPU內的緩存,其次再是系統內存。因為從分層存儲的定義上,此類型存儲器是符合定義規則的。因為這些存儲器速度與容量都有差別,越靠近CPU的存儲器成本越高,速度越快,容量越小,並且在CPU的控制下,數據這些不同類型的存儲器中間進行自動的轉存。比如寄存器通常在16、32、64、128位之間,而緩存則在幾十個位元組及到幾兆位元組之間,內存容量當前通常都在幾百兆位元組以上,伺服器級的內存也上幾十個吉位元組。很有意思的是,這類型的分層也非常符合上圖所示的效益成本曲線圖。層級過多時,對於CPU的硬體設計及不同層次之間的數據一致性的保證都是一個挑戰。所以,現代CPU在寄存器與內存之間的緩存基本在1-3級。而我們通常使用的386平台的CPU(Intel 及 AMD)基本上都只有兩級緩存。這類存儲都有一個共同的特點,就是系統掉電後數據不復存在。我們將此類型的分層存儲稱為易失性存儲分層,或者內部存儲器分層存儲。
而另外一種分類,則是非易失性分層存儲,或者叫外部分層存儲。此類型的存儲介質一般包括固態硬碟(SSD)、機械式硬碟、光碟、快閃記憶體檔(包括外置硬碟)、磁帶庫等等。而此類的存儲介質分層正是我們所要關注的,如沒有特殊的說明情況下,在此文檔中所說的分層存儲都是指外部分層存儲。一般來說,作為第0層的存儲介質通常為 RAM 磁碟(隨機訪問存儲磁碟,其速度與內存同速,但是價格昂貴,使用環境基本上是特殊計算環境)以及 SSD,第1層可能有 FC 15K硬碟或者SAS 15K硬碟,或者相應的10K硬碟。第2層可能有其他類型的硬碟及磁碟庫等。第3層,可能是如磁帶庫以及光碟庫這樣的離線介質。當然這樣的分層不是標准,但是一個實踐中常用的分層策略。
如 D2D2T 這樣的存儲方案,其實就是分層存儲的一個實踐方案。數據從本地的磁碟轉存於於另一個遠程的磁碟(D2D)。這個磁碟的形式可以是一個JBOD,或者一個虛擬存儲設備,然後再通過一定的轉存策略將這個磁碟的數據轉存於磁帶庫或者磁帶(D2T)。愛數備份存儲櫃X系列都支持D2D2T這樣的應用。 由上一節可知道,外部分層存儲只不過是內部分層存儲的一個外延。所以,外部分層存儲考慮的問題與內部分層存儲實際上是大同小異的。
1、 首先是數據一致性的問題。這個問題比較好理解。如果不同的數據在不同的存儲層級之間存在時,數據的改寫必然導致數據的不致的問題。在內部分層存儲時,可以採用通寫策略或者回寫策略。而不同的方法也有各自優缺點,這里就不再贅述。但是外部分層存儲與內部分層存儲有一個最大的不同是,內存儲最終數據需要寫到內存中,而外分層存儲中,則不是必須的。當然也可以設計成這樣的實現方案,但是這樣話,分層存儲的性能優勢則必定會受到影響。數據在不同層級之間的連續性可以由一個虛擬層來保證。這個我們在談到虛擬化時會討論這個問題。
2、 第二個問題就是命中率的問題。如何設計一套演算法或者實現策略來提高數據系統的命中率是分層存儲中是否能起到其相應作用的關鍵。這個與CPU的緩存機制是完全一樣的。不過,CPU的緩存機制已經有一套非常成熟的演算法設計。而外部分層存儲與內部分層存儲有其不同的特性,因此,CPU中的緩存機制不能全部照拿過來用。特別是CPU的緩存機制還主要是硬體設計上面的問題。而外部存儲層可能還與一些邏輯設計相關,比如文件系統,文件等。從這點上說,外部分層存儲的軟體設計上比起CPU緩存的設計可能要更復雜一些。
3、 第三個問題就是在分層介質的選擇上。上面也提過,不同層級之間的介質應該是有差別的,否則就失去了分層的意義。一般來說,高速介質應該是小容量、高成本,隨著層級的往下走,其成本容量曲線應該呈現如下的形式:
即容量越大的單位成本越低,速度越慢,因此應該放到更低的層級中,反之亦然。因此,在存儲介質的配置上如何找到一個合適的點,使得成本與效益最優化則是在分層介質選擇及策略制定上需要考慮的問題。下面的圖中給出了一個實際的可能的配置方案:1、 第四個問題就是數據分層的級別。對於數據的描述有位元組級,塊級(包括扇區及簇),文件級及文件系統級。當然不同的級別有不同的應用場合,並不是哪種級別好於哪個級別。對於文件級的分層,對於歸檔,法規遵從則比較適合。對於文件系統級的則多用於容災及備份系統中。對於塊級則可能用在虛擬化中較為合適。因此需要根據不同的需求制定不同的分層級別。
2、 第五個問題就是數據的遷移策略的設計。可以根據數據的重要性、訪問頻度、大小、年齡來制定遷移策略。但是如同第四點所說明的那樣,不同的策略是有不同的應用場合的,沒有孰優孰劣的問題。好的策略應該是不同最優策略的組合,也就是因「需」制宜地選擇合適的遷移演算法或者方法。根據年齡進行遷移的策略可以用在歸檔及容災備份系統中。根據訪問頻度則可以用於虛擬化存儲系統中等等。類似的方法已經用於計算機軟體設計或者硬體設計當中的很多地方,如LRU(最近最少使用)、ARC(自適應交替緩存)都是可以借鑒的。
❾ 分布式存儲有什麼好
分布式存儲,它的最大特點是多節點部署, 數據通過網路分散放置。分布式存儲的特點是擴展性強,通過多節點平衡負載,提高存儲系統的可靠性與可用性。
❿ 分布式存儲的優點有哪些
分布式存儲的六大優點
分布式存儲往往採用分布式的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息。它不但提高了系統的可靠性、可用性和存取效率,還易於擴展,將通用硬體引入的不穩定因素降到最低。優點如下:
1. 高性能
一個具有高性能的分布式存戶通常能夠高效地管理讀緩存和寫緩存,並且支持自動的分級存儲。分布式存儲通過將熱點區域內數據映射到高速存儲中,來提高系統響應速度;一旦這些區域不再是熱點,那麼存儲系統會將它們移出高速存儲。而寫緩存技術則可使配合高速存儲來明顯改變整體存儲的性能,按照一定的策略,先將數據寫入高速存儲,再在適當的時間進行同步落盤。
2. 支持分級存儲
由於通過網路進行松耦合鏈接,分布式存儲允許高速存儲和低速存儲分開部署,或者任意比例混布。在不可預測的業務環境或者敏捷應用情況下,分層存儲的優勢可以發揮到最佳。解決了目前緩存分層存儲最大的問題是當性能池讀不命中後,從冷池提取數據的粒度太大,導致延遲高,從而給造成整體的性能的抖動的問題。
3. 一致性
與傳統的存儲架構使用RAID模式來保證數據的可靠性不同,分布式存儲採用了多副本備份機制。在存儲數據之前,分布式存儲對數據進行了分片,分片後的數據按照一定的規則保存在集群節點上。為了保證多個數據副本之間的一致性,分布式存儲通常採用的是一個副本寫入,多個副本讀取的強一致性技術,使用鏡像、條帶、分布式校驗等方式滿足租戶對於可靠性不同的需求。在讀取數據失敗的時候,系統可以通過從其他副本讀取數據,重新寫入該副本進行恢復,從而保證副本的總數固定;當數據長時間處於不一致狀態時,系統會自動數據重建恢復,同時租戶可設定數據恢復的帶寬規則,最小化對業務的影響。
4. 容災性
在分布式存儲的容災中,一個重要的手段就是多時間點快照技術,使得用戶生產系統能夠實現一定時間間隔下的各版本數據的保存。特別值得一提的是,多時間點快照技術支持同時提取多個時間點樣本同時恢復,這對於很多邏輯錯誤的災難定位十分有用,如果用戶有多台伺服器或虛擬機可以用作系統恢復,通過比照和分析,可以快速找到哪個時間點才是需要回復的時間點,降低了故障定位的難度,縮短了定位時間。這個功能還非
5. 擴展性
6. 存儲系統標准化