當前位置:首頁 » 編程語言 » pythonthreading詳解

pythonthreading詳解

發布時間: 2023-01-12 16:32:28

『壹』 python多線程之threading之Lock對象

要介紹Python的 threading 模塊中的 Lock 對象前, 首先應該了解以下兩個概念:

1.基本概念 : 指某個函數/函數庫在多線程環境中被調用時, 能夠正確地處理多個線程之間的 共享變數 , 使程序功能正常完成. 多個線程訪問同一個對象時, 如果不用考慮這些線程在運行時環境下的調度和交替執行, 也不需要進行額外的同步, 或者在調用方進行任何其他操作,調用這個對象的行為都可以獲得正確的結果, 那麼這個對象就是線程安全的. 或者說: 一個類或者程序所提供的介面對於線程來說是 原子操作 或者多個線程之間的切換不會導致該介面的執行結果存在二義性, 也就是說我們不用考慮同步的問題.

2.示例 : 比如有間銀行只有1000元, 而兩個人同時提領1000元時,就有可能拿到總計2000元的金額. 為了避免這個問題, 該間銀行提款時應該使用 互斥鎖 , 即意味著對同一個資源處理時, 前一個提領交易完成後才處理下一筆交易.

3.線程安全意義 :

4.是否線程安全 :

5.資源競爭 : 即多個線程對同一個資源的改寫時, 存在的一種競爭. 如果僅僅是讀操作, 則不存在資源競爭的情況.

1.基本概念 : 因為存在上述所說的 線程安全與資源競爭 的情況, 所以引入了 線程鎖 . 即通過鎖來進行資源請求的限制, 以保證同步執行,避免資源被污染或預期結果不符. 線程鎖存在兩種狀態: 鎖定(locked)和非鎖定(unlocked).

2.基本方法 :

3.使用示例 :

上述示例如果在不加鎖的情況下, 將會出現列印順序混亂的情況, 不過最終結果都是正確的, 因為即使線程交替執行, 但最終的結果都是一致.

『貳』 python threading start 什麼意思

啟動多線程

threading是Python多線程模塊thread,threading,Queue中的一個

不同於thread的是,你要去覆寫threading這個類,然後在裡面實現他的一些方法

例如,你程序中有一個方法

importthreading

classrunner(threading.Thread):
'''
實現多線程
'''
def__init__(self,url):
#初始化,設置傳入的參數
threading.Thread.__init__(self)
self.url=url
self.thread_stop=False
defrun(self):
tmp=crawl(self.url)#調用一個其它方法
save(tmp)#另一個方法
defstop(self):
self.thread_stop=True

url='.com'
t=runner(url)
t.start()#啟動多線程

『叄』 深入解析Python中的線程同步方法

深入解析Python中的線程同步方法
同步訪問共享資源
在使用線程的時候,一個很重要的問題是要避免多個線程對同一變數或其它資源的訪問沖突。一旦你稍不留神,重疊訪問、在多個線程中修改(共享資源)等這些操作會導致各種各樣的問題;更嚴重的是,這些問題一般只會在比較極端(比如高並發、生產伺服器、甚至在性能更好的硬體設備上)的情況下才會出現。
比如有這樣一個情況:需要追蹤對一事件處理的次數
counter = 0

def process_item(item):
global counter
... do something with item ...
counter += 1
如果你在多個線程中同時調用這個函數,你會發現counter的值不是那麼准確。在大多數情況下它是對的,但有時它會比實際的少幾個。
出現這種情況的原因是,計數增加操作實際上分三步執行:
解釋器獲取counter的當前值計算新值將計算的新值回寫counter變數
考慮一下這種情況:在當前線程獲取到counter值後,另一個線程搶佔到了CPU,然後同樣也獲取到了counter值,並進一步將counter值重新計算並完成回寫;之後時間片重新輪到當前線程(這里僅作標識區分,並非實際當前),此時當前線程獲取到counter值還是原來的,完成後續兩步操作後counter的值實際只加上1。
另一種常見情況是訪問不完整或不一致狀態。這類情況主要發生在一個線程正在初始化或更新數據時,另一個進程卻嘗試讀取正在更改的數據。
原子操作
實現對共享變數或其它資源的同步訪問最簡單的方法是依靠解釋器的原子操作。原子操作是在一步完成執行的操作,在這一步中其它線程無法獲得該共享資源。
通常情況下,這種同步方法只對那些只由單個核心數據類型組成的共享資源有效,譬如,字元串變數、數字、列表或者字典等。下面是幾個線程安全的操作:
讀或者替換一個實例屬性讀或者替換一個全局變數從列表中獲取一項元素原位修改一個列表(例如:使用append增加一個列表項)從字典中獲取一項元素原位修改一個字典(例如:增加一個字典項、調用clear方法)
注意,上面提到過,對一個變數或者屬性進行讀操作,然後修改它,最終將其回寫不是線程安全的。因為另外一個線程會在這個線程讀完卻沒有修改或回寫完成之前更改這個共享變數/屬性。

鎖是Python的threading模塊提供的最基本的同步機制。在任一時刻,一個鎖對象可能被一個線程獲取,或者不被任何線程獲取。如果一個線程嘗試去獲取一個已經被另一個線程獲取到的鎖對象,那麼這個想要獲取鎖對象的線程只能暫時終止執行直到鎖對象被另一個線程釋放掉。
鎖通常被用來實現對共享資源的同步訪問。為每一個共享資源創建一個Lock對象,當你需要訪問該資源時,調用acquire方法來獲取鎖對象(如果其它線程已經獲得了該鎖,則當前線程需等待其被釋放),待資源訪問完後,再調用release方法釋放鎖:
lock = Lock()

lock.acquire() #: will block if lock is already held
... access shared resource
lock.release()

注意,即使在訪問共享資源的過程中出錯了也應該釋放鎖,可以用try-finally來達到這一目的:
lock.acquire()
try:
... access shared resource
finally:
lock.release() #: release lock, no matter what

在Python 2.5及以後的版本中,你可以使用with語句。在使用鎖的時候,with語句會在進入語句塊之前自動的獲取到該鎖對象,然後在語句塊執行完成後自動釋放掉鎖:
from __future__ import with_statement #: 2.5 only

with lock:
... access shared resource

acquire方法帶一個可選的等待標識,它可用於設定當有其它線程佔有鎖時是否阻塞。如果你將其值設為False,那麼acquire方法將不再阻塞,只是如果該鎖被佔有時它會返回False:
if not lock.acquire(False):
... 鎖資源失敗
else:
try:
... access shared resource
finally:
lock.release()

你可以使用locked方法來檢查一個鎖對象是否已被獲取,注意不能用該方法來判斷調用acquire方法時是否會阻塞,因為在locked方法調用完成到下一條語句(比如acquire)執行之間該鎖有可能被其它線程佔有。
if not lock.locked():
#: 其它線程可能在下一條語句執行之前佔有了該鎖
lock.acquire() #: 可能會阻塞

簡單鎖的缺點
標準的鎖對象並不關心當前是哪個線程佔有了該鎖;如果該鎖已經被佔有了,那麼任何其它嘗試獲取該鎖的線程都會被阻塞,即使是佔有鎖的這個線程。考慮一下下面這個例子:
lock = threading.Lock()

def get_first_part():
lock.acquire()
try:
... 從共享對象中獲取第一部分數據
finally:
lock.release()
return data

def get_second_part():
lock.acquire()
try:
... 從共享對象中獲取第二部分數據
finally:
lock.release()
return data

示例中,我們有一個共享資源,有兩個分別取這個共享資源第一部分和第二部分的函數。兩個訪問函數都使用了鎖來確保在獲取數據時沒有其它線程修改對應的共享數據。
現在,如果我們想添加第三個函數來獲取兩個部分的數據,我們將會陷入泥潭。一個簡單的方法是依次調用這兩個函數,然後返回結合的結果:

def get_both_parts():
first = get_first_part()
seconde = get_second_part()
return first, second

這里的問題是,如有某個線程在兩個函數調用之間修改了共享資源,那麼我們最終會得到不一致的數據。最明顯的解決方法是在這個函數中也使用lock:
def get_both_parts():
lock.acquire()
try:
first = get_first_part()
seconde = get_second_part()
finally:
lock.release()
return first, second

然而,這是不可行的。裡面的兩個訪問函數將會阻塞,因為外層語句已經佔有了該鎖。為了解決這個問題,你可以通過使用標記在訪問函數中讓外層語句釋放鎖,但這樣容易失去控制並導致出錯。幸運的是,threading模塊包含了一個更加實用的鎖實現:re-entrant鎖。
Re-Entrant Locks (RLock)

RLock類是簡單鎖的另一個版本,它的特點在於,同一個鎖對象只有在被其它的線程佔有時嘗試獲取才會發生阻塞;而簡單鎖在同一個線程中同時只能被佔有一次。如果當前線程已經佔有了某個RLock鎖對象,那麼當前線程仍能再次獲取到該RLock鎖對象。
lock = threading.Lock()
lock.acquire()
lock.acquire() #: 這里將會阻塞

lock = threading.RLock()
lock.acquire()
lock.acquire() #: 這里不會發生阻塞

RLock的主要作用是解決嵌套訪問共享資源的問題,就像前面描述的示例。要想解決前面示例中的問題,我們只需要將Lock換為RLock對象,這樣嵌套調用也會OK.
lock = threading.RLock()

def get_first_part():
... see above

def get_second_part():
... see above

def get_both_parts():
... see above

這樣既可以單獨訪問兩部分數據也可以一次訪問兩部分數據而不會被鎖阻塞或者獲得不一致的數據。
注意RLock會追蹤遞歸層級,因此記得在acquire後進行release操作。
Semaphores

信號量是一個更高級的鎖機制。信號量內部有一個計數器而不像鎖對象內部有鎖標識,而且只有當佔用信號量的線程數超過信號量時線程才阻塞。這允許了多個線程可以同時訪問相同的代碼區。
semaphore = threading.BoundedSemaphore()
semaphore.acquire() #: counter減小

... 訪問共享資源
semaphore.release() #: counter增大

當信號量被獲取的時候,計數器減小;當信號量被釋放的時候,計數器增大。當獲取信號量的時候,如果計數器值為0,則該進程將阻塞。當某一信號量被釋放,counter值增加為1時,被阻塞的線程(如果有的話)中會有一個得以繼續運行。
信號量通常被用來限制對容量有限的資源的訪問,比如一個網路連接或者資料庫伺服器。在這類場景中,只需要將計數器初始化為最大值,信號量的實現將為你完成剩下的事情。
max_connections = 10

semaphore = threading.BoundedSemaphore(max_connections)

如果你不傳任何初始化參數,計數器的值會被初始化為1.
Python的threading模塊提供了兩種信號量實現。Semaphore類提供了一個無限大小的信號量,你可以調用release任意次來增大計數器的值。為了避免錯誤出現,最好使用BoundedSemaphore類,這樣當你調用release的次數大於acquire次數時程序會出錯提醒。
線程同步

鎖可以用在線程間的同步上。threading模塊包含了一些用於線程間同步的類。
Events

一個事件是一個簡單的同步對象,事件表示為一個內部標識(internal flag),線程等待這個標識被其它線程設定,或者自己設定、清除這個標識。
event = threading.Event()

#: 一個客戶端線程等待flag被設定
event.wait()

#: 服務端線程設置或者清除flag
event.set()
event.clear()

一旦標識被設定,wait方法就不做任何處理(不會阻塞),當標識被清除時,wait將被阻塞直至其被重新設定。任意數量的線程可能會等待同一個事件。
Conditions

條件是事件對象的高級版本。條件表現為程序中的某種狀態改變,線程可以等待給定條件或者條件發生的信號。
下面是一個簡單的生產者/消費者實例。首先你需要創建一個條件對象:

#: 表示一個資源的附屬項
condition = threading.Condition()
生產者線程在通知消費者線程有新生成資源之前需要獲得條件:
#: 生產者線程
... 生產資源項
condition.acquire()
... 將資源項添加到資源中
condition.notify() #: 發出有可用資源的信號
condition.release()
消費者必須獲取條件(以及相關聯的鎖),然後嘗試從資源中獲取資源項:
#: 消費者線程
condition.acquire()
while True:
...從資源中獲取資源項
if item:
break
condition.wait() #: 休眠,直至有新的資源
condition.release()
... 處理資源

wait方法釋放了鎖,然後將當前線程阻塞,直到有其它線程調用了同一條件對象的notify或者notifyAll方法,然後又重新拿到鎖。如果同時有多個線程在等待,那麼notify方法只會喚醒其中的一個線程,而notifyAll則會喚醒全部線程。
為了避免在wait方法處阻塞,你可以傳入一個超時參數,一個以秒為單位的浮點數。如果設置了超時參數,wait將會在指定時間返回,即使notify沒被調用。一旦使用了超時,你必須檢查資源來確定發生了什麼。
注意,條件對象關聯著一個鎖,你必須在訪問條件之前獲取這個鎖;同樣的,你必須在完成對條件的訪問時釋放這個鎖。在生產代碼中,你應該使用try-finally或者with.
可以通過將鎖對象作為條件構造函數的參數來讓條件關聯一個已經存在的鎖,這可以實現多個條件公用一個資源:
lock = threading.RLock()
condition_1 = threading.Condition(lock)
condition_2 = threading.Condition(lock)

互斥鎖同步
我們先來看一個例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import time, threading

# 假定這是你的銀行存款:
balance = 0
muxlock = threading.Lock()

def change_it(n):
# 先存後取,結果應該為0:
global balance
balance = balance + n
balance = balance - n

def run_thread(n):
# 循環次數一旦多起來,最後的數字就變成非0
for i in range(100000):
change_it(n)

t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t3 = threading.Thread(target=run_thread, args=(9,))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print balance

結果 :

[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
61
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
24

上面的例子引出了多線程編程的最常見問題:數據共享。當多個線程都修改某一個共享數據的時候,需要進行同步控制。
線程同步能夠保證多個線程安全訪問競爭資源,最簡單的同步機制是引入互斥鎖。互斥鎖為資源引入一個狀態:鎖定/非鎖定。某個線程要更改共享數據時,先將其鎖定,此時資源的狀態為「鎖定」,其他線程不能更改;直到該線程釋放資源,將資源的狀態變成「非鎖定」,其他的線程才能再次鎖定該資源。互斥鎖保證了每次只有一個線程進行寫入操作,從而保證了多線程情況下數據的正確性。

threading模塊中定義了Lock類,可以方便的處理鎖定:
#創建鎖mutex = threading.Lock()
#鎖定mutex.acquire([timeout])
#釋放mutex.release()

其中,鎖定方法acquire可以有一個超時時間的可選參數timeout。如果設定了timeout,則在超時後通過返回值可以判斷是否得到了鎖,從而可以進行一些其他的處理。
使用互斥鎖實現上面的例子的代碼如下:
balance = 0
muxlock = threading.Lock()

def change_it(n):
# 獲取鎖,確保只有一個線程操作這個數
muxlock.acquire()
global balance
balance = balance + n
balance = balance - n
# 釋放鎖,給其他被阻塞的線程繼續操作
muxlock.release()

def run_thread(n):
for i in range(10000):
change_it(n)

加鎖後的結果,就能確保數據正確:
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0

『肆』 python中的threading怎麼用

hread 是threading模塊中最重要的類之一,可以使用它來創建線程。有兩種方式來創建線程:一種是通過繼承Thread類,重寫它的run方法;另一種是創建一個threading.Thread對象,在它的初始化函數(__init__)中將可調用對象作為參數傳入。下面分別舉例說明。先來看看
-------我是華麗的分割線---------
不懂可以繼續追問
會給你更好地建議,幫助解決可困難,喂網路知道做貢獻

『伍』 Python:進程(threading)

這里是自己寫下關於 Python 跟進程相關的 threading 模塊的一點筆記,跟有些跟 Linux 調用挺像的,有共通之處。

https://docs.python.org/3/library/threading.html?highlight=threading#thread-objects

直接傳入

繼承 Thread 重寫 run 方法

threading.Thread(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

group 線程組,未實現

start() 線程就緒
join([timeout]) 阻塞其他線程,直到調用這方法的進程結束或時間到達

RuntimeError: cannot join thread before it is started

get/setName(name) 獲取/設置線程名。
isAlive() 返回線程是否在運行。
is/setDaemon(bool): 獲取/設置是後台線程(默認前台線程(False))。(在start之前設置)

The entire Python program exits when no alive non-daemon threads are left.
沒有非後台進程運行,Python 就退出。
主線程執行完畢後,後台線程不管是成功與否,主線程均停止

t.start()
t.join()
start() 後 join() 會順序執行,失去線程意義

https://docs.python.org/3/library/threading.html?#lock-objects

Lock屬於全局,Rlock屬於線程(R的意思是可重入,線程用Lock的話會死鎖,來看例子)

acquire(blocking=True, timeout=-1) 申請鎖,返回申請的結果
release() 釋放鎖,沒返回結果

https://docs.python.org/3/library/threading.html#condition-objects

可以在構造時傳入rlock lock實例,不然自己生成一個。

acquire([timeout])/release(): 與lock rlock 相同
wait([timeout]): 調用這個方法將使線程進入等待池,並釋放鎖。調用方法前線程必須已獲得鎖定,否則將拋出異常。
notify(): 調用這個方法將從等待池挑選一個線程並通知,收到通知的線程將自動調用acquire()嘗試獲得鎖定(進入鎖定池);其他線程仍然在等待池中。調用這個方法不會釋放鎖定。調用方法前線程必須已獲得鎖定,否則將拋出異常。
notifyAll(): 調用這個方法將通知等待池中所有的線程,這些線程都將進入鎖定池嘗試獲得鎖定。調用這個方法不會釋放鎖定。使用前線程必須已獲得鎖定,否則將拋出異常。

threading.Semaphore(value=1)

https://docs.python.org/3/library/threading.html#semaphore-objects

acquire(blocking=True, timeout=None)
資源數大於0,減一並返回,等於0時等待,blocking為False不阻塞進程
返回值是申請結果
release()
資源數加1

https://docs.python.org/3/library/threading.html#event-objects

事件內置了一個初始為False的標志

is_set() 返回內置標志的狀態
set() 設為True
clear() 設為False
wait(timeout=None) 阻塞線程並等待,為真時返回。返回值只會在等待超時時為False,其他情況為True

https://docs.python.org/3/library/threading.html#timer-objects

threading.Timer(interval, function, args=None, kwargs=None)

第一個參數是時間間隔,單位是秒,整數或者浮點數,負數不會報錯直接執行不等待
可以用cancel() 取消

https://docs.python.org/3/library/threading.html#barrier-objects

threading.Barrier(parties, action=None, timeout=None)

調用的進程數目達到第一個設置的參數就喚醒全部進程

wait(timeout=None)
reset() 重置,等待中的進程收到 BrokenBarrierError 錯誤

『陸』 Python Threading 是怎麼的用法

多線程/多進程都是通訊或者回調,而不是直接返回結果。這個很容易理解的,因為如果你用返回結果來給一個變數賦值,你就必須等待這個函數結束,你這個程序就阻塞了,這就失去了多線程/多進程防止阻塞的意義了。 通訊可以是事件驅動或者用線程安全

『柒』 Python多線程總結

在實際處理數據時,因系統內存有限,我們不可能一次把所有數據都導出進行操作,所以需要批量導出依次操作。為了加快運行,我們會採用多線程的方法進行數據處理, 以下為我總結的多線程批量處理數據的模板:

主要分為三大部分:


共分4部分對多線程的內容進行總結。

先為大家介紹線程的相關概念:

在飛車程序中,如果沒有多線程,我們就不能一邊聽歌一邊玩飛車,聽歌與玩 游戲 不能並行;在使用多線程後,我們就可以在玩 游戲 的同時聽背景音樂。在這個例子中啟動飛車程序就是一個進程,玩 游戲 和聽音樂是兩個線程。

Python 提供了 threading 模塊來實現多線程:

因為新建線程系統需要分配資源、終止線程系統需要回收資源,所以如果可以重用線程,則可以減去新建/終止的開銷以提升性能。同時,使用線程池的語法比自己新建線程執行線程更加簡潔。

Python 為我們提供了 ThreadPoolExecutor 來實現線程池,此線程池默認子線程守護。它的適應場景為突發性大量請求或需要大量線程完成任務,但實際任務處理時間較短。

其中 max_workers 為線程池中的線程個數,常用的遍歷方法有 map 和 submit+as_completed 。根據業務場景的不同,若我們需要輸出結果按遍歷順序返回,我們就用 map 方法,若想誰先完成就返回誰,我們就用 submit+as_complete 方法。

我們把一個時間段內只允許一個線程使用的資源稱為臨界資源,對臨界資源的訪問,必須互斥的進行。互斥,也稱間接制約關系。線程互斥指當一個線程訪問某臨界資源時,另一個想要訪問該臨界資源的線程必須等待。當前訪問臨界資源的線程訪問結束,釋放該資源之後,另一個線程才能去訪問臨界資源。鎖的功能就是實現線程互斥。

我把線程互斥比作廁所包間上大號的過程,因為包間里只有一個坑,所以只允許一個人進行大號。當第一個人要上廁所時,會將門上上鎖,這時如果第二個人也想大號,那就必須等第一個人上完,將鎖解開後才能進行,在這期間第二個人就只能在門外等著。這個過程與代碼中使用鎖的原理如出一轍,這里的坑就是臨界資源。 Python 的 threading 模塊引入了鎖。 threading 模塊提供了 Lock 類,它有如下方法加鎖和釋放鎖:

我們會發現這個程序只會列印「第一道鎖」,而且程序既沒有終止,也沒有繼續運行。這是因為 Lock 鎖在同一線程內第一次加鎖之後還沒有釋放時,就進行了第二次 acquire 請求,導致無法執行 release ,所以鎖永遠無法釋放,這就是死鎖。如果我們使用 RLock 就能正常運行,不會發生死鎖的狀態。

在主線程中定義 Lock 鎖,然後上鎖,再創建一個子 線程t 運行 main 函數釋放鎖,結果正常輸出,說明主線程上的鎖,可由子線程解鎖。

如果把上面的鎖改為 RLock 則報錯。在實際中設計程序時,我們會將每個功能分別封裝成一個函數,每個函數中都可能會有臨界區域,所以就需要用到 RLock 。

一句話總結就是 Lock 不能套娃, RLock 可以套娃; Lock 可以由其他線程中的鎖進行操作, RLock 只能由本線程進行操作。

『捌』 python threading是什麼庫

Python通過兩個標准庫thread和threading提供對線程的支持。thread提供了低級別的、原始的線程以及一個簡單的鎖。threading模塊不僅提供了thread類,還提供了各種同步機制

熱點內容
手機版伺服器生存有什麼好玩的服務 發布:2025-07-14 01:49:45 瀏覽:209
銳龍3代編程 發布:2025-07-14 01:48:22 瀏覽:967
配置管理需要會什麼 發布:2025-07-14 01:35:35 瀏覽:372
去除頭條中的緩存 發布:2025-07-14 01:27:38 瀏覽:783
php開啟錯誤 發布:2025-07-14 01:16:49 瀏覽:998
esp資料庫 發布:2025-07-14 01:16:44 瀏覽:980
python查找文件路徑 發布:2025-07-14 01:16:03 瀏覽:514
phpapachetomcat 發布:2025-07-14 01:08:41 瀏覽:123
伺服器運維看什麼書 發布:2025-07-14 01:07:32 瀏覽:988
密碼器動態密碼怎麼弄 發布:2025-07-14 00:44:27 瀏覽:386