當前位置:首頁 » 文件管理 » 壓縮感知的應用

壓縮感知的應用

發布時間: 2022-07-28 09:41:14

A. 壓縮感知的圖像處理與應用有哪些

數字圖像處理主要研究的內容有以下幾個方面:1) 圖像變換由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大.因此,往往採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理).目前新興研究的小波變換在時域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應用.2) 圖像編碼壓縮圖像編碼壓縮技術可減少描述圖像的數據量(即比特數),以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量.壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行.編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術.3) 圖像增強和復原圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等.圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分.如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響.圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立"降質模型",再採用某種濾波方法,恢復或重建原來的圖像.4) 圖像分割圖像分割是數字圖像處理中的關鍵技術之一.圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎.雖然目前已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法.因此,對圖像分割的研究還在不斷深入之中,是目前圖像處理中研究的熱點之一.5) 圖像描述是圖像識別和理解的必要前提.作為最簡單的二值圖像可採用其幾何特性描述物體的特性,一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法.對於特殊的紋理圖像可採用二維紋理特徵描述.隨著圖像處理研究的深入發展,已經開始進行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法.6) 圖像分類(識別)圖像分類(識別)屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類.圖像分類常採用經典的模式識別方法,有統計模式分類和句法(結構)模式分類,近年來新發展起來的模糊模式識別和人工神經網路模式分類在圖像識別中也越來越受到重視.

B. 壓縮感知在無線通信信號處理中有哪些辦法

通信與信息系統專業與信號與信息處理專業區別

通信與信息系統專業

()《移通信與線技術》 研究數字移通信通信系統系統模擬、址技術、數字調制解調技術、信道態指配技術、同步技術、用戶檢測技術、語音壓縮技術、寬頻媒體技術及射頻技術研究各種數字微波通信、移通信衛星通信系統及WLAN、WMAN、ad-Roc網組、新技術及性能析並包括SDH技術述系統用編碼、調制解調、同步與信令式、址及網路安全等技術研究與發

(二)《線數據與移計算網路》 研究線數據通信廣域網、線區域網區域網線數字傳輸、媒質接入控制、線資源管理、移性管理、移媒體接入、線接入Internet、移IP、線IP、移計算網路等理論、協議、技術、實現及基於移計算網路各種應用本向研究現代移通信智能技術(智能線、智能傳輸、智能化通信協議智能網管系統等)

(三)《IP寬頻網路技術》 研究寬頻IP通信網QoS、流量工程合偵聽;VoIP組網技術、通信協議控制技術;代網路軟交換技術;SIP協議研究及應用發;B3G核網路技術;IP寬頻接入城域網關鍵設備技術發;層交換技術、IP/ATM集技術MPLS技術;IP網路管理模型技術實現;移代理及其IP通信網應用

(四)《網路與應用技術》 研究寬頻通信網結構、介面、協議、網路模擬設計技術;網路管理管理模型、介面標准、網管系統設計發;編程網路體系、軟體系統發

(五)《通信信息系統信息安全》 研究與通信信息系統信息安全關理論技術主要包括數據加密密鑰管理數字簽名與身份認證網路安全計算機安全安全協議隱形技術智能卡安全等重點線通信網信息安全根據OSI協議網路各層發研究安全解決案達信、控、用

信號與信息處理專業

()《現代通信智能信號處理技術》 本研究向現代信號處理基礎研究提高通信與信息系統效性靠性各種智能處理技術及其移通信、媒體通信、寬頻接入IP網應用目前側重於研究新代線通信網路各種先進智能信號處理技術通信信號盲離、信道盲辨識與均衡、載波調制、用戶檢測、空-聯合處理、信源-信道編碼及網路環境各種自適應技術等

(二)《量信息技術》 研究量態信息載體信息處理與傳輸技術包括量糾錯編碼、量數據壓縮、量隱形傳態、量密碼體系等關鍵技術與理論實現新代高性能計算機超高速、超容量通信信息系統具極其重要意義

(三)《線通信與信號處理技術》 本研究向研究ad hoc自組織網路、傳器網路、超寬頻(UWB)網路等新代線通信網路通信信號處理技術主要研究內容包括基於信號處理包接收盲處理技術基於粒(particle)濾波信道估計均衡技術基於信號處理媒體接入控制技術目標跟蹤與信息融合技術及網路協議體系等

(四)《現代語音處理與通信技術》 語音類進行通信交往便快捷手段各種現代通信網路智能信號處理應用起著十重要作用本研究向研究語音信號數字壓縮、識別、合增強技術基於語音智能化機介面技術面向IP網路實語音通信技術信息隱藏技術移通信語音數字處理及傳輸技術基於DSPs軟體線電通信技術及各種網路環境音頻、視頻、數據、文字媒體處理及通信技術

(五)《現代信息理論與通信信號處理》 現代信息理論基礎研究ATMIP網、移與通信、媒體通信、寬頻接入網各種信號處理技術低延、低比特率、高質量語音編碼、圖像編碼適用於第三代移通信糾錯編碼高效載波調制各種自適應處理技術等;確保實現二十世紀通信發展目標提高通信效性靠性核技術本向側重於些技術應用基礎研究

(六)《圖像處理與媒體通信》 研究媒體信息特別圖像信息處理、描述應用系統關鍵技術包括:①圖像視頻信號處理及壓縮編碼算研究應用系統設計實現;②基於IP視頻傳輸技術業務環境;③移網及cable網數據與媒體通信;④基於xDSL寬頻接入網技術;⑤圖像資料庫及影像網路技術;⑥三維圖像處理、建模、顯示析技術

(七)《信息網路與媒體技術》 進行信息網路及媒體技術應用基礎研究同利用DSP、FPGA、CPLD等軟硬體發平台著重研究發各種媒體終端包括①媒體信息壓縮編碼②信道編碼(重點糾錯編解碼)③視頻點播(VOD)與交互電視議電視、遠程教/考試/醫療④視頻驅系統⑤視音頻信號編碼壓縮算研究及ASIC設計⑥寬頻網路應用研究

源:

C. 壓縮感知的主要應用

認知無線電方向:寬頻譜感知技術是認識無線電應用中一個難點和重點。它通過快速尋找監測頻段中沒有利用的無線頻譜,從而為認知無線電用戶提供頻譜接入機會。傳統的濾波器組的寬頻檢測需要大量的射頻前端器件,並且不能靈活調整系統參數。普通的寬頻接收電路要求很高的采樣率,它給模數轉換器帶來挑戰,並且獲得的大量數據處理給數字信號處理器帶來負擔。針對寬頻譜感知的難題,將壓縮感知方法應用到寬頻譜感知中:採用一個寬頻數字電路,以較低的頻譜獲得欠采樣的隨機樣本,然後在數字信號處理器中採用稀疏信號估計演算法得到寬頻譜感知結果。
信道編碼:壓縮感測理論中關於稀疏性、隨機性和凸最優化的結論可以直接應用於設計快速誤差校正編碼, 這種編碼方式在實時傳輸過程中不受誤差的影響。在壓縮編碼過程中, 稀疏表示所需的基對於編碼器可能是未知的. 然而在壓縮感測編碼過程中, 它只在解碼和重構原信號時需要, 因此不需考慮它的結構, 所以可以用通用的編碼策略進行編碼. Haupt等通過實驗表明如果圖像是高度可壓縮的或者SNR充分大, 即使測量過程存在雜訊, 壓縮感測方法仍可以准確重構圖像。 波達方向估計:目標出現的角度在整個掃描空間來看,是極少數。波達方向估計問題在空間譜估計觀點來看是一個欠定的線性逆問題。通過對角度個數的稀疏限制,可以完成壓縮感知的波達方向估計。
波束形成:傳統的 自適應波束形成因其高解析度和抗干擾能力強等優點而被廣泛採用。但同時它的高旁瓣水平和角度失匹配敏感度高問題將大大降低接收性能。為了改進Capon 波束形成的性能,這些通過稀疏波束圖整形的方法限制波束圖中陣列增益較大的元素個數,同時鼓勵較大的陣列增益集中在波束主瓣中,從而達到降低旁瓣水平同時,提高主瓣中陣列增益水平,降低角度失匹配的影響。例如,最大主瓣旁瓣能量比,混合范數法,最小全變差。 運用壓縮感測原理, RICE大學成功研製了單像素壓縮數碼照相機。 設計原理首先是通過光路系統將成像目標投影到一個數字微鏡器件(DMD)上, 其反射光由透鏡聚焦到單個光敏二極體上, 光敏二極體兩端的電壓值即為一個測量值y, 將此投影操作重復M次, 得到測量向量 , 然後用最小全變分演算法構建的數字信號處理器重構原始圖像。數字微鏡器件由數字電壓信號控制微鏡片的機械運動以實現對入射光線的調整。 由於該相機直接獲取的是M次隨機線性測量值而不是獲取原始信號的N(M,N)個像素值, 為低像素相機拍攝高質量圖像提供了可能.。
壓縮感測技術也可以應用於雷達成像領域, 與傳統雷達成像技術相比壓縮感測雷達成像實現了兩個重要改進: 在接收端省去脈沖壓縮匹配濾波器; 同時由於避開了對原始信號的直接采樣, 降低了接收端對模數轉換器件帶寬的要求. 設計重點由傳統的設計昂貴的接收端硬體轉化為設計新穎的信號恢復演算法, 從而簡化了雷達成像系統。 生物感測中的傳統DNA晶元能平行測量多個有機體, 但是只能識別有限種類的有機體, Sheikh等人運用壓縮感測和群組檢測原理設計的壓縮感測DNA晶元克服了這個缺點。 壓縮感測DNA晶元中的每個探測點都能識別一組目標, 從而明顯減少了所需探測點數量. 此外基於生物體基因序列稀疏特性, Sheikh等人驗證了可以通過置信傳播的方法實現壓縮感測DNA晶元中的信號重構。

D. 壓縮感知是什麼

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。他在資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。
壓縮感知理論的核心思想主要包括兩點。
第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。
另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

E. 壓縮感知的歷史背景

盡管壓縮感知是由 E. J. Candes、J. Romberg、T. Tao 和D. L. Donoho 等科學家於2004 年提出的。但是早在上個世紀,相關領域已經有相當的理論和應用鋪墊,包括圖像處理、地球物理、醫學成像、計算機科學、信號處理、應用數學等。
可能第一個與稀疏信號恢復有關的演算法由法國數學家Prony 提出。這個被稱為的Prony 方法的稀疏信號恢復方法可以通過解一個特徵值問題,從一小部分等間隔采樣的樣本中估計一個稀疏三角多項式的非零幅度和對應的頻率。而最早採用基於L1范數最小化的稀疏約束的人是B. Logan。他發現在數據足夠稀疏的情況下,通過L1范數最小化可以從欠采樣樣本中有效的恢復頻率稀疏信號。D. Donoho和B.Logan 是信號處理領域採用L1范數最小化稀疏約束的先驅。但是地球物理學家早在20 世紀七八十年代就開始利用L1范數最小化來分析地震反射信號了。上世紀90 年代,核磁共振譜處理方面提出採用稀疏重建方法從欠采樣非等間隔樣本中恢復稀疏Fourier 譜。同一時期,圖像處理方面也開始引入稀疏信號處理方法進行圖像處理。在統計學方面,使用L1范數的模型選擇問題和相關的方法也在同期開始展開。
壓縮感知理論在上述理論的基礎上,創造性的將L1范數最小化稀疏約束與隨機矩陣結合,得到一個稀疏信號重建性能的最佳結果。
壓縮感知基於信號的可壓縮性, 通過低維空間、低解析度、欠Nyquist采樣數據的非相關觀測來實現高維信號的感知,豐富了關於信號恢復的優化策略,極大的促進了數學理論和工程應用的結合 。它是傳統資訊理論的一個延伸,但是又超越了傳統的壓縮理論,成為了一門嶄新的子分支。它從誕生之日起到現在不過五年時間,其影響卻已經席捲了大半個應用科學。

F. 壓縮感知究竟是什麼原理求大神幫助

壓縮感知(compressed sensing)。所謂壓縮感知,最核心的概念在於試圖從原理上降低對一個信號進行測量的成本。比如說,一個信號包含一千個數據,那麼按照傳統的信號處理理論,至少需要做一千次測量才能完整的復原這個信號。這就相當於是說,需要有一千個方程才能精確地解出一千個未知數來。但是壓縮感知的想法是假定信號具有某種特點(比如文中所描述得在小波域上系數稀疏的特點),那麼就可以只做三百次測量就完整地復原這個信號(這就相當於只通過三百個方程解出一千個未知數)。可想而知,這件事情包含了許多重要的數學理論和廣泛的應用前景,因此在最近三四年裡吸引了大量注意力,得到了非常蓬勃的發展。陶哲軒本身是這個領域的奠基人之一(可以參考《陶哲軒:長大的神童》一文),因此這篇文章的權威性毋庸諱言。另外,這也是比較少見的由一流數學家直接撰寫的關於自己前沿工作的普及性文章。需要說明的是,這篇文章是雖然是寫給非數學專業的讀者,但是也並不好懂,也許具有一些理工科背景會更容易理解一些。
麻煩採納,謝謝!

G. 什麼是「壓縮感知」

壓縮感知(Compressed sensing),也被稱為壓縮采樣(Compressive sampling)或稀疏采樣(Sparse sampling),是一種尋找欠定線性系統的稀疏解的技術。

壓縮感知被應用於電子工程尤其是信號處理中,用於獲取和重構稀疏或可壓縮的信號。這個方法用到訊號稀疏的特性,得以從相對較少的測量值還原出原來整個欲得知的訊號。
MRI就是一個可能使用此方法的應用。這一方法至少已經存在了四十年,由於David Donoho、Emmanuel Candès和陶哲軒的工作,最近這個領域有了長足的發展。

H. 請問研究壓縮感知需要學哪些相關知識比如,數字信號處理數字圖像處理請明白人指點迷津!謝謝啦!

我個人覺得,數字信號處理和數字圖像處理是針對具體的應用領域做基礎知識學習。而你說的壓縮感知是一種高於具體應用領域的智能演算法,壓縮感知可以用於數字信號方面,同樣也可以應用與數字圖像處理。確切的說數字信號處理包含了數字圖像處理,只是數字圖像處理後來發展了跟多深入的知識,所以又把其獨立成一門課程。比如Mallat的《信號處理的小波導引:稀疏方法(原書第3版)》這本書上的內容,就大部分說的應用時數字圖像。
總之,數字信號處理、數字圖像處理肯定是要學的,否則你學了壓縮感知也不知道用在什麼領域,要具體學習壓縮感知方面的知識,再去看看IEEE里的一些論文還有一些博士論文。

I. 如何解決基不匹配問題:從原子范數到無網格壓縮感知

更好的求解方法應該是連續建模法, 即在對稀疏域建模時直接採用連續處理方法, 而不對稀疏域進行離散化表示, 在一般的稀疏分析中, 都直接採用定義在l2 空間的范數來度量稀疏參數. 要避免離散化處理, 最根本的方法是將范數定義在連續空間中, 這樣就從源頭上避免了基不匹配問題的發生. 原子范數利用原子集合凸包的連續特性來計算范數, 能夠在約束信號稀疏特性的同時保證其參數空間的連續性。

J. 壓縮感知的展望

非線性測量的壓縮感知。講壓縮感知解決的線性逆問題推廣到非線性函數參數的求解問題。廣義的講,非線性測量的壓縮感知,可以包括以前的測量矩陣不確定性問題,量化誤差問題,廣義線性模型問題,有損壓縮樣本問題。
壓縮感知在矩陣分解中的推廣應用。主成分分析,表示字典學習,非負矩陣分解,多維度向量估計,低秩或高秩矩陣恢復問題。
確定性測量矩陣的設計問題。 隨機矩陣在實用上存在難點。隨機矩陣滿足的RIP是充分非必要條件。在實際中,稀疏表示矩陣和隨機矩陣相乘的結果才是決定稀疏恢復性能字典。
傳統壓縮感知是以稀疏結構為先驗信息來進行信號恢復。當前最新進展顯示數據中存在的其他的簡單代數結果也作為先驗信息進行信號估計。聯合開發這些信號先驗信息,將進一步提高壓縮感知的性能。

熱點內容
張藝謀我們一家訪問人 發布:2024-05-05 12:38:05 瀏覽:111
美版安卓系統怎麼安裝 發布:2024-05-05 12:37:18 瀏覽:920
qq郵箱緩存地址 發布:2024-05-05 12:37:16 瀏覽:986
電位演算法 發布:2024-05-05 12:36:01 瀏覽:727
我的世界清風斗羅大陸伺服器地址 發布:2024-05-05 12:35:50 瀏覽:453
dell伺服器如何進入bios 發布:2024-05-05 12:34:26 瀏覽:330
在線名片製作源碼 發布:2024-05-05 12:29:27 瀏覽:447
陰陽師按鍵腳本 發布:2024-05-05 12:00:33 瀏覽:760
魔獸查腳本 發布:2024-05-05 11:54:37 瀏覽:39
sqlserver執行時間 發布:2024-05-05 11:50:31 瀏覽:649