python演算法實例
❶ 建議收藏!10 種 python 聚類演算法完整操作示例
聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用於發現數據中的有趣模式,例如基於其行為的客戶群。有許多聚類演算法可供選擇,對於所有情況,沒有單一的最佳聚類演算法。相反,最好探索一系列聚類演算法以及每種演算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類演算法。完成本教程後,你將知道:
聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類演算法只解釋輸入數據,並在特徵空間中找到自然組或群集。
群集通常是特徵空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特徵空間的中心(質心),並且可以具有邊界或范圍。
聚類可以作為數據分析活動提供幫助,以便了解更多關於問題域的信息,即所謂的模式發現或知識發現。例如:
聚類還可用作特徵工程的類型,其中現有的和新的示例可被映射並標記為屬於數據中所標識的群集之一。雖然確實存在許多特定於群集的定量措施,但是對所識別的群集的評估是主觀的,並且可能需要領域專家。通常,聚類演算法在人工合成數據集上與預先定義的群集進行學術比較,預計演算法會發現這些群集。
有許多類型的聚類演算法。許多演算法在特徵空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類演算法之前,擴展數據通常是良好的實踐。
一些聚類演算法要求您指定或猜測數據中要發現的群集的數量,而另一些演算法要求指定觀測之間的最小距離,其中示例可以被視為「關閉」或「連接」。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回演算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類演算法供選擇。下面列出了10種比較流行的演算法:
每個演算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類演算法,也沒有簡單的方法來找到最好的演算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類演算法中的每一個。這些示例將為您復制粘貼示例並在自己的數據上測試方法提供基礎。我們不會深入研究演算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。
在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類演算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用於將粘貼復制到您自己的項目中,並將方法應用於您自己的數據。
1.庫安裝
首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:
接下來,讓我們確認已經安裝了庫,並且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。
運行該示例時,您應該看到以下版本號或更高版本。
2.聚類數據集
我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數據,並通過指定的群集對圖中的點進行顏色繪制。這將有助於了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基於多變數高斯,並非所有聚類演算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。
運行該示例將創建合成的聚類數據集,然後創建輸入數據的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數據組在兩個維度,並希望一個自動的聚類演算法可以檢測這些分組。
已知聚類著色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用於此數據集的聚類演算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的範例。
它是通過 AffinityPropagation 類實現的,要調整的主要配置是將「 阻尼 」設置為0.5到1,甚至可能是「首選項」。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法取得良好的結果。
數據集的散點圖,具有使用親和力傳播識別的聚類
4.聚合聚類
聚合聚類涉及合並示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是「 n _ clusters 」集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組。
使用聚集聚類識別出具有聚類的數據集的散點圖
5.BIRCHBIRCH
聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。
它是通過 Birch 類實現的,主要配置是「 threshold 」和「 n _ clusters 」超參數,後者提供了群集數量的估計。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個很好的分組。
使用BIRCH聚類確定具有聚類的數據集的散點圖
6.DBSCANDBSCAN
聚類(其中 DBSCAN 是基於密度的空間聚類的雜訊應用程序)涉及在域中尋找高密度區域,並將其周圍的特徵空間區域擴展為群集。
它是通過 DBSCAN 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,盡管需要更多的調整,但是找到了合理的分組。
使用DBSCAN集群識別出具有集群的數據集的散點圖
7.K均值
K-均值聚類可以是最常見的聚類演算法,並涉及向群集分配示例,以盡量減少每個群集內的方差。
它是通過 K-均值類實現的,要優化的主要配置是「 n _ clusters 」超參數設置為數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數據集。
使用K均值聚類識別出具有聚類的數據集的散點圖
8.Mini-Batch
K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,並且可能對統計雜訊更健壯。
它是通過 MiniBatchKMeans 類實現的,要優化的主配置是「 n _ clusters 」超參數,設置為數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,會找到與標准 K-均值演算法相當的結果。
帶有最小批次K均值聚類的聚類數據集的散點圖
9.均值漂移聚類
均值漂移聚類涉及到根據特徵空間中的實例密度來尋找和調整質心。
它是通過 MeanShift 類實現的,主要配置是「帶寬」超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以在數據中找到一組合理的群集。
具有均值漂移聚類的聚類數據集散點圖
10.OPTICSOPTICS
聚類( OPTICS 短於訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。
它是通過 OPTICS 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法在此數據集上獲得合理的結果。
使用OPTICS聚類確定具有聚類的數據集的散點圖
11.光譜聚類
光譜聚類是一類通用的聚類方法,取自線性線性代數。
它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是「 n _ clusters 」超參數,用於指定數據中的估計群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,找到了合理的集群。
使用光譜聚類聚類識別出具有聚類的數據集的散點圖
12.高斯混合模型
高斯混合模型總結了一個多變數概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是「 n _ clusters 」超參數,用於指定數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這並不奇怪,因為數據集是作為 Gaussian 的混合生成的。
使用高斯混合聚類識別出具有聚類的數據集的散點圖
在本文中,你發現了如何在 python 中安裝和使用頂級聚類演算法。具體來說,你學到了:
❷ python用戶輸入一個整數N,計算並輸出1到N相加的和,請問這個程序錯在哪裡了
第一個錯誤的地方是for i in str(n),input()輸入的是整型,循環增加應該用for in range(n),str(n)並不能起到順序增加的作用。
第二個錯誤的地方是print('1到N求和結果:'.format(sum)),適用format輸出時需要在輸出的位置用大括弧{}占據空位。
python用戶輸入一個整數N,計算並輸出1到N相加的和正確的程序示例是:
(2)python演算法實例擴展閱讀
Python 內置函數range() 用法介紹:
python range() 函數可創建一個整數列表,一般用在 for 循環中。
1、函數語法:range(start, stop[, step])
2、參數說明:
start: 計數從 start 開始。默認是從 0 開始。例如range(5)等價於range(0, 5);
stop: 計數到 stop 結束,但不包括 stop。例如:range(0, 5) 是[0, 1, 2, 3, 4]沒有5;
step:步長,默認為1。例如:range(0, 5) 等價於 range(0, 5, 1)。
3、實例:
range(10)
代表從 0 開始到 10[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
❸ python遞歸演算法經典實例有哪些
程序調用自身的編程技巧稱為遞歸( recursion)。遞歸做為一種演算法在程序設計語言中廣泛應用。 一個過程或函數在其定義或說明中有直接或間接調用自身的一種方法。
它通常把一個大型復雜的問題層層轉化為一個與原問題相似的規模較小的問題來求解,遞歸策略只需少量的程序就可描述出解題過程所需要的多次重復計算,大大地減少了程序的代碼量。
遞歸的能力在於用有限的語句來定義對象的無限集合。一般來說,遞歸需要有邊界條件、遞歸前進段和遞歸返回段。當邊界條件不滿足時,遞歸前進;當邊界條件滿足時,遞歸返回。
Python
是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多繼承,有益於增強源代碼的復用性。Python支持重載運算符和動態類型。相對於Lisp這種傳統的函數式編程語言,Python對函數式設計只提供了有限的支持。有兩個標准庫(functools, itertools)提供了Haskell和Standard ML中久經考驗的函數式程序設計工具。
❹ 怎麼用Python計算長方體體積
Height = 10
print(f"長方體的高度為{Height}.")
Long = float(input('>'))
Width = float(input('>'))
Result = (Height*Width*Long)
print(f"長方形的體積為{Result}.")
Python語言支持非常多的運算符,在此只介紹計算使用的算術運算符。
以下假設變數:a=10,b=20:運算符描述實例。
+加-兩個對象相加a + b輸出結果30。
-減-得到負數或是一個數減去另一個數a - b輸出結果-10。
*乘-兩個數相乘或是返回一個被重復若干次的字元串a * b輸出結果200。
/除- x除以yb / a輸出結果2。
%取模-返回除法的余數b % a輸出結果0。
**冪-返回x的y次冪a**b為10的20次方,輸出結果100000000000000000000。
//取整除-返回商的整數部分(向下取整)>>> 9//2
4
>>> -9//2
-5
實例:#!/usr/bin/python# -*- coding: UTF-8 -*-
a = 21b = 10c = 0
c = a + bprint "1 - c的值為:", c
c = a - bprint "2 - c的值為:", c
c = a * bprint "3 - c的值為:", c
c = a / bprint "4 - c的值為:", c
c = a % bprint "5 - c的值為:", c
#修改變數a、b、ca = 2b = 3c = a**b print "6 - c的值為:", c
a = 10b = 5c = a//b print "7 - c的值為:", c
以上實例輸出結果:1 - c的值為:31。
❺ python動態規劃及編輯距離計算實例
動態規劃的三要素:最優子結構,邊界和狀態轉移函數,最優子結構是指每個階段的最優狀態可以從之前某個階段的某個或某些狀態直接得到(子問題的最優解能夠決定這個問題的最優解),邊界指的是問題最小子集的解(初始范圍),狀態轉移函數是指從一個階段向另一個階段過度的具體形式,描述的是兩個相鄰子問題之間的關系(遞推式)
重疊子問題,對每個子問題只計算一次,然後將其計算的結果保存到一個表格中,每一次需要上一個子問題解時,進行調用,只要o(1)時間復雜度,准確的說,動態規劃是利用空間去換取時間的演算法.
判斷是否可以利用動態規劃求解,第一個是判斷是否存在重疊子問題。
爬樓梯
假設你正在爬樓梯。需要 n 階你才能到達樓頂。
每次你可以爬 1 或 2 個台階。你有多少種不同的方法可以爬到樓頂呢?
注意:給定 n 是一個正整數。
示例 1:
輸入: 2
輸出: 2
解釋: 有兩種方法可以爬到樓頂。
1. 1 階 + 1 階
2. 2 階
示例 2:
輸入: 3
輸出: 3
解釋: 有三種方法可以爬到樓頂。
1. 1 階 + 1 階 + 1 階
2. 1 階 + 2 階
3. 2 階 + 1 階
分析:
假定n=10,首先考慮最後一步的情況,要麼從第九級台階再走一級到第十級,要麼從第八級台階走兩級到第十級,因而,要想到達第十級台階,最後一步一定是從第八級或者第九級台階開始.也就是說已知從地面到第八級台階一共有X種走法,從地面到第九級台階一共有Y種走法,那麼從地面到第十級台階一共有X+Y種走法.
即F(10)=F(9)+F(8)
分析到這里,動態規劃的三要素出來了.
邊界:F(1)=1,F(2)=2
最優子結構:F(10)的最優子結構即F(9)和F(8)
狀態轉移函數:F(n)=F(n-1)+F(n-2)
class Solution(object):
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n<=2:
return n
a=1#邊界
b=2#邊界
temp=0
for i in range(3,n+1):
temp=a+b#狀態轉移
a=b#最優子結構
b=temp#最優子結構
return temp
利用動態規劃的思想計算編輯距離。
編輯距離是指兩個字串之間,由一個轉成另一個所需的最少編輯操作次數。通常來說,編輯距離越小,兩個文本的相似性越大。這里的編輯操作主要包括三種:
插入:將一個字元插入某個字元串;
刪除:將字元串中的某個字元刪除;
替換:將字元串中的某個字元替換為另外一個字元。
那麼,如何用Python計算編輯距離呢?我們可以從較為簡單的情況進行分析。
當兩個字元串都為空串,那麼編輯距離為0;
當其中一個字元串為空串時,那麼編輯距離為另一個非空字元串的長度;
當兩個字元串均為非空時(長度分別為 i 和 j ),取以下三種情況最小值即可:
1、長度分別為 i-1 和 j 的字元串的編輯距離已知,那麼加1即可;
2、長度分別為 i 和 j-1 的字元串的編輯距離已知,那麼加1即可;
3、長度分別為 i-1 和 j-1 的字元串的編輯距離已知,此時考慮兩種情況,若第i個字元和第j個字元不同,那麼加1即可;如果相同,那麼不需要加1。
很明顯,上述演算法的思想即為 動態規劃 。
求長度為m和n的字元串的編輯距離,首先定義函數——edit(i, j),它表示第一個長度為i的字元串與第二個長度為j的字元串之間的編輯距離。動態規劃表達式可以寫為:
if i == 0 且 j == 0,edit(i, j) = 0
if (i == 0 且 j > 0 )或者 (i > 0 且j == 0),edit(i, j) = i + j
if i ≥ 1 且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + d(i, j) },當第一個字元串的第i個字元不等於第二個字元串的第j個字元時,d(i, j) = 1;否則,d(i, j) = 0。
def edit_distance(word1, word2):
len1 = len(word1)
len2 = len(word2)
dp = np.zeros((len1 + 1,len2 + 1))
for i in range(len1 + 1):
dp[i][0] = i
for j in range(len2 + 1):
dp[0][j] = j
for i in range(1, len1 + 1):
for j in range(1, len2 + 1):
delta = 0 if word1[i-1] == word2[j-1] else 1
dp[i][j] = min(dp[i - 1][j - 1] + delta, min(dp[i-1][j] + 1, dp[i][j - 1] + 1))
return dp[len1][len2]
edit_distance('牛奶','華西奶')
結果:2
❻ python分類演算法有哪些
常見的分類演算法有:
K近鄰演算法
決策樹
樸素貝葉斯
SVM
Logistic Regression
❼ python習題(演算法)
這個就是循環2n次呀。先是讓x=x+c,在把c更新一下c=c+b,最後讓b=b+a,這就完成一次循環了。
不過你給的程序不完整。
❽ python包含什麼演算法
Python基礎演算法有哪些?
1.
冒泡排序:是一種簡單直觀的排序演算法。重復地走訪過要排序的數列,一次比較兩個元素,如果順序錯誤就交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該排序已經完成。
2.
插入排序:沒有冒泡排序和選擇排序那麼粗暴,其原理最容易理解,插入排序是一種最簡單直觀的排序演算法啊,它的工作原理是通過構建有序序列,對於未排序數據在已排序序列中從後向前排序,找到對應位置。
3.
希爾排序:也被叫做遞減增量排序方法,是插入排序的改進版本。希爾排序是基於插入排序提出改進方法的排序演算法,先將整個待排序的記錄排序分割成為若干個子序列分別進行直接插入排序,待整個序列中的記錄基本有序時,再對全記錄進行依次直接插入排序。
4. 歸並排序:是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法Divide and的一個非常典型的應用。
5. 快速排序:由東尼·霍爾所發展的一種排序演算法。又是一種分而治之思想在排序演算法上的典型應用,本質上快速排序應該算是冒泡排序基礎上的遞歸分治法。
6.
堆排序:是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質,即子結點的鍵值或索引總是小於它的父結點。
7.
計算排序:其核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中,作為一種線性時間復雜度的排序,計算排序要求輸入的數據必須是具有確定范圍的整數。
❾ Python實現的排列組合計算操作示例
Python實現的排列組合計算操作示例
本文實例講述了Python實現的排列組合計算操作。分享給大家供大家參考,具體如下:
1. 調用 scipy 計算排列組合的具體數值
>> from scipy.special import comb, perm
>> perm(3, 2)
6.0
>> comb(3, 2)
3.0
2. 調用 itertools 獲取排列組合的全部情況數
>> from itertools import combinations, permutations
>> permutations([1, 2, 3], 2)
<itertools.permutations at 0x7febfd880fc0>
# 可迭代對象
>> list(permutations([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]
>> list(combinations([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
❿ python中如何編程求1到100之間的素數
1、新建python文件,testprimenum.py;