棧採用鏈式存儲結構
⑴ 棧只能順序存儲,這句話對嗎,為什麼
棧只能順序存儲,這句話不對。棧作為一種數據結構,是一種只能在一端進行插入和刪除操作的特殊線性表。允許進行插入和刪除操作的一端稱為棧頂(top),另一端為棧底(bottom)。
一個新元素只能從棧頂一端進入,刪除時,只能刪除棧頂的元素,即剛剛被插入的元素。所以棧也稱為後進先出表。線性表可以順序存儲,也可以鏈式存儲,因此棧也可以採用鏈式存儲結構。
(1)棧採用鏈式存儲結構擴展閱讀:
棧是允許在同一端進行插入和刪除操作的特殊線性表。允許進行插入和刪除操作的一端稱為棧頂(top),另一端為棧底(bottom);棧底固定,而棧頂浮動;棧中元素個數為零時稱為空棧。插入一般稱為進棧(PUSH),刪除則稱為退棧(POP)。棧也稱為後進先出表。
在計算機系統中,棧則是一個具有以上屬性的動態內存區域。程序可以將數據壓入棧中,也可以將數據從棧頂彈出。在i386機器中,棧頂由稱為esp的寄存器進行定位。壓棧的操作使得棧頂的地址減小,彈出的操作使得棧頂的地址增大。
棧在程序的運行中有著舉足輕重的作用。最重要的是棧保存了一個函數調用時所需要的維護信息,這常常稱之為堆棧幀或者活動記錄。堆棧幀一般包含如下幾方面的信息:
1、函數的返回地址和參數。
2、臨時變數:包括函數的非靜態局部變數以及編譯器自動生成的其他臨時變數。
鏈式存儲結構的特點:
1、比順序存儲結構的存儲密度小(鏈式存儲結構中每個結點都由數據域與指針域兩部分組成,相比順序存儲結構增加了存儲空間)。
2、邏輯上相鄰的節點物理上不必相鄰。
3、插入、刪除靈活 (不必移動節點,只要改變節點中的指針)。
4、查找節點時鏈式存儲要比順序存儲慢。
5、每個節點是由數據域和指針域組成。
6、由於簇是隨機分配的,這也使數據刪除後覆蓋幾率降低,恢復可能提高。
順序存儲結構的主要優點是節省存儲空間,因為分配給數據的存儲單元全用存放結點的數據(不考慮c/c++語言中數組需指定大小的情況),結點之間的邏輯關系沒有佔用額外的存儲空間。
採用這種方法時,可實現對結點的隨機存取,即每一個結點對應一個序號,由該序號可以直接計算出來結點的存儲地址。但順序存儲方法的主要缺點是不便於修改,對結點的插入、刪除運算時,可能要移動一系列的結點。
參考資料:網路-棧
參考資料:網路-鏈式存儲結構
參考資料:網路-順序存儲結構
⑵ 帶鏈棧是什麼
棧也是線性表,也可以採用鏈式存儲結構。帶鏈的棧可以用來收集計算機存儲空間中所有空閑的存儲結點,這種帶鏈的棧稱為可利用棧。
⑶ 簡述棧和隊列的順序存儲結構和鏈式存儲結構的優缺點
順序存儲結構是在內存中開辟一個連續的空間用來存儲數據,因此對於內存的需求和苛刻,必須是連續的空間.在數據查找(特別是不按照規律排列的數據),時間復雜度教少.效率高.
鏈式存儲結構是採取連表指針來指示數據的存儲位置,這就可以是在內存中隨意的存儲,沒有必須連續儲存空間的要求,對於內存的要求相對教容易.但是要是是從小到大順序排列的數據,鏈式存儲結構的時間復雜度教小,效率高.但是要是不規則排布的數據一般時間復雜度較高,效率更低
⑷ 棧的存儲結構
棧同順序表和鏈表一樣,棧也是用來存儲邏輯關系為 "一對一" 數據的線性存儲結構。
棧的具體實現
棧是一種 "特殊" 的線性存儲結構,因此棧的具體實現有以下兩種方式:
順序棧:採用順序存儲結構可以模擬棧存儲數據的特點,從而實現棧存儲結構;
鏈棧:採用鏈式存儲結構實現棧結構;
棧存儲結構與之前所學的線性存儲結構有所差異,這緣於棧對數據 "存" 和 "取" 的過程有特殊的要求:
棧只能從表的一端存取數據,另一端是封閉的;
在棧中,無論是存數據還是取數據,都必須遵循"先進後出"的原則,即最先進棧的元素最後出棧。
通常,棧的開口端被稱為棧頂;相應地,封口端被稱為棧底。因此,棧頂元素指的就是距離棧頂最近的元素。
⑸ 鏈棧如何構造,鏈棧新結點如何進棧
鏈式棧就是用鏈式存儲結構表示一個棧,也就是指針域。
根據棧的性質,知道棧是先進後出,所以只需要設置一個棧頂指針,還是說點C++吧
先構造一個結構模板
template<class
ElemType>
typedef
struct
Node
//建立
{
ElemType
data;//數據成員,用於存儲
struct
Node*next;//指針成員,用於連接邏輯結構
}LNode;
1.構造一個空棧,只需要:
LNode*head;//定義棧頂指針
head=(LNode*)malloc(sizeof(LNode));//分配空間
head->next=NULL;//下一個為空
2.新節點:比如新節點數據位1
入棧操作:
LNode*p;
p->data=1;
p->next=head;
head=p;
總之有點類似C語言里的鏈表
還有什麼不清楚的可以追問
希望對你有所幫助!!!
⑹ 請問「多個棧共存時,最好用鏈式存儲空間作為存儲結構」,這是為什麼啊
如果只有兩個棧,則可以將一個放在數組的低空間,一個放在高空間,兩者從兩頭向中間擴展,這樣沒有空間浪費
如果多於兩個棧時,還是採用順序存儲,則一個滿了另外棧空間雖然有空,但是必須要移動棧中元素才能使用別的浪費的空間,這樣演算法的效率就不高了,此時不如直接採用鏈接存儲好了
⑺ 棧和隊列通常採用的兩種存儲形式是
順序存儲結構和鏈式存儲結構
⑻ 分別就棧的順序存儲結構和鏈式存儲結構實現棧的各種基本操作。
順序存儲結構
#include<iostream>
typedef char ElemType;
#define MaxSize 100
using namespace std;
typedef struct
{
ElemType data[MaxSize];
int top;
}sqStack;
void InitStack(sqStack *&s);//初始化棧
void ClearStack(sqStack *&s);//摧毀棧
int StackLength(sqStack *s);//返回棧的長度
bool StackEmpty(sqStack *s);//判斷棧是否為空
int Push(sqStack *&s,ElemType e);//進棧
int Pop(sqStack *&s,ElemType &e);//出棧
int GetTop(sqStack *s,ElemType &e);//取棧頂元素
void DispStack(sqStack *s);//顯示棧中元素值
int main()
{
return 0;
}
void InitStack(sqStack *&s)//初始化棧
{
s=new sqStack;
s->top=-1;
}
void ClearStack(sqStack *&s)//摧毀棧
{
delete s;
}
int StackLength(sqStack *s)//返回棧的長度
{
return (s->top+1);
}
bool StackEmpty(sqStack *s)//判斷棧是否為空
{
return (s->top==-1);
}
int Push(sqStack *&s,ElemType e)//進棧
{
if(s->top==MaxSize-1)
return 0;
s->top++;
s->data[s->top]=e;
return 1;
}
int Pop(sqStack *&s,ElemType &e)//出棧
{
if(s->top==-1)
return 0;
e=s->data[s->top];
s->top--;
return 1;
}
int GetTop(sqStack *s,ElemType &e)//取棧頂元素
{
if(s->top==-1)
return 0;
e=s->data[s->top];
return 1;
}
void DispStack(sqStack *s)//顯示棧中元素值
{
for(int i=s->top;i>=0;i--)
cout<<s->data[i]<<" ";
cout<<endl;
}
鏈式存儲結構
typedef char ElemType;
typedef struct linknode
{
ElemType data;
struct linknode *next;
}LiStack;
void InitStack(LiStack *&s);//初始化棧
void ClearStack(LiStack *&s);//摧毀棧
int StackLength(LiStack *s);//返回棧的長度
bool StackEmpty(LiStack *s);//判斷棧是否為空
void Push(LiStack *&s,ElemType e);//進棧
int Pop(LiStack *&s,ElemType &e);//出棧
int GetTop(LiStack *s,ElemType &e);//取棧頂元素
void DispStack(LiStack *s);//顯示棧中元素值
int main()
{
return 0;
}
void InitStack(LiStack *&s)//初始化棧
{
s=new LiStack;
s->next=NULL;
}
void ClearStack(LiStack *&s)//摧毀棧
{
for(LiStack *p=s->next;p;p=p->next)
{
delete s;
s=p;
p=p->next;
}
delete s;
}
int StackLength(LiStack *s)//返回棧的長度
{
int i=0;
for(LiStack *p=s->next;p;p=p->next)
i++;
return i;
}
bool StackEmpty(LiStack *s)//判斷棧是否為空
{
return (s->next==NULL);
}
void Push(LiStack *&s,ElemType e)//進棧
{
LiStack *p=new LiStack;
p->data=e;
p->next=s->next;
s->next=p;
}
int Pop(LiStack *&s,ElemType &e)//出棧
{
LiStack *p;
if(s->next==NULL)
return 0;
p=s->next;
e=p->data;
s->next=p->next;
delete p;
return 1;
}
int GetTop(LiStack *s,ElemType &e)//取棧頂元素
{
if(s->next==NULL)
return 0;
e=s->next->data;
return 1;
}
void DispStack(LiStack *s)//顯示棧中元素值
{
LiStack *p=s->next;
for(;p;p=p->next)
cout<<p->data<<" ";
cout<<endl;
}
⑼ 鏈棧和順序棧兩種存儲結構有什麼不同
存儲結構不同:
鏈棧動態分配內存存儲數據,不浪費內存,存儲的數據不連續。
順序棧使用固定大小數組保存數據,數據量小時浪費內存,過多時出問題,存儲數據連續。
它們的具體區別如下:
順序棧的實現在於使用了數組這個基本數據結構,數組中的元素在內存中的存儲位置是連續的,且編譯器要求我們在編譯期就要確定數組的大小,這樣對內存的使用效率並不高,一來無法避免因數組空間用光而引起的溢出問題。在系統將內存分配給數組後,則這些內存對於其他任務就不可用。而對於鏈棧而言,使用了鏈表來實現棧,鏈表中的元素存儲在不連續的地址,由於是動態申請內存,所以我們可以以非常小的內存空間開始,另外當某個項不使用時也可將內存返還給系統。
⑽ 簡述棧和隊列的順序存儲結構和鏈式存儲結構的優缺點
順序棧--入棧操作受數組上界的約束有可能發生棧上溢,且需要地址連續的存儲單元。
鏈棧--無須地址連續,便於多個棧共享存儲單元,且不存在棧滿上溢情況。
順序隊列--需地址連續且有假上溢現象(需改為循環隊列才可解決假上溢)
鏈式隊列--特別適合於數據元素變動比較大的情況,且不存在隊列滿而產生的溢出問題。