當前位置:首頁 » 文件管理 » 壓縮感知成像

壓縮感知成像

發布時間: 2022-08-08 07:04:31

❶ 中國科學家實現遠距離非視域成像,隔牆觀物實現了么

中國科學家實現遠距離非視域成像,隔牆觀物實現了么?

非目光(NLOS)成像,您可以拍攝隱藏在視線外隱藏的物體圖片,實現「牆壁對象」,可以恢復來自多個分散的間接燈的隱藏場景的細節。這項技術預計將在醫學,機器人,製造和科學成像領域進行大展覽。盡管已經進行了一系列進展,但非視域成像技術仍然保持在短程驗證階段——直接線成像,通常限制為幾米。

向長距離延伸非視野成像的主要障礙是信號強度,背景雜訊和光學發散。由於三個反射和長期對抗,長途無視(NLOS)成像的衰減是巨大的。此外,弱反射反射信號與環境光混合,導致信噪比(SNR)的差。太陽產生環境噪音,近場氣氛的後散射也產生高噪音。與LOS成像相比,非LOS成像更難以忍受低信噪比。另外,混合了由時間和空間信息引起的多次反射,使成像演算法成為研究問題。

❷ 基於壓縮感知的激光三維成像距離解析度怎麼算

當已知被攝物體的大小及該物體到鏡頭距離,則可根據下兩式估算所選取配鏡頭的焦距:f=hD/Hf=vD/V式中,D為鏡頭中心到被攝物體的距離;H和V分別為被攝物體的水平尺寸和垂直尺寸;v為靶面成像的高度;h為靶面成像的水平寬度。成像場景的大小與

❸ 壓縮感知到底能不能提高地震信號解析度

基於壓縮感知的地震反問題方法及在勘探地球 物理...3.5 基於疊前數據的提高解析度處理 論文中給出了...求解;能理論推導該方法能嚴格保持不 連續信號的...

❹ 壓縮感知的歷史背景

盡管壓縮感知是由 E. J. Candes、J. Romberg、T. Tao 和D. L. Donoho 等科學家於2004 年提出的。但是早在上個世紀,相關領域已經有相當的理論和應用鋪墊,包括圖像處理、地球物理、醫學成像、計算機科學、信號處理、應用數學等。
可能第一個與稀疏信號恢復有關的演算法由法國數學家Prony 提出。這個被稱為的Prony 方法的稀疏信號恢復方法可以通過解一個特徵值問題,從一小部分等間隔采樣的樣本中估計一個稀疏三角多項式的非零幅度和對應的頻率。而最早採用基於L1范數最小化的稀疏約束的人是B. Logan。他發現在數據足夠稀疏的情況下,通過L1范數最小化可以從欠采樣樣本中有效的恢復頻率稀疏信號。D. Donoho和B.Logan 是信號處理領域採用L1范數最小化稀疏約束的先驅。但是地球物理學家早在20 世紀七八十年代就開始利用L1范數最小化來分析地震反射信號了。上世紀90 年代,核磁共振譜處理方面提出採用稀疏重建方法從欠采樣非等間隔樣本中恢復稀疏Fourier 譜。同一時期,圖像處理方面也開始引入稀疏信號處理方法進行圖像處理。在統計學方面,使用L1范數的模型選擇問題和相關的方法也在同期開始展開。
壓縮感知理論在上述理論的基礎上,創造性的將L1范數最小化稀疏約束與隨機矩陣結合,得到一個稀疏信號重建性能的最佳結果。
壓縮感知基於信號的可壓縮性, 通過低維空間、低解析度、欠Nyquist采樣數據的非相關觀測來實現高維信號的感知,豐富了關於信號恢復的優化策略,極大的促進了數學理論和工程應用的結合 。它是傳統資訊理論的一個延伸,但是又超越了傳統的壓縮理論,成為了一門嶄新的子分支。它從誕生之日起到現在不過五年時間,其影響卻已經席捲了大半個應用科學。

❺ 壓縮感知是什麼

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。他在資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。
壓縮感知理論的核心思想主要包括兩點。
第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。
另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

❻ 壓縮感知的主要應用

認知無線電方向:寬頻譜感知技術是認識無線電應用中一個難點和重點。它通過快速尋找監測頻段中沒有利用的無線頻譜,從而為認知無線電用戶提供頻譜接入機會。傳統的濾波器組的寬頻檢測需要大量的射頻前端器件,並且不能靈活調整系統參數。普通的寬頻接收電路要求很高的采樣率,它給模數轉換器帶來挑戰,並且獲得的大量數據處理給數字信號處理器帶來負擔。針對寬頻譜感知的難題,將壓縮感知方法應用到寬頻譜感知中:採用一個寬頻數字電路,以較低的頻譜獲得欠采樣的隨機樣本,然後在數字信號處理器中採用稀疏信號估計演算法得到寬頻譜感知結果。
信道編碼:壓縮感測理論中關於稀疏性、隨機性和凸最優化的結論可以直接應用於設計快速誤差校正編碼, 這種編碼方式在實時傳輸過程中不受誤差的影響。在壓縮編碼過程中, 稀疏表示所需的基對於編碼器可能是未知的. 然而在壓縮感測編碼過程中, 它只在解碼和重構原信號時需要, 因此不需考慮它的結構, 所以可以用通用的編碼策略進行編碼. Haupt等通過實驗表明如果圖像是高度可壓縮的或者SNR充分大, 即使測量過程存在雜訊, 壓縮感測方法仍可以准確重構圖像。 波達方向估計:目標出現的角度在整個掃描空間來看,是極少數。波達方向估計問題在空間譜估計觀點來看是一個欠定的線性逆問題。通過對角度個數的稀疏限制,可以完成壓縮感知的波達方向估計。
波束形成:傳統的 自適應波束形成因其高解析度和抗干擾能力強等優點而被廣泛採用。但同時它的高旁瓣水平和角度失匹配敏感度高問題將大大降低接收性能。為了改進Capon 波束形成的性能,這些通過稀疏波束圖整形的方法限制波束圖中陣列增益較大的元素個數,同時鼓勵較大的陣列增益集中在波束主瓣中,從而達到降低旁瓣水平同時,提高主瓣中陣列增益水平,降低角度失匹配的影響。例如,最大主瓣旁瓣能量比,混合范數法,最小全變差。 運用壓縮感測原理, RICE大學成功研製了單像素壓縮數碼照相機。 設計原理首先是通過光路系統將成像目標投影到一個數字微鏡器件(DMD)上, 其反射光由透鏡聚焦到單個光敏二極體上, 光敏二極體兩端的電壓值即為一個測量值y, 將此投影操作重復M次, 得到測量向量 , 然後用最小全變分演算法構建的數字信號處理器重構原始圖像。數字微鏡器件由數字電壓信號控制微鏡片的機械運動以實現對入射光線的調整。 由於該相機直接獲取的是M次隨機線性測量值而不是獲取原始信號的N(M,N)個像素值, 為低像素相機拍攝高質量圖像提供了可能.。
壓縮感測技術也可以應用於雷達成像領域, 與傳統雷達成像技術相比壓縮感測雷達成像實現了兩個重要改進: 在接收端省去脈沖壓縮匹配濾波器; 同時由於避開了對原始信號的直接采樣, 降低了接收端對模數轉換器件帶寬的要求. 設計重點由傳統的設計昂貴的接收端硬體轉化為設計新穎的信號恢復演算法, 從而簡化了雷達成像系統。 生物感測中的傳統DNA晶元能平行測量多個有機體, 但是只能識別有限種類的有機體, Sheikh等人運用壓縮感測和群組檢測原理設計的壓縮感測DNA晶元克服了這個缺點。 壓縮感測DNA晶元中的每個探測點都能識別一組目標, 從而明顯減少了所需探測點數量. 此外基於生物體基因序列稀疏特性, Sheikh等人驗證了可以通過置信傳播的方法實現壓縮感測DNA晶元中的信號重構。

❼ 北大的韋東奕大神與陶哲軒相比如何

北大的韋東奕大神與陶哲軒兩人都是數學界的天才,兩人都有非同一般的天賦,都有相似的經歷,都有相近的研究領域,但是陶哲軒是數學界的前輩,也提出了「壓縮感知」理論,目前成就還在韋神之上。

1、獲得奧林匹克競賽金牌時年紀陶哲軒更小。

1975年出生的陶哲軒,是澳大利亞籍華人,13歲獲得國際數學奧林匹克競賽金牌,比獲得同樣獎牌的「韋神」年紀還要小。

2、獲得博士學位時間韋神更少。

陶哲軒從拿到學士學位到博士畢業,用了5年,而韋神則用的是4年。從這一點看,韋神用時更短。韋神在北京大學是「微分方程教研室」研究員,陶哲軒的研究方向也有「非線性偏微分方程」。

陶哲軒科研成就:

陶哲軒是調和分析、偏微分方程、組合數學、解析數論、代數數論等接近10個重要數學研究領域里的大師級數學家。

陶哲軒在應用數學研究領域也很有成就,如與他人共同提出了一種新的信息獲取指導理論(即:數字壓縮成像技術)。

該理論一經提出,就在資訊理論、信號和圖像處理、醫療成像、模式識別、地質勘探、光學和雷達成像、無線通信等領域受到關注,並被美國《技術評論》雜志評為2007年度「十大突破性技術」。

2015年9月17日,陶哲軒宣布證明了保羅·埃爾德什(Erd s Pál)在1932年提出的埃爾德什差異問題(the Erdós discrepancy problem)存在,這是個困擾學術界80多年的問題。

❽ 什麼是「壓縮感知」

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist
采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。他在
資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。
壓縮感知理論的核心思想主要包括兩點。

第一個是信號的稀疏結構。傳統的Shannon
信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由
度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種
信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。
另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓
縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關
的。壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里
恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

❾ 數字圖像處理有哪些小的研究方向

整個圖像處理領域都處於發展之中,每一個步驟都可以作為方向來研究。
1)預處理。包括特定圖像增強、放大插值、去噪、去模糊、分割等。
2)壓縮。是一個悠久的方向,但一直有人在研究。這兩年最紅火的壓縮感知把壓縮和成像結合在一起。
3)特徵提取。最近主要集中在不變特徵提取,即旋轉不變、縮放不變等,比如SIFT,SURF等。
4)識別。這個太多,人臉識別、車牌識別、虹膜識別、指紋識別等等。
5)檢索。主要是基於標注的檢索、基於內容的檢索等等。
6)語義提取。這個比較難,目前設計的人少。

其他還有很多方向。總的來說,這個發展中的領域,你隨便找一個題目都可以作為碩士、或博士的題目。當然如果你要以之為數年的研究對象,那麼選題就要稍微慎重一點。只是混個學位就隨便啦

熱點內容
cad解壓錯誤 發布:2024-03-29 15:01:45 瀏覽:78
存儲指令集 發布:2024-03-29 14:39:27 瀏覽:649
資料庫表刪除數據 發布:2024-03-29 14:39:26 瀏覽:367
出c語言整除 發布:2024-03-29 14:28:22 瀏覽:572
芬尼壓縮機 發布:2024-03-29 14:24:11 瀏覽:464
電腦數據實時上傳本地伺服器軟體 發布:2024-03-29 14:07:57 瀏覽:920
尋秦記源碼 發布:2024-03-29 13:56:17 瀏覽:496
linux的備份命令 發布:2024-03-29 13:41:22 瀏覽:383
csgo建議什麼配置 發布:2024-03-29 13:31:44 瀏覽:980
電腦ftp服務如何禁用 發布:2024-03-29 13:24:48 瀏覽:332