python3輸入語句
Ⅰ python3中,一行可以輸入多少語句(小甲魚c的問題)
一行可以輸入多個語句,需要用分號隔開,如print("小甲魚");print("fishC")
Ⅱ 後端編程Python3-調試、測試和性能剖析(下)
單元測試(Unit Testing)
為程序編寫測試——如果做的到位——有助於減少bug的出現,並可以提高我們對程序按預期目標運行的信心。通常,測試並不能保證正確性,因為對大多數程序而言, 可能的輸入范圍以及可能的計算范圍是如此之大,只有其中最小的一部分能被實際地進 行測試。盡管如此,通過仔細地選擇測試的方法和目標,可以提高代碼的質量。
大量不同類型的測試都可以進行,比如可用性測試、功能測試以及整合測試等。這里, 我們只講單元測試一對單獨的函數、類與方法進行測試,確保其符合預期的行為。
TDD的一個關鍵點是,當我們想添加一個功能時——比如為類添加一個方法—— 我們首次為其編寫一個測試用例。當然,測試將失敗,因為我們還沒有實際編寫該方法。現在,我們編寫該方法,一旦方法通過了測試,就可以返回所有測試,確保我們新添加的代碼沒有任何預期外的副作用。一旦所有測試運行完畢(包括我們為新功能編寫的測試),就可以對我們的代碼進行檢查,並有理有據地相信程序行為符合我們的期望——當然,前提是我們的測試是適當的。
比如,我們編寫了一個函數,該函數在特定的索引位置插入一個字元串,可以像下面這樣開始我們的TDD:
def insert_at(string, position, insert):
"""Returns a of string with insert inserted at the position
>>> string = "ABCDE"
>>> result =[]
>>> for i in range(-2, len(string) + 2):
... result.append(insert_at(string, i,「-」))
>>> result[:5]
['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']
>>> result[5:]
['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']
"""
return string
對不返回任何參數的函數或方法(通常返回None),我們通常賦予其由pass構成的一個suite,對那些返回值被試用的,我們或者返回一個常數(比如0),或者某個不變的參數——這也是我們這里所做的。(在更復雜的情況下,返回fake對象可能更有用一一對這樣的類,提供mock對象的第三方模塊是可用的。)
運行doctest時會失敗,並列出每個預期內的字元串('ABCD-EF'、'ABCDE-F' 等),及其實際獲取的字元串(所有的都是'ABCD-EF')。一旦確定doctest是充分的和正確的,就可以編寫該函數的主體部分,在本例中只是簡單的return string[:position] + insert+string[position:]。(如果我們編寫的是 return string[:position] + insert,之後復制 string [:position]並將其粘貼在末尾以便減少一些輸入操作,那麼doctest會立即提示錯誤。)
Python的標准庫提供了兩個單元測試模塊,一個是doctest,這里和前面都簡單地提到過,另一個是unittest。此外,還有一些可用於Python的第三方測試工具。其中最著名的兩個是nose (code.google.com/p/python-nose)與py.test (codespeak.net/py/dist/test/test.html), nose 致力於提供比標準的unittest 模塊更廣泛的功能,同時保持與該模塊的兼容性,py.test則採用了與unittest有些不同的方法,試圖盡可能消除樣板測試代碼。這兩個第三方模塊都支持測試發現,因此沒必要寫一個總體的測試程序——因為模塊將自己搜索測試程序。這使得測試整個代碼樹或某一部分 (比如那些已經起作用的模塊)變得很容易。那些對測試嚴重關切的人,在決定使用哪個測試工具之前,對這兩個(以及任何其他有吸引力的)第三方模塊進行研究都是值 得的。
創建doctest是直截了當的:我們在模塊中編寫測試、函數、類與方法的docstrings。 對於模塊,我們簡單地在末尾添加了 3行:
if __name__ =="__main__":
import doctest
doctest.testmod()
在程序內部使用doctest也是可能的。比如,blocks.py程序(其模塊在後面)有自己函數的doctest,但以如下代碼結尾:
if __name__== "__main__":
main()
這里簡單地調用了程序的main()函數,並且沒有執行程序的doctest。要實驗程序的 doctest,有兩種方法。一種是導入doctest模塊,之後運行程序---比如,在控制台中輸 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用類似於 C:Python3 lpython.exe 這樣的形式替代python3)。如果所有測試運行良好,就沒有輸出,因此,我們可能寧願執行python3-m doctest blocks.py-v,因為這會列出每個執行的doctest,並在最後給出結果摘要。
另一種執行doctest的方法是使用unittest模塊創建單獨的測試程序。在概念上, unittest模塊是根據Java的JUnit單元測試庫進行建模的,並用於創建包含測試用例的測試套件。unittest模塊可以基於doctests創建測試用例,而不需要知道程序或模塊包含的任何事物——只要知道其包含doctest即可。因此,為給blocks.py程序製作一個測試套件,我們可以創建如下的簡單程序(將其稱為test_blocks.py):
import doctest
import unittest
import blocks
suite = unittest.TestSuite()
suite.addTest(doctest.DocTestSuite(blocks))
runner = unittest.TextTestRunner()
print(runner.run(suite))
注意,如果釆用這種方法,程序的名稱上會有一個隱含的約束:程序名必須是有效的模塊名。因此,名為convert-incidents.py的程序的測試不能寫成這樣。因為import convert-incidents不是有效的,在Python標識符中,連接符是無效的(避開這一約束是可能的,但最簡單的解決方案是使用總是有效模塊名的程序文件名,比如,使用下劃線替換連接符)。這里展示的結構(創建一個測試套件,添加一個或多個測試用例或測試套件,運行總體的測試套件,輸出結果)是典型的機遇unittest的測試。運行時,這一特定實例產生如下結果:
...
.............................................................................................................
Ran 3 tests in 0.244s
OK
每次執行一個測試用例時,都會輸出一個句點(因此上面的輸出最前面有3個句點),之後是一行連接符,再之後是測試摘要(如果有任何一個測試失敗,就會有更多的輸出信息)。
如果我們嘗試將測試分離開(典型情況下是要測試的每個程序和模塊都有一個測試用例),就不要再使用doctests,而是直接使用unittest模塊的功能——尤其是我們習慣於使用JUnit方法進行測試時ounittest模塊會將測試分離於代碼——對大型項目(測試編寫人員與開發人員可能不一致)而言,這種方法特別有用。此外,unittest單元測試編寫為獨立的Python模塊,因此,不會像在docstring內部編寫測試用例時受到兼容性和明智性的限制。
unittest模塊定義了 4個關鍵概念。測試夾具是一個用於描述創建測試(以及用完之後將其清理)所必需的代碼的術語,典型實例是創建測試所用的一個輸入文件,最後刪除輸入文件與結果輸出文件。測試套件是一組測試用例的組合。測試用例是測試的基本單元—我們很快就會看到實例。測試運行者是執行一個或多個測試套件的對象。
典型情況下,測試套件是通過創建unittest.TestCase的子類實現的,其中每個名稱 以「test」開頭的方法都是一個測試用例。如果我們需要完成任何創建操作,就可以在一個名為setUp()的方法中實現;類似地,對任何清理操作,也可以實現一個名為 tearDown()的方法。在測試內部,有大量可供我們使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(對於測試浮點數很有用)、assertRaises() 以及更多,還包括很多對應的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。
unittest模塊進行了很好的歸檔,並且提供了大量功能,但在這里我們只是通過一 個非常簡單的測試套件來感受一下該模塊的使用。這里將要使用的實例,該練習要求創建一個Atomic模塊,該模塊可以用作一 個上下文管理器,以確保或者所有改變都應用於某個列表、集合或字典,或者所有改變都不應用。作為解決方案提供的Atomic.py模塊使用30行代碼來實現Atomic類, 並提供了 100行左右的模塊doctest。這里,我們將創建test_Atomic.py模塊,並使用 unittest測試替換doctest,以便可以刪除doctest。
在編寫測試模塊之前,我們需要思考都需要哪些測試。我們需要測試3種不同的數據類型:列表、集合與字典。對於列表,需要測試的是插入項、刪除項或修改項的值。對於集合,我們必須測試向其中添加或刪除一個項。對於字典,我們必須測試的是插入一個項、修改一個項的值、刪除一個項。此外,還必須要測試的是在失敗的情況下,不會有任何改變實際生效。
結構上看,測試不同數據類型實質上是一樣的,因此,我們將只為測試列表編寫測試用例,而將其他的留作練習。test_Atomic.py模塊必須導入unittest模塊與要進行測試的Atomic模塊。
創建unittest文件時,我們通常創建的是模塊而非程序。在每個模塊內部,我們定義一個或多個unittest.TestCase子類。比如,test_Atomic.py模塊中僅一個單獨的 unittest-TestCase子類,也就是TestAtomic (稍後將對其進行講解),並以如下兩行結束:
if name == "__main__":
unittest.main()
這兩行使得該模塊可以單獨運行。當然,該模塊也可以被導入並從其他測試程序中運行——如果這只是多個測試套件中的一個,這一點是有意義的。
如果想要從其他測試程序中運行test_Atomic.py模塊,那麼可以編寫一個與此類似的程序。我們習慣於使用unittest模塊執行doctests,比如:
import unittest
import test_Atomic
suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)
runner = unittest.TextTestRunner()
pnnt(runner.run(suite))
這里,我們已經創建了一個單獨的套件,這是通過讓unittest模塊讀取test_Atomic 模塊實現的,並且使用其每一個test*()方法(本實例中是test_list_success()、test_list_fail(),稍後很快就會看到)作為測試用例。
我們現在將查看TestAtomic類的實現。對通常的子類(不包括unittest.TestCase 子類),不怎麼常見的是,沒有必要實現初始化程序。在這一案例中,我們將需要建立 一個方法,但不需要清理方法,並且我們將實現兩個測試用例。
def setUp(self):
self.original_list = list(range(10))
我們已經使用了 unittest.TestCase.setUp()方法來創建單獨的測試數據片段。
def test_list_succeed(self):
items = self.original_list[:]
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4]= -782
atomic.insert(0, -9)
self.assertEqual(items,
[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])
def test_list_fail(self):
items = self.original_list[:]
with self.assertRaises(AttributeError):
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4] = -782
atomic.poop() # Typo
self.assertListEqual(items, self.original_list)
這里,我們直接在測試方法中編寫了測試代碼,而不需要一個內部函數,也不再使用unittest.TestCase.assertRaised()作為上下文管理器(期望代碼產生AttributeError)。 最後我們也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。
正如我們已經看到的,Python的測試模塊易於使用,並且極為有用,在我們使用 TDD的情況下更是如此。它們還有比這里展示的要多得多的大量功能與特徵——比如,跳過測試的能力,這有助於理解平台差別——並且這些都有很好的文檔支持。缺失的一個功能——但nose與py.test提供了——是測試發現,盡管這一特徵被期望在後續的Python版本(或許與Python 3.2—起)中出現。
性能剖析(Profiling)
如果程序運行很慢,或者消耗了比預期內要多得多的內存,那麼問題通常是選擇的演算法或數據結構不合適,或者是以低效的方式進行實現。不管問題的原因是什麼, 最好的方法都是准確地找到問題發生的地方,而不只是檢査代碼並試圖對其進行優化。 隨機優化會導致引入bug,或者對程序中本來對程序整體性能並沒有實際影響的部分進行提速,而這並非解釋器耗費大部分時間的地方。
在深入討論profiling之前,注意一些易於學習和使用的Python程序設計習慣是有意義的,並且對提高程序性能不無裨益。這些技術都不是特定於某個Python版本的, 而是合理的Python程序設計風格。第一,在需要只讀序列時,最好使用元組而非列表; 第二,使用生成器,而不是創建大的元組和列表並在其上進行迭代處理;第三,盡量使用Python內置的數據結構 dicts、lists、tuples 而不實現自己的自定義結構,因為內置的數據結構都是經過了高度優化的;第四,從小字元串中產生大字元串時, 不要對小字元串進行連接,而是在列表中累積,最後將字元串列表結合成為一個單獨的字元串;第五,也是最後一點,如果某個對象(包括函數或方法)需要多次使用屬性進行訪問(比如訪問模塊中的某個函數),或從某個數據結構中進行訪問,那麼較好的做法是創建並使用一個局部變數來訪問該對象,以便提供更快的訪問速度。
Python標准庫提供了兩個特別有用的模塊,可以輔助調査代碼的性能問題。一個是timeit模塊——該模塊可用於對一小段Python代碼進行計時,並可用於諸如對兩個或多個特定函數或方法的性能進行比較等場合。另一個是cProfile模塊,可用於profile 程序的性能——該模塊對調用計數與次數進行了詳細分解,以便發現性能瓶頸所在。
為了解timeit模塊,我們將查看一些小實例。假定有3個函數function_a()、 function_b()、function_c(), 3個函數執行同樣的計算,但分別使用不同的演算法。如果將這些函數放於同一個模塊中(或分別導入),就可以使用timeit模塊對其進行運行和比較。下面給出的是模塊最後使用的代碼:
if __name__ == "__main__":
repeats = 1000
for function in ("function_a", "function_b", "function_c"):
t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))
sec = t.timeit(repeats) / repeats
print("{function}() {sec:.6f} sec".format(**locals()))
賦予timeit.Timer()構造子的第一個參數是我們想要執行並計時的代碼,其形式是字元串。這里,該字元串是「function_a(X,Y)」;第二個參數是可選的,還是一個待執行的字元串,這一次是在待計時的代碼之前,以便提供一些建立工作。這里,我們從 __main__ (即this)模塊導入了待測試的函數,還有兩個作為輸入數據傳入的變數(X 與Y),這兩個變數在該模塊中是作為全局變數提供的。我們也可以很輕易地像從其他模塊中導入數據一樣來進行導入操作。
調用timeit.Timer對象的timeit()方法時,首先將執行構造子的第二個參數(如果有), 之後執行構造子的第一個參數並對其執行時間進行計時。timeit.Timer.timeit()方法的返回值是以秒計數的時間,類型是float。默認情況下,timeit()方法重復100萬次,並返回所 有這些執行的總秒數,但在這一特定案例中,只需要1000次反復就可以給出有用的結果, 因此對重復計數次數進行了顯式指定。在對每個函數進行計時後,使用重復次數對總數進行除法操作,就得到了平均執行時間,並在控制台中列印出函數名與執行時間。
function_a() 0.001618 sec
function_b() 0.012786 sec
function_c() 0.003248 sec
在這一實例中,function_a()顯然是最快的——至少對於這里使用的輸入數據而言。 在有些情況下一一比如輸入數據不同會對性能產生巨大影響——可能需要使用多組輸入數據對每個函數進行測試,以便覆蓋有代表性的測試用例,並對總執行時間或平均執行時間進行比較。
有時監控自己的代碼進行計時並不是很方便,因此timeit模塊提供了一種在命令行中對代碼執行時間進行計時的途徑。比如,要對MyMole.py模塊中的函數function_a()進行計時,可以在控制台中輸入如下命令:python3 -m timeit -n 1000 -s "from MyMole import function_a, X, Y" "function_a(X, Y)"(與通常所做的一樣,對 Windows 環境,我們必須使用類似於C:Python3lpython.exe這樣的內容來替換python3)。-m選項用於Python 解釋器,使其可以載入指定的模塊(這里是timeit),其他選項則由timeit模塊進行處理。 -n選項指定了循環計數次數,-s選項指定了要建立,最後一個參數是要執行和計時的代碼。命令完成後,會向控制台中列印運行結果,比如:
1000 loops, best of 3: 1.41 msec per loop
之後我們可以輕易地對其他兩個函數進行計時,以便對其進行整體的比較。
cProfile模塊(或者profile模塊,這里統稱為cProfile模塊)也可以用於比較函數 與方法的性能。與只是提供原始計時的timeit模塊不同的是,cProfile模塊精確地展示 了有什麼被調用以及每個調用耗費了多少時間。下面是用於比較與前面一樣的3個函數的代碼:
if __name__ == "__main__":
for function in ("function_a", "function_b", "function_c"):
cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))
我們必須將重復的次數放置在要傳遞給cProfile.run()函數的代碼內部,但不需要做任何創建,因為模塊函數會使用內省來尋找需要使用的函數與變數。這里沒有使用顯式的print()語句,因為默認情況下,cProfile.run()函數會在控制台中列印其輸出。下面給出的是所有函數的相關結果(有些無關行被省略,格式也進行了稍許調整,以便與頁面適應):
1003 function calls in 1.661 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.003 0.003 1.661 1.661 :1 ( )
1000 1.658 0.002 1.658 0.002 MyMole.py:21 (function_a)
1 0.000 0.000 1.661 1.661 {built-in method exec}
5132003 function calls in 22.700 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.487 0.487 22.700 22.700 : 1 ( )
1000 0.011 0.000 22.213 0.022 MyMole.py:28(function_b)
5128000 7.048 0.000 7.048 0.000 MyMole.py:29( )
1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}
1 0.000 0.000 22.700 22.700 {built-in method exec}
1000 0.001 0.000 0.001 0.000 {built-in method len}
1000 15.149 0.015 22.196 0.022 {built-in method sorted}
5129003 function calls in 12.987 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.205 0.205 12.987 12.987 :l ( )
1000 6.472 0.006 12.782 0.013 MyMole.py:36(function_c)
5128000 6.311 0.000 6.311 0.000 MyMole.py:37( )
1 0.000 0.000 12.987 12.987 {built-in method exec}
ncalls ("調用的次數")列列出了對指定函數(在filename:lineno(function)中列出) 的調用次數。回想一下我們重復了 1000次調用,因此必須將這個次數記住。tottime (「總的時間」)列列出了某個函數中耗費的總時間,但是排除了函數調用的其他函數內部花費的時間。第一個percall列列出了對函數的每次調用的平均時間(tottime // ncalls)。 cumtime ("累積時間")列出了在函數中耗費的時間,並且包含了函數調用的其他函數內部花費的時間。第二個percall列列出了對函數的每次調用的平均時間,包括其調用的函數耗費的時間。
這種輸出信息要比timeit模塊的原始計時信息富有啟發意義的多。我們立即可以發現,function_b()與function_c()使用了被調用5000次以上的生成器,使得它們的速度至少要比function_a()慢10倍以上。並且,function_b()調用了更多通常意義上的函數,包括調用內置的sorted()函數,這使得其幾乎比function_c()還要慢兩倍。當然,timeit() 模塊提供了足夠的信息來查看計時上存在的這些差別,但cProfile模塊允許我們了解為什麼會存在這些差別。正如timeit模塊允許對代碼進行計時而又不需要對其監控一樣,cProfile模塊也可以做到這一點。然而,從命令行使用cProfile模塊時,我們不能精確地指定要執行的 是什麼——而只是執行給定的程序或模塊,並報告所有這些的計時結果。需要使用的 命令行是python3 -m cProfile programOrMole.py,產生的輸出信息與前面看到的一 樣,下面給出的是輸出信息樣例,格式上進行了一些調整,並忽略了大多數行:
10272458 function calls (10272457 primitive calls) in 37.718 CPU secs
ncalls tottime percall cumtime percall filename:lineno(function)
10.000 0.000 37.718 37.718 :1 ( )
10.719 0.719 37.717 37.717 :12( )
1000 1.569 0.002 1.569 0.002 :20(function_a)
1000 0.011 0.000 22.560 0.023 :27(function_b)
5128000 7.078 0.000 7.078 0.000 :28( )
1000 6.510 0.007 12.825 0.013 :35(function_c)
5128000 6.316 0.000 6.316 0.000 :36( )
在cProfile術語學中,原始調用指的就是非遞歸的函數調用。
以這種方式使用cProfile模塊對於識別值得進一步研究的區域是有用的。比如,這里 我們可以清晰地看到function_b()需要耗費更長的時間,但是我們怎樣獲取進一步的詳細資料?我們可以使用cProfile.run("function_b()")來替換對function_b()的調用。或者可以保存完全的profile數據並使用pstats模塊對其進行分析。要保存profile,就必須對命令行進行稍許修改:python3 -m cProfile -o profileDataFile programOrMole.py。 之後可以對 profile 數據進行分析,比如啟動IDLE,導入pstats模塊,賦予其已保存的profileDataFile,或者也可以在控制台中互動式地使用pstats。
下面給出的是一個非常短的控制台會話實例,為使其適合頁面展示,進行了適當調整,我們自己的輸入則以粗體展示:
$ python3 -m cProfile -o profile.dat MyMole.py
$ python3 -m pstats
Welcome to the profile statistics browser.
% read profile.dat
profile.dat% callers function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function was called by...
ncalls tottime cumtime
:27(function_b) <- 1000 0.011 22.251 :12( )
profile.dat% callees function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function called...
ncalls tottime cumtime
:27(function_b)->
1000 0.005 0.005 built-in method bisectJeft
1000 0.001 0.001 built-in method len
1000 1 5.297 22.234 built-in method sorted
profile.dat% quit
輸入help可以獲取命令列表,help後面跟隨命令名可以獲取該命令的更多信息。比如, help stats將列出可以賦予stats命令的參數。還有其他一些可用的工具,可以提供profile數據的圖形化展示形式,比如 RunSnakeRun (www.vrplumber.com/prograinming/runsnakerun), 該工具需要依賴於wxPython GUI庫。
使用timeit與cProfile模塊,我們可以識別出我們自己代碼中哪些區域會耗費超過預期的時間;使用cProfile模塊,還可以准確算岀時間消耗在哪裡。
以上內容部分摘自視頻課程 05後端編程Python-19調試、測試和性能調優(下) ,更多實操示例請參照視頻講解。跟著張員外講編程,學習更輕松,不花錢還能學習真本領。
Ⅲ python入門教程
python入門教程如下:
1、編程環境的安裝與使用。比如Python的學習一般推薦軟體自帶的IDLE,簡單好用。
2、掌握輸入、輸入語句的使用。輸入語句可以讓計算機知道你通過鍵盤輸入了什麼,輸出語句可以讓你知道計算機執行的結果,其中「」裡面的內容是原樣輸出,多個輸出項之間用,隔開。
3、掌握運算(包含計算、邏輯)表達式使用。這個主要是用+、-、*、/、()、>、<、>=、<=等符號連接起來的表示計算或者比較的式子,讓計算機能做計算機或者判斷,一個是計算表達式,一個是所謂的邏輯表達式。
4、特別要掌握賦值表達式的使用,這個主要是等於號的理解。在計算機編程語言里,等於號一般不表示相等,而是表示賦值,也就是將等號右邊的內容記入左邊的名字里。
5、理解並熟練使用變數,變數的字面意思就是會變化的量。其實質的作用記憶信息,通過給要記憶的內容取個名字,然後通過這個名字就可以找到記憶的內容,有點類似於數學中的字母表示數。
6、選擇結構,這是讓計算機具有一定的選擇、判斷能力的基礎。比如我們常見的登錄,VIP就要用到選擇結構,因為我們把各種情況都列舉在程序里了,程序才會有各種變化。
7、循環結構,這是讓計算機具有重復的能力。前提是事件要具有一定的規律性,比如1,3,5,7,9,如果沒有規律,也可能通過列表等方法構造規律。
Ⅳ Python3基礎
默認情況下,Python 3 源碼文件以 UTF-8 編碼,所有字元串都是 unicode 字元串。 當然你也可以為源碼文件指定不同的編碼:
在 Python 3 中,非 ASCII 標識符也是允許的了。
保留字即關鍵字,我們不能把它們用作任何標識符名稱。Python 的標准庫提供了一個 keyword 模塊,可以輸出當前版本的所有關鍵字:
Python中單行注釋以 # 開頭,實例如下:
執行以上代碼,輸出結果為:
多行注釋可以用多個 # 號,還有 ''' 和 """:
執行以上代碼,輸出結果為:
python最具特色的就是使用縮進來表示代碼塊,不需要使用大括弧 {} 。
縮進的空格數是可變的,但是同一個代碼塊的語句必須包含相同的縮進空格數。實例如下:
以下代碼最後一行語句縮進數的空格數不一致,會導致運行錯誤:
以上程序由於縮進不一致,執行後會出現類似以下錯誤:
Python 通常是一行寫完一條語句,但如果語句很長,我們可以使用反斜杠()來實現多行語句,例如:
在 [], {}, 或 () 中的多行語句,不需要使用反斜杠(),例如:
python中數字有四種類型:整數、布爾型、浮點數和復數。
實例
輸出結果為:
函數之間或類的方法之間用空行分隔,表示一段新的代碼的開始。類和函數入口之間也用一行空行分隔,以突出函數入口的開始。
空行與代碼縮進不同,空行並不是Python語法的一部分。書寫時不插入空行,Python解釋器運行也不會出錯。但是空行的作用在於分隔兩段不同功能或含義的代碼,便於日後代碼的維護或重構。
記住: 空行也是程序代碼的一部分。
執行下面的程序在按回車鍵後就會等待用戶輸入:
以上代碼中 ," "在結果輸出前會輸出兩個新的空行。一旦用戶按下 enter 鍵時,程序將退出。
Python可以在同一行中使用多條語句,語句之間使用分號(;)分割,以下是一個簡單的實例:
執行以上代碼,輸出結果為:
縮進相同的一組語句構成一個代碼塊,我們稱之代碼組。
像if、while、def和class這樣的復合語句,首行以關鍵字開始,以冒號( : )結束,該行之後的一行或多行代碼構成代碼組。
我們將首行及後面的代碼組稱為一個子句(clause)。
如下實例:
print 默認輸出是換行的,如果要實現不換行需要在變數末尾加上 end="" :
以上實例執行結果為:
在 python 用 import 或者 from...import 來導入相應的模塊。
將整個模塊(somemole)導入,格式為: import somemole
從某個模塊中導入某個函數,格式為: from somemole import somefunction
從某個模塊中導入多個函數,格式為: from somemole import firstfunc, secondfunc, thirdfunc
將某個模塊中的全部函數導入,格式為: from somemole import *
import sys print ( ' ================Python import mode========================== ' ) ; print ( ' 命令行參數為: ' ) for i in sys . argv : print ( i ) print ( ' python 路徑為 ' , sys . path )
from sys import argv , path # 導入特定的成員 print ( ' ================python from import=================================== ' ) print ( ' path: ' , path ) # 因為已經導入path成員,所以此處引用時不需要加sys.path
很多程序可以執行一些操作來查看一些基本信息,Python可以使用-h參數查看各參數幫助信息:
Ⅳ python的輸入輸出語句「print(1+3**3*2)」結果是
在 Python 中,輸入輸出語句 "print(1+3**3*2)" 的結果為 19。
在 Python 中,** 運算符用於計算冪,所以 33 等於 3 的三次方,即 27。然後,在這個表達式中,乘法運算符(*)和加法運算符(+)都具有相同的優先順序,所以它們按照從左到右的順序進行計算。因此,表達式 1 + 33 * 2 被解析為 1 + (3**3 * 2),即 1 + (27 * 2),最後得出結果 19。
因此,執行 "print(1+3**3*2)" 這條語句時,將會在控制台輸出 19。
Ⅵ 萬字干貨,Python語法大合集,一篇文章帶你入門
這份資料非常純粹,只有Python的基礎語法,專門針對想要學習Python的小白。
Python中用#表示單行注釋,#之後的同行的內容都會被注釋掉。
使用三個連續的雙引號表示多行注釋,兩個多行注釋標識之間內容會被視作是注釋。
Python當中的數字定義和其他語言一樣:
我們分別使用+, -, *, /表示加減乘除四則運算符。
這里要注意的是,在Python2當中,10/3這個操作會得到3,而不是3.33333。因為除數和被除數都是整數,所以Python會自動執行整數的計算,幫我們把得到的商取整。如果是10.0 / 3,就會得到3.33333。目前Python2已經不再維護了,可以不用關心其中的細節。
但問題是Python是一個 弱類型 的語言,如果我們在一個函數當中得到兩個變數,是無法直接判斷它們的類型的。這就導致了同樣的計算符可能會得到不同的結果,這非常蛋疼。以至於程序員在運算除法的時候,往往都需要手工加上類型轉化符,將被除數轉成浮點數。
在Python3當中撥亂反正,修正了這個問題,即使是兩個整數相除,並且可以整除的情況下,得到的結果也一定是浮點數。
如果我們想要得到整數,我們可以這么操作:
兩個除號表示 取整除 ,Python會為我們保留去除余數的結果。
除了取整除操作之外還有取余數操作,數學上稱為取模,Python中用%表示。
Python中支持 乘方運算 ,我們可以不用調用額外的函數,而使用**符號來完成:
當運算比較復雜的時候,我們可以用括弧來強制改變運算順序。
Python中用首字母大寫的True和False表示真和假。
用and表示與操作,or表示或操作,not表示非操作。而不是C++或者是Java當中的&&, || 和!。
在Python底層, True和False其實是1和0 ,所以如果我們執行以下操作,是不會報錯的,但是在邏輯上毫無意義。
我們用==判斷相等的操作,可以看出來True==1, False == 0.
我們要小心Python當中的bool()這個函數,它並不是轉成bool類型的意思。如果我們執行這個函數,那麼 只有0會被視作是False,其他所有數值都是True :
Python中用==判斷相等,>表示大於,>=表示大於等於, <表示小於,<=表示小於等於,!=表示不等。
我們可以用and和or拼裝各個邏輯運算:
注意not,and,or之間的優先順序,其中not > and > or。如果分不清楚的話,可以用括弧強行改變運行順序。
關於list的判斷,我們常用的判斷有兩種,一種是剛才介紹的==,還有一種是is。我們有時候也會簡單實用is來判斷,那麼這兩者有什麼區別呢?我們來看下面的例子:
Python是全引用的語言,其中的對象都使用引用來表示。is判斷的就是 兩個引用是否指向同一個對象 ,而==則是判斷兩個引用指向的具體內容是否相等。舉個例子,如果我們把引用比喻成地址的話,is就是判斷兩個變數的是否指向同一個地址,比如說都是沿河東路XX號。而==則是判斷這兩個地址的收件人是否都叫張三。
顯然,住在同一個地址的人一定都叫張三,但是住在不同地址的兩個人也可以都叫張三,也可以叫不同的名字。所以如果a is b,那麼a == b一定成立,反之則不然。
Python當中對字元串的限制比較松, 雙引號和單引號都可以表示字元串 ,看個人喜好使用單引號或者是雙引號。我個人比較喜歡單引號,因為寫起來方便。
字元串也支持+操作,表示兩個字元串相連。除此之外,我們把兩個字元串寫在一起,即使沒有+,Python也會為我們拼接:
我們可以使用[]來查找字元串當中某個位置的字元,用 len 來計算字元串的長度。
我們可以在字元串前面 加上f表示格式操作 ,並且在格式操作當中也支持運算,比如可以嵌套上len函數等。不過要注意,只有Python3.6以上的版本支持f操作。
最後是None的判斷,在Python當中None也是一個對象, 所有為None的變數都會指向這個對象 。根據我們前面所說的,既然所有的None都指向同一個地址,我們需要判斷一個變數是否是None的時候,可以使用is來進行判斷,當然用==也是可以的,不過我們通常使用is。
理解了None之後,我們再回到之前介紹過的bool()函數,它的用途其實就是判斷值是否是空。所有類型的 默認空值會被返回False ,否則都是True。比如0,"",[], {}, ()等。
除了上面這些值以外的所有值傳入都會得到True。
Python當中的標准輸入輸出是 input和print 。
print會輸出一個字元串,如果傳入的不是字元串會自動調用__str__方法轉成字元串進行輸出。 默認輸出會自動換行 ,如果想要以不同的字元結尾代替換行,可以傳入end參數:
使用input時,Python會在命令行接收一行字元串作為輸入。可以在input當中傳入字元串,會被當成提示輸出:
Python支持 三元表達式 ,但是語法和C++不同,使用if else結構,寫成:
上段代碼等價於:
Python中用[]表示空的list,我們也可以直接在其中填充元素進行初始化:
使用append和pop可以在list的末尾插入或者刪除元素:
list可以通過[]加上下標訪問指定位置的元素,如果是負數,則表示 倒序訪問 。-1表示最後一個元素,-2表示倒數第二個,以此類推。如果訪問的元素超過數組長度,則會出發 IndexError 的錯誤。
list支持切片操作,所謂的切片則是從原list當中 拷貝 出指定的一段。我們用start: end的格式來獲取切片,注意,這是一個 左閉右開區間 。如果留空表示全部獲取,我們也可以額外再加入一個參數表示步長,比如[1:5:2]表示從1號位置開始,步長為2獲取元素。得到的結果為[1, 3]。如果步長設置成-1則代表反向遍歷。
如果我們要指定一段區間倒序,則前面的start和end也需要反過來,例如我想要獲取[3: 6]區間的倒序,應該寫成[6:3:-1]。
只寫一個:,表示全部拷貝,如果用is判斷拷貝前後的list會得到False。可以使用del刪除指定位置的元素,或者可以使用remove方法。
insert方法可以 指定位置插入元素 ,index方法可以查詢某個元素第一次出現的下標。
list可以進行加法運算,兩個list相加表示list當中的元素合並。 等價於使用extend 方法:
我們想要判斷元素是否在list中出現,可以使用 in關鍵字 ,通過使用len計算list的長度:
tuple和list非常接近,tuple通過()初始化。和list不同, tuple是不可變對象 。也就是說tuple一旦生成不可以改變。如果我們修改tuple,會引發TypeError異常。
由於小括弧是有改變優先順序的含義,所以我們定義單個元素的tuple, 末尾必須加上逗號 ,否則會被當成是單個元素:
tuple支持list當中絕大部分操作:
我們可以用多個變數來解壓一個tuple:
解釋一下這行代碼:
我們在b的前面加上了星號, 表示這是一個list 。所以Python會在將其他變數對應上值的情況下,將剩下的元素都賦值給b。
補充一點,tuple本身雖然是不可變的,但是 tuple當中的可變元素是可以改變的 。比如我們有這樣一個tuple:
我們雖然不能往a當中添加或者刪除元素,但是a當中含有一個list,我們可以改變這個list類型的元素,這並不會觸發tuple的異常:
dict也是Python當中經常使用的容器,它等價於C++當中的map,即 存儲key和value的鍵值對 。我們用{}表示一個dict,用:分隔key和value。
對 。我們用{}表示一個dict,用:分隔key和value。
dict的key必須為不可變對象,所以 list、set和dict不可以作為另一個dict的key ,否則會拋出異常:
我們同樣用[]查找dict當中的元素,我們傳入key,獲得value,等價於get方法。
我們可以call dict當中的keys和values方法,獲取dict當中的所有key和value的集合,會得到一個list。在Python3.7以下版本當中,返回的結果的順序可能和插入順序不同,在Python3.7及以上版本中,Python會保證返回的順序和插入順序一致:
我們也可以用in判斷一個key是否在dict當中,注意只能判斷key。
如果使用[]查找不存在的key,會引發KeyError的異常。如果使用 get方法則不會引起異常,只會得到一個None :
setdefault方法可以 為不存在的key 插入一個value,如果key已經存在,則不會覆蓋它:
我們可以使用update方法用另外一個dict來更新當前dict,比如a.update(b)。對於a和b交集的key會被b覆蓋,a當中不存在的key會被插入進來:
我們一樣可以使用del刪除dict當中的元素,同樣只能傳入key。
Python3.5以上的版本支持使用**來解壓一個dict:
set是用來存儲 不重復元素 的容器,當中的元素都是不同的,相同的元素會被刪除。我們可以通過set(),或者通過{}來進行初始化。注意當我們使用{}的時候,必須要傳入數據,否則Python會將它和dict弄混。
set當中的元素也必須是不可變對象,因此list不能傳入set。
可以調用add方法為set插入元素:
set還可以被認為是集合,所以它還支持一些集合交叉並補的操作。
set還支持 超集和子集的判斷 ,我們可以用大於等於和小於等於號判斷一個set是不是另一個的超集或子集:
和dict一樣,我們可以使用in判斷元素在不在set當中。用可以拷貝一個set。
Python當中的判斷語句非常簡單,並且Python不支持switch,所以即使是多個條件,我們也只能 羅列if-else 。
我們可以用in來循環迭代一個list當中的內容,這也是Python當中基本的循環方式。
如果我們要循環一個范圍,可以使用range。range加上一個參數表示從0開始的序列,比如range(10),表示[0, 10)區間內的所有整數:
如果我們傳入兩個參數,則 代表迭代區間的首尾 。
如果我們傳入第三個元素,表示每次 循環變數自增的步長 。
如果使用enumerate函數,可以 同時迭代一個list的下標和元素 :
while循環和C++類似,當條件為True時執行,為false時退出。並且判斷條件不需要加上括弧:
Python當中使用 try和except捕獲異常 ,我們可以在except後面限制異常的類型。如果有多個類型可以寫多個except,還可以使用else語句表示其他所有的類型。finally語句內的語法 無論是否會觸發異常都必定執行 :
在Python當中我們經常會使用資源,最常見的就是open打開一個文件。我們 打開了文件句柄就一定要關閉 ,但是如果我們手動來編碼,經常會忘記執行close操作。並且如果文件異常,還會觸發異常。這個時候我們可以使用with語句來代替這部分處理,使用with會 自動在with塊執行結束或者是觸發異常時關閉打開的資源 。
以下是with的幾種用法和功能:
凡是可以使用in語句來迭代的對象都叫做 可迭代對象 ,它和迭代器不是一個含義。這里只有可迭代對象的介紹,想要了解迭代器的具體內容,請移步傳送門:
Python——五分鍾帶你弄懂迭代器與生成器,夯實代碼能力
當我們調用dict當中的keys方法的時候,返回的結果就是一個可迭代對象。
我們 不能使用下標來訪問 可迭代對象,但我們可以用iter將它轉化成迭代器,使用next關鍵字來獲取下一個元素。也可以將它轉化成list類型,變成一個list。
使用def關鍵字來定義函數,我們在傳參的時候如果指定函數內的參數名, 可以不按照函數定義的順序 傳參:
可以在參數名之前加上*表示任意長度的參數,參數會被轉化成list:
也可以指定任意長度的關鍵字參數,在參數前加上**表示接受一個dict:
當然我們也可以兩個都用上,這樣可以接受任何參數:
傳入參數的時候我們也可以使用*和**來解壓list或者是dict:
Python中的參數 可以返回多個值 :
函數內部定義的變數即使和全局變數重名,也 不會覆蓋全局變數的值 。想要在函數內部使用全局變數,需要加上 global 關鍵字,表示這是一個全局變數:
Python支持 函數式編程 ,我們可以在一個函數內部返回一個函數:
Python中可以使用lambda表示 匿名函數 ,使用:作為分隔,:前面表示匿名函數的參數,:後面的是函數的返回值:
我們還可以將函數作為參數使用map和filter,實現元素的批量處理和過濾。關於Python中map、rece和filter的使用,具體可以查看之前的文章:
五分鍾帶你了解map、rece和filter
我們還可以結合循環和判斷語來給list或者是dict進行初始化:
使用 import語句引入一個Python模塊 ,我們可以用.來訪問模塊中的函數或者是類。
我們也可以使用from import的語句,單獨引入模塊內的函數或者是類,而不再需要寫出完整路徑。使用from import *可以引入模塊內所有內容(不推薦這么干)
可以使用as給模塊內的方法或者類起別名:
我們可以使用dir查看我們用的模塊的路徑:
這么做的原因是如果我們當前的路徑下也有一個叫做math的Python文件,那麼 會覆蓋系統自帶的math的模塊 。這是尤其需要注意的,不小心會導致很多奇怪的bug。
我們來看一個完整的類,相關的介紹都在注釋當中
以上內容的詳細介紹之前也有過相關文章,可以查看:
Python—— slots ,property和對象命名規范
下面我們來看看Python當中類的使用:
這里解釋一下,實例和對象可以理解成一個概念,實例的英文是instance,對象的英文是object。都是指類經過實例化之後得到的對象。
繼承可以讓子類 繼承父類的變數以及方法 ,並且我們還可以在子類當中指定一些屬於自己的特性,並且還可以重寫父類的一些方法。一般我們會將不同的類放在不同的文件當中,使用import引入,一樣可以實現繼承。
我們創建一個蝙蝠類:
我們再創建一個蝙蝠俠的類,同時繼承Superhero和Bat:
執行這個類:
我們可以通過yield關鍵字創建一個生成器,每次我們調用的時候執行到yield關鍵字處則停止。下次再次調用則還是從yield處開始往下執行:
除了yield之外,我們還可以使用()小括弧來生成一個生成器:
關於生成器和迭代器更多的內容,可以查看下面這篇文章:
五分鍾帶你弄懂迭代器與生成器,夯實代碼能力
我們引入functools當中的wraps之後,可以創建一個裝飾器。裝飾器可以在不修改函數內部代碼的前提下,在外麵包裝一層其他的邏輯:
裝飾器之前也有專門的文章詳細介紹,可以移步下面的傳送門:
一文搞定Python裝飾器,看完面試不再慌
不知道有多少小夥伴可以看到結束,原作者的確非常厲害,把Python的基本操作基本上都囊括在裡面了。如果都能讀懂並且理解的話,那麼Python這門語言就算是入門了。
如果你之前就有其他語言的語言基礎,我想本文讀完應該不用30分鍾。當然在30分鍾內學會一門語言是不可能的,也不是我所提倡的。但至少通過本文我們可以做到熟悉Python的語法,知道大概有哪些操作,剩下的就要我們親自去寫代碼的時候去體會和運用了。
根據我的經驗,在學習一門新語言的前期,不停地查閱資料是免不了的。希望本文可以作為你在使用Python時候的查閱文檔。
最後,我這里有各種免費的編程類資料,有需要的及時私聊我,回復"學習",分享給大家,正在發放中............
Ⅶ Python3 條件控制和循環語句
在嵌套 if 語句中,可以把 if...elif...else 結構放在另外一個 if...elif...else 結構中。
在Python中沒有switch – case語句。
Python 中沒有 do..while 循環。
while 循環使用 else 語句,在 while … else 在條件語句為 false 時執行 else 的語句塊。
Python for循環可以遍歷任何序列的項目,如一個列表或者一個字元串。
range()函數:range(begin,end,step) 不包含end
break語句用於終止當前循環。break 語句可以跳出 for 和 while 的循環體。如果你從 for 或 while 循環中終止,任何對應的循環 else 塊將不執行。
continue 語句被用來告訴 Python 跳過當前循環塊中的剩餘語句,然後繼續進行下一輪循環。
break 和 continue 語句通常與 if, if...else 和 if...elif...else 語句一起使用。
循環語句可以有 else 子句,它在窮盡列表(以for循環)或條件變為 false (以while循環)導致循環終止時被執行,但循環被 break 終止時不執行。
1.如果 else 語句和 while 循環語句一起使用,則當條件變為 False 時,則執行 else 語句
2.如果 else 語句和 for 循環語句一起使用,else 語句塊只在 for 循環正常終止時執行
Python pass語句是空語句,是為了保持程序結構的完整性。
pass 不做任何事情,一般用做佔位語句。
Ⅷ Python3 輸入輸出和File(文件) 方法
Python兩種輸出值的方式: 表達式語句和 print() 函數。第三種方式是使用文件對象的 write() 方法,標准輸出文件可以用 sys.stdout 引用。
如果你希望輸出的形式更加多樣,可以使用 str.format() 函數來格式化輸出值。如果你希望將輸出的值轉成字元串,可以使用 repr() 或 str() 函數來實現。
str(): 函數返回一個用戶易讀的表達形式。
repr(): 產生一個解釋器易讀的表達形式。
str.format() 的使用
讀取鍵盤輸入
Python 提供了 input() 內置函數,從標准輸入讀入一行文本,默認的標准輸入是鍵盤。
open() 用於打開一個文件,並返迴文件對象,基本語法格式如下:
open(filename, mode='r')
完整的語法格式為:
open(filename, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)
參數說明:
filename: 必需,文件路徑+文件名稱(相對或者絕對路徑)
mode: 可選,文件打開模式:只讀,寫入,追加等,默認模式為只讀(r)
buffering: 設置緩沖
encoding: 一般使用utf8
errors: 報錯級別
newline: 區分換行符
closefd: 傳入的file參數類型
opener: 設置自定義開啟器,開啟器的返回值必須是一個打開的文件描述符。
不同模式mode打開文件的說明:
t 文本模式 (默認的模式)
b 二進制模式,一般用於非文本文件如圖片等
x 寫模式,新建一個文件,如果該文件已存在則會報錯
+ 打開一個文件進行更新(可讀可寫)
r 以只讀方式打開文件。文件的指針將會放在文件的開頭。是默認模式。
rb 以二進制格式打開一個文件用於只讀。文件指針將會放在文件的開頭。
r+ 打開一個文件用於讀寫。文件指針將會放在文件的開頭。
rb+ 以二進制格式打開一個文件用於讀寫。文件指針將會放在文件的開頭。
w 打開一個文件只用於寫入。如果該文件已存在則打開文件,並從開頭開始編輯,即原有內容會被刪除。如果該文件不存在,創建新文件。
wb 以二進制格式打開一個文件只用於寫入。如果該文件已存在則打開文件,並從開頭開始編輯,即原有內容會被刪除。如果該文件不存在,創建新文件。
w+ 打開一個文件用於讀寫。如果該文件已存在則打開文件,並從開頭開始編輯,即原有內容會被刪除。如果該文件不存在,創建新文件。
wb+ 以二進制格式打開一個文件用於讀寫。如果該文件已存在則打開文件,並從開頭開始編輯,即原有內容會被刪除。如果該文件不存在,創建新文件。
a 打開一個文件用於追加。如果該文件已存在,文件指針將會放在文件的結尾,新的內容將會被寫入到已有內容之後。如果該文件不存在,創建新文件進行寫入。
ab 以二進制格式打開一個文件用於追加。如果該文件已存在,文件指針將會放在文件的結尾,新的內容將會被寫入到已有內容之後。如果該文件不存在,創建新文件進行寫入。
a+ 打開一個文件用於讀寫。如果該文件已存在,文件指針將會放在文件的結尾。文件打開時會是追加模式。如果該文件不存在,創建新文件用於讀寫。
ab+ 以二進制格式打開一個文件用於追加。如果該文件已存在,文件指針將會放在文件的結尾。如果該文件不存在,創建新文件用於讀寫。
f.write(string) 將 string 寫入到文件中, 然後返回寫入的字元數
f.writelines(sequence) 向文件寫入一個序列字元串列表,如果需要換行則要自己加入每行的換行符。
f.read(size) 讀取一定數目的數據, 然後作為字元串或位元組對象返回。size 是一個可選參數。當 size 參數忽略或者為負, 那麼該文件的所有內容都將被讀取並且返回。
f.readline() 從文件中讀取單獨的一行。換行符為 '\n'。讀取整行,包括 "\n" 字元。f.readline() 如果返回一個空字元串, 說明已經讀取到最後一行。
f.readlines([sizeint])] 讀取所有行並返回列表類型,若給定sizeint>0,返回總和大約為sizeint位元組的行, 並且將這些位元組按行分割。實際讀取值可能比 sizeint 較大, 因為需要填充緩沖區。
f.tell() 返迴文件對象當前所處的位置, 它是從文件開頭開始算起的位元組數。
f.seek() 移動文件讀取指針到指定位置,如果要改變文件當前的位置, 可以使用f.seek(offset, from_what) 函數。from_what 的值(默認為0), 如果是 0 表示開頭, 如果是 1 表示當前位置, 2 表示文件的結尾,例如:
seek(x,0) : 從起始位置即文件首行首字元開始移動 x 個字元
seek(x,1) : 表示從當前位置往後移動x個字元
seek(-x,2):表示從文件的結尾往前移動x個字元
file.flush() 刷新文件內部緩沖,直接把內部緩沖區的數據立刻寫入文件, 而不是被動的等待輸出緩沖區寫入
file.fileno() 返回一個整型的文件描述符(file descriptor FD 整型), 可以用在如os模塊的read方法等一些底層操作上
file.isatty() 如果文件連接到一個終端設備返回 True,否則返回 False
file.truncate([size]) 從文件的首行首字元開始截斷,截斷文件為 size 個字元,無 size 表示從當前位置截斷;截斷之後後面的所有字元被刪除,其中 windows 系統下的換行代表2個字元大小。
f.close() 關閉文件並釋放系統的資源。關閉後文件不能再進行讀寫操作,否則會拋出異常
當處理一個文件對象時, 使用 with 關鍵字是非常好的方式。在結束後, 它會幫你正確的關閉文件。 而且寫起來也比 try - finally 語句塊要簡短:
python的pickle模塊實現了基本的數據序列和反序列化。通過pickle模塊的序列化操作能夠將程序中運行的對象信息保存到文件中去,永久存儲。通過pickle模塊的反序列化操作能夠從文件中創建上一次程序保存的對象。
基本介面:
pickle.mp(obj, file, [,protocol])
有了 pickle 對象, 就能對 file 以讀取的形式打開:
x = pickle.load(file)
從 file 中讀取一個字元串,並將它重構為原來的python對象。
示例:使用pickle模塊將數據對象保存到文件
示例:使用pickle模塊從文件中重構python對象
Ⅸ Python里,輸入一個英文句子,統計並輸出單詞個數,怎麼弄啊
你好,答案如下所示。mydict={}
for i in input("英文句子").split():
if i in mydict:
mydict[i]+=1
else :
mydict[i]=1
for key,value in mydict.items():
print(key,value)
縮進如圖所示
希望你能夠詳細查看。
如果你有不會的,你可以提問
我有時間就會幫你解答。
希望你好好學習。
每一天都過得充實。