當前位置:首頁 » 編程語言 » mutexpython

mutexpython

發布時間: 2023-02-05 15:33:55

python 多線程 改變變數需要加鎖么

python的鎖可以獨立提取出來

1
2
3
4
5
6
7
8

mutex = threading.Lock()
#鎖的使用
#創建鎖
mutex = threading.Lock()
#鎖定
mutex.acquire([timeout])
#釋放
mutex.release()

概念
好幾個人問我給資源加鎖是怎麼回事,其實並不是給資源加鎖, 而是用鎖去鎖定資源,你可以定義多個鎖, 像下面的代碼, 當你需要獨占某一資源時,任何一個鎖都可以鎖這個資源
就好比你用不同的鎖都可以把相同的一個門鎖住是一個道理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import threading
import time

counter = 0
counter_lock = threading.Lock() #只是定義一個鎖,並不是給資源加鎖,你可以定義多個鎖,像下兩行代碼,當你需要佔用這個資源時,任何一個鎖都可以鎖這個資源
counter_lock2 = threading.Lock()
counter_lock3 = threading.Lock()

#可以使用上邊三個鎖的任何一個來鎖定資源

class MyThread(threading.Thread):#使用類定義thread,繼承threading.Thread
def __init__(self,name):
threading.Thread.__init__(self)
self.name = "Thread-" + str(name)
def run(self): #run函數必須實現
global counter,counter_lock #多線程是共享資源的,使用全局變數
time.sleep(1);
if counter_lock.acquire(): #當需要獨佔counter資源時,必須先鎖定,這個鎖可以是任意的一個鎖,可以使用上邊定義的3個鎖中的任意一個
counter += 1
print "I am %s, set counter:%s" % (self.name,counter)
counter_lock.release() #使用完counter資源必須要將這個鎖打開,讓其他線程使用

if __name__ == "__main__":
for i in xrange(1,101):
my_thread = MyThread(i)
my_thread.start()

線程不安全:
最普通的一個多線程小例子。我一筆帶過地講一講,我創建了一個繼承Thread類的子類MyThread,作為我們的線程啟動類。按照規定,重寫Thread的run方法,我們的線程啟動起來後會自動調用該方法。於是我首先創建了10個線程,並將其加入列表中。再使用一個for循環,開啟每個線程。在使用一個for循環,調用join方法等待所有線程結束才退出主線程。
這段代碼看似簡單,但實際上隱藏著一個很大的問題,只是在這里沒有體現出來。你真的以為我創建了10個線程,並按順序調用了這10個線程,每個線程為n增加了1.實際上,有可能是A線程執行了n++,再C線程執行了n++,再B線程執行n++。
這里涉及到一個「鎖」的問題,如果有多個線程同時操作一個對象,如果沒有很好地保護該對象,會造成程序結果的不可預期(比如我們在每個線程的run方法中加入一個time.sleep(1),並同時輸出線程名稱,則我們會發現,輸出會亂七八糟。因為可能我們的一個print語句只列印出一半的字元,這個線程就被暫停,執行另一個去了,所以我們看到的結果很亂),這種現象叫做「線程不安全」

線程鎖:
於是,Threading模塊為我們提供了一個類,Threading.Lock,鎖。我們創建一個該類對象,在線程函數執行前,「搶占」該鎖,執行完成後,「釋放」該鎖,則我們確保了每次只有一個線程佔有該鎖。這時候對一個公共的對象進行操作,則不會發生線程不安全的現象了。
於是,我們把代碼更改如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

# coding : uft-8
__author__ = 'Phtih0n'
import threading, time
class MyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
global n, lock
time.sleep(1)
if lock.acquire():
print n , self.name
n += 1
lock.release()
if "__main__" == __name__:
n = 1
ThreadList = []
lock = threading.Lock()
for i in range(1, 200):
t = MyThread()
ThreadList.append(t)
for t in ThreadList:
t.start()
for t in ThreadList:
t.join()

1
2
3
4
5
6
7
8
9
10
11

1 Thread-2
2 Thread-3
3 Thread-4
4 Thread-6
5 Thread-7
6 Thread-1
7 Thread-8
8 Thread-9
9 Thread-5

Process finished with exit code 0


我們看到,我們先建立了一個threading.Lock類對象lock,在run方法里,我們使用lock.acquire()獲得了這個鎖。此時,其他的線程就無法再獲得該鎖了,他們就會阻塞在「if lock.acquire()」這里,直到鎖被另一個線程釋放:lock.release()。
所以,if語句中的內容就是一塊完整的代碼,不會再存在執行了一半就暫停去執行別的線程的情況。所以最後結果是整齊的。
就如同在java中,我們使用synchronized關鍵字修飾一個方法,目的一樣,讓某段代碼被一個線程執行時,不會打斷跳到另一個線程中。
這是多線程佔用一個公共對象時候的情況。如果多個線程要調用多個現象,而A線程調用A鎖佔用了A對象,B線程調用了B鎖佔用了B對象,A線程不能調用B對象,B線程不能調用A對象,於是一直等待。這就造成了線程「死鎖」。
Threading模塊中,也有一個類,RLock,稱之為可重入鎖。該鎖對象內部維護著一個Lock和一個counter對象。counter對象記錄了acquire的次數,使得資源可以被多次require。最後,當所有RLock被release後,其他線程才能獲取資源。在同一個線程中,RLock.acquire可以被多次調用,利用該特性,可以解決部分死鎖問題。

⑵ python多線程全局變數和鎖

1.python中數據類型,int,float,復數,字元,元組,做全局變數時需要在函數裡面用global申明變數,才能對變數進行操作。

而,對象,列表,詞典,不需要聲明,直接就是全局的。

2.線程鎖mutex=threading.Lock()

創建後就是全局的。線程調用函數可以直接在函數中使用。

mutex.acquire()開啟鎖

mutex=release()關閉鎖

要注意,死鎖的情況發生。

注意運行效率的變化:

正常1秒,完成56997921

加鎖之後,1秒只運行了531187,相差10倍多。

3.繼承.threading.Thread的類,無法調用__init__函數,無法在創建對象時初始化新建的屬性。

4.線程在cpu的執行,有隨機性

5. 新建線程時,需要傳參數時,args是一個元組,如果只有一個參數,一定後面要加一個,符號。不能只有一個參數否則線程會報創建參數錯誤。threading.Thread(target=fuc,args=(arg,))

⑶ 深入解析Python中的線程同步方法

深入解析Python中的線程同步方法
同步訪問共享資源
在使用線程的時候,一個很重要的問題是要避免多個線程對同一變數或其它資源的訪問沖突。一旦你稍不留神,重疊訪問、在多個線程中修改(共享資源)等這些操作會導致各種各樣的問題;更嚴重的是,這些問題一般只會在比較極端(比如高並發、生產伺服器、甚至在性能更好的硬體設備上)的情況下才會出現。
比如有這樣一個情況:需要追蹤對一事件處理的次數
counter = 0

def process_item(item):
global counter
... do something with item ...
counter += 1
如果你在多個線程中同時調用這個函數,你會發現counter的值不是那麼准確。在大多數情況下它是對的,但有時它會比實際的少幾個。
出現這種情況的原因是,計數增加操作實際上分三步執行:
解釋器獲取counter的當前值計算新值將計算的新值回寫counter變數
考慮一下這種情況:在當前線程獲取到counter值後,另一個線程搶佔到了CPU,然後同樣也獲取到了counter值,並進一步將counter值重新計算並完成回寫;之後時間片重新輪到當前線程(這里僅作標識區分,並非實際當前),此時當前線程獲取到counter值還是原來的,完成後續兩步操作後counter的值實際只加上1。
另一種常見情況是訪問不完整或不一致狀態。這類情況主要發生在一個線程正在初始化或更新數據時,另一個進程卻嘗試讀取正在更改的數據。
原子操作
實現對共享變數或其它資源的同步訪問最簡單的方法是依靠解釋器的原子操作。原子操作是在一步完成執行的操作,在這一步中其它線程無法獲得該共享資源。
通常情況下,這種同步方法只對那些只由單個核心數據類型組成的共享資源有效,譬如,字元串變數、數字、列表或者字典等。下面是幾個線程安全的操作:
讀或者替換一個實例屬性讀或者替換一個全局變數從列表中獲取一項元素原位修改一個列表(例如:使用append增加一個列表項)從字典中獲取一項元素原位修改一個字典(例如:增加一個字典項、調用clear方法)
注意,上面提到過,對一個變數或者屬性進行讀操作,然後修改它,最終將其回寫不是線程安全的。因為另外一個線程會在這個線程讀完卻沒有修改或回寫完成之前更改這個共享變數/屬性。

鎖是Python的threading模塊提供的最基本的同步機制。在任一時刻,一個鎖對象可能被一個線程獲取,或者不被任何線程獲取。如果一個線程嘗試去獲取一個已經被另一個線程獲取到的鎖對象,那麼這個想要獲取鎖對象的線程只能暫時終止執行直到鎖對象被另一個線程釋放掉。
鎖通常被用來實現對共享資源的同步訪問。為每一個共享資源創建一個Lock對象,當你需要訪問該資源時,調用acquire方法來獲取鎖對象(如果其它線程已經獲得了該鎖,則當前線程需等待其被釋放),待資源訪問完後,再調用release方法釋放鎖:
lock = Lock()

lock.acquire() #: will block if lock is already held
... access shared resource
lock.release()

注意,即使在訪問共享資源的過程中出錯了也應該釋放鎖,可以用try-finally來達到這一目的:
lock.acquire()
try:
... access shared resource
finally:
lock.release() #: release lock, no matter what

在Python 2.5及以後的版本中,你可以使用with語句。在使用鎖的時候,with語句會在進入語句塊之前自動的獲取到該鎖對象,然後在語句塊執行完成後自動釋放掉鎖:
from __future__ import with_statement #: 2.5 only

with lock:
... access shared resource

acquire方法帶一個可選的等待標識,它可用於設定當有其它線程佔有鎖時是否阻塞。如果你將其值設為False,那麼acquire方法將不再阻塞,只是如果該鎖被佔有時它會返回False:
if not lock.acquire(False):
... 鎖資源失敗
else:
try:
... access shared resource
finally:
lock.release()

你可以使用locked方法來檢查一個鎖對象是否已被獲取,注意不能用該方法來判斷調用acquire方法時是否會阻塞,因為在locked方法調用完成到下一條語句(比如acquire)執行之間該鎖有可能被其它線程佔有。
if not lock.locked():
#: 其它線程可能在下一條語句執行之前佔有了該鎖
lock.acquire() #: 可能會阻塞

簡單鎖的缺點
標準的鎖對象並不關心當前是哪個線程佔有了該鎖;如果該鎖已經被佔有了,那麼任何其它嘗試獲取該鎖的線程都會被阻塞,即使是佔有鎖的這個線程。考慮一下下面這個例子:
lock = threading.Lock()

def get_first_part():
lock.acquire()
try:
... 從共享對象中獲取第一部分數據
finally:
lock.release()
return data

def get_second_part():
lock.acquire()
try:
... 從共享對象中獲取第二部分數據
finally:
lock.release()
return data

示例中,我們有一個共享資源,有兩個分別取這個共享資源第一部分和第二部分的函數。兩個訪問函數都使用了鎖來確保在獲取數據時沒有其它線程修改對應的共享數據。
現在,如果我們想添加第三個函數來獲取兩個部分的數據,我們將會陷入泥潭。一個簡單的方法是依次調用這兩個函數,然後返回結合的結果:

def get_both_parts():
first = get_first_part()
seconde = get_second_part()
return first, second

這里的問題是,如有某個線程在兩個函數調用之間修改了共享資源,那麼我們最終會得到不一致的數據。最明顯的解決方法是在這個函數中也使用lock:
def get_both_parts():
lock.acquire()
try:
first = get_first_part()
seconde = get_second_part()
finally:
lock.release()
return first, second

然而,這是不可行的。裡面的兩個訪問函數將會阻塞,因為外層語句已經佔有了該鎖。為了解決這個問題,你可以通過使用標記在訪問函數中讓外層語句釋放鎖,但這樣容易失去控制並導致出錯。幸運的是,threading模塊包含了一個更加實用的鎖實現:re-entrant鎖。
Re-Entrant Locks (RLock)

RLock類是簡單鎖的另一個版本,它的特點在於,同一個鎖對象只有在被其它的線程佔有時嘗試獲取才會發生阻塞;而簡單鎖在同一個線程中同時只能被佔有一次。如果當前線程已經佔有了某個RLock鎖對象,那麼當前線程仍能再次獲取到該RLock鎖對象。
lock = threading.Lock()
lock.acquire()
lock.acquire() #: 這里將會阻塞

lock = threading.RLock()
lock.acquire()
lock.acquire() #: 這里不會發生阻塞

RLock的主要作用是解決嵌套訪問共享資源的問題,就像前面描述的示例。要想解決前面示例中的問題,我們只需要將Lock換為RLock對象,這樣嵌套調用也會OK.
lock = threading.RLock()

def get_first_part():
... see above

def get_second_part():
... see above

def get_both_parts():
... see above

這樣既可以單獨訪問兩部分數據也可以一次訪問兩部分數據而不會被鎖阻塞或者獲得不一致的數據。
注意RLock會追蹤遞歸層級,因此記得在acquire後進行release操作。
Semaphores

信號量是一個更高級的鎖機制。信號量內部有一個計數器而不像鎖對象內部有鎖標識,而且只有當佔用信號量的線程數超過信號量時線程才阻塞。這允許了多個線程可以同時訪問相同的代碼區。
semaphore = threading.BoundedSemaphore()
semaphore.acquire() #: counter減小

... 訪問共享資源
semaphore.release() #: counter增大

當信號量被獲取的時候,計數器減小;當信號量被釋放的時候,計數器增大。當獲取信號量的時候,如果計數器值為0,則該進程將阻塞。當某一信號量被釋放,counter值增加為1時,被阻塞的線程(如果有的話)中會有一個得以繼續運行。
信號量通常被用來限制對容量有限的資源的訪問,比如一個網路連接或者資料庫伺服器。在這類場景中,只需要將計數器初始化為最大值,信號量的實現將為你完成剩下的事情。
max_connections = 10

semaphore = threading.BoundedSemaphore(max_connections)

如果你不傳任何初始化參數,計數器的值會被初始化為1.
Python的threading模塊提供了兩種信號量實現。Semaphore類提供了一個無限大小的信號量,你可以調用release任意次來增大計數器的值。為了避免錯誤出現,最好使用BoundedSemaphore類,這樣當你調用release的次數大於acquire次數時程序會出錯提醒。
線程同步

鎖可以用在線程間的同步上。threading模塊包含了一些用於線程間同步的類。
Events

一個事件是一個簡單的同步對象,事件表示為一個內部標識(internal flag),線程等待這個標識被其它線程設定,或者自己設定、清除這個標識。
event = threading.Event()

#: 一個客戶端線程等待flag被設定
event.wait()

#: 服務端線程設置或者清除flag
event.set()
event.clear()

一旦標識被設定,wait方法就不做任何處理(不會阻塞),當標識被清除時,wait將被阻塞直至其被重新設定。任意數量的線程可能會等待同一個事件。
Conditions

條件是事件對象的高級版本。條件表現為程序中的某種狀態改變,線程可以等待給定條件或者條件發生的信號。
下面是一個簡單的生產者/消費者實例。首先你需要創建一個條件對象:

#: 表示一個資源的附屬項
condition = threading.Condition()
生產者線程在通知消費者線程有新生成資源之前需要獲得條件:
#: 生產者線程
... 生產資源項
condition.acquire()
... 將資源項添加到資源中
condition.notify() #: 發出有可用資源的信號
condition.release()
消費者必須獲取條件(以及相關聯的鎖),然後嘗試從資源中獲取資源項:
#: 消費者線程
condition.acquire()
while True:
...從資源中獲取資源項
if item:
break
condition.wait() #: 休眠,直至有新的資源
condition.release()
... 處理資源

wait方法釋放了鎖,然後將當前線程阻塞,直到有其它線程調用了同一條件對象的notify或者notifyAll方法,然後又重新拿到鎖。如果同時有多個線程在等待,那麼notify方法只會喚醒其中的一個線程,而notifyAll則會喚醒全部線程。
為了避免在wait方法處阻塞,你可以傳入一個超時參數,一個以秒為單位的浮點數。如果設置了超時參數,wait將會在指定時間返回,即使notify沒被調用。一旦使用了超時,你必須檢查資源來確定發生了什麼。
注意,條件對象關聯著一個鎖,你必須在訪問條件之前獲取這個鎖;同樣的,你必須在完成對條件的訪問時釋放這個鎖。在生產代碼中,你應該使用try-finally或者with.
可以通過將鎖對象作為條件構造函數的參數來讓條件關聯一個已經存在的鎖,這可以實現多個條件公用一個資源:
lock = threading.RLock()
condition_1 = threading.Condition(lock)
condition_2 = threading.Condition(lock)

互斥鎖同步
我們先來看一個例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import time, threading

# 假定這是你的銀行存款:
balance = 0
muxlock = threading.Lock()

def change_it(n):
# 先存後取,結果應該為0:
global balance
balance = balance + n
balance = balance - n

def run_thread(n):
# 循環次數一旦多起來,最後的數字就變成非0
for i in range(100000):
change_it(n)

t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t3 = threading.Thread(target=run_thread, args=(9,))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print balance

結果 :

[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
61
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
24

上面的例子引出了多線程編程的最常見問題:數據共享。當多個線程都修改某一個共享數據的時候,需要進行同步控制。
線程同步能夠保證多個線程安全訪問競爭資源,最簡單的同步機制是引入互斥鎖。互斥鎖為資源引入一個狀態:鎖定/非鎖定。某個線程要更改共享數據時,先將其鎖定,此時資源的狀態為「鎖定」,其他線程不能更改;直到該線程釋放資源,將資源的狀態變成「非鎖定」,其他的線程才能再次鎖定該資源。互斥鎖保證了每次只有一個線程進行寫入操作,從而保證了多線程情況下數據的正確性。

threading模塊中定義了Lock類,可以方便的處理鎖定:
#創建鎖mutex = threading.Lock()
#鎖定mutex.acquire([timeout])
#釋放mutex.release()

其中,鎖定方法acquire可以有一個超時時間的可選參數timeout。如果設定了timeout,則在超時後通過返回值可以判斷是否得到了鎖,從而可以進行一些其他的處理。
使用互斥鎖實現上面的例子的代碼如下:
balance = 0
muxlock = threading.Lock()

def change_it(n):
# 獲取鎖,確保只有一個線程操作這個數
muxlock.acquire()
global balance
balance = balance + n
balance = balance - n
# 釋放鎖,給其他被阻塞的線程繼續操作
muxlock.release()

def run_thread(n):
for i in range(10000):
change_it(n)

加鎖後的結果,就能確保數據正確:
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0

⑷ python 程序如何防止生成的EXE重復執行

需要修改python代碼
用lock 示例代碼(網上搜的)
from threading import Thread, Lock

mutex = Lock()def processData(data):
mutex.acquire() try: print('Do some stuff') finally:
mutex.release()while True:
t = Thread(target = processData, args = (some_data,))
t.start()

⑸ python怎麼讓進程暫停

您的意思是要將進程掛起(Suspend) 而非 阻塞(Block)
如果用sleep() 進程將阻塞
假設進程下有兩個線程 那麼這兩個線程會繼續運行
要使進程掛起 可以考慮使用psutil
import psutil
p = psutil.Process(pid)
p.suspend() #掛起進程
p.resume() #恢復進程

為了證明效果 我寫了一個簡單的進程Process
其下有兩個線程 讀者Reader 和 寫者Writer(簡單的讀者寫者問題)

Process:
import threading

from time import ctime, sleep
import ThreadInReadAndWriteProblem
import multiprocessing
import os

class Process(multiprocessing.Process):

def __init__(self):
multiprocessing.Process.__init__(self) #手動實現父類
pid = os.getpid()

def run(self):
print '當前運行進程PID : %s ' %self.pid #子線程的id與父進程的pid相同 屬於 同一個進程

for i in range(0,5):
r = ThreadInReadAndWriteProblem.Reader()
w = ThreadInReadAndWriteProblem.Writer()
w.start()
r.start()

print '進程阻塞'
sleep(10) #總共運行時間10秒

Reader&Writer
import threading
from time import ctime, sleep
import os

mutex = threading.Lock() #互斥鎖
mutex_readercount = threading.Lock() #計數時的互斥 計算當前正在讀的數目
readerCount = 0 number = 0

#不滿足條件的 進入阻塞狀態

class Reader(threading.Thread): #讀者
def __init__(self):
threading.Thread.__init__(self) #繼承父類構造函數

def run(self):
global mutex
global readerCount
#print '線程PID: %s ' %os.getpid()
while True:
mutex_readercount.acquire()
readerCount +=1
if readerCount == 1:
print '讀者進程等待中,編號%s' %(self.name)
mutex.acquire() == False # 第一個需要申請

mutex_readercount.release()
print '開始讀 , 讀者編號 %s ,現在時間是 %s' %(self.name,ctime())
sleep(2)
print '完成讀 , 讀者編號 %s , 現在時間是 %s' %(self.name,ctime())

mutex_readercount.acquire()
readerCount -= 1
if readerCount == 0: #所有讀者均完成
print '最後一個讀者完成讀 '
mutex.release()
mutex_readercount.release()

class Writer(threading.Thread): #寫者
def __init__(self):
threading.Thread.__init__(self)

def run(self):
global mutex
global writerCount
#print '線程PID: %s' %os.getpid()
while True:
print '寫者進程等待中 編號: %s' %(self.name)
mutex.acquire()
print '開始寫 編號:%s 現在時間是: %s ' %(self.name,ctime())
sleep(5)
print '結束寫 編號: %s 現在時間是 %s' %(self.name,ctime())
mutex.release()

測試程序
import ThreadInReadAndWriteProblem
import
import psutil
import Scheler
from time import ctime, sleep

def main():
p = .Process()
p.start()

sleep(3)

stop(p.pid)
print '進程掛起 %s' %ctime()
sleep(5)

wake(p.pid)
print '喚醒進程 %s' %ctime()

def stop(pid):
print '進程暫停 進程編號 %s ' %(pid)
p = psutil.Process(pid)
p.suspend()

def wake(pid):
print '進程恢復 進程編號 %s ' %(pid)
p = psutil.Process(pid)
p.resume()

if __name__ == '__main__':
main()

結果:
當前運行進程PID : 3096
寫者進程等待中 編號: Thread-2
開始寫 編號:Thread-2 現在時間是: Mon Nov 30 21:12:12 2015
讀者進程等待中,編號Thread-1
寫者進程等待中 編號: Thread-4
進程阻塞
寫者進程等待中 編號: Thread-6
寫者進程等待中 編號: Thread-8
寫者進程等待中 編號: Thread-10
進程暫停 進程編號 3096
進程掛起 Mon Nov 30 21:12:15 2015
進程恢復 進程編號 3096
喚醒進程 Mon Nov 30 21:12:20 2015
結束寫 編號: Thread-2 現在時間是 Mon Nov 30 21:12:20 2015
寫者進程等待中 編號: Thread-2
開始讀 , 讀者編號 Thread-1 ,現在時間是 Mon Nov 30 21:12:20 2015

開始讀 , 讀者編號 Thread-3 ,現在時間是 Mon Nov 30 21:12:20 2015
開始讀 , 讀者編號 Thread-5 ,現在時間是 Mon Nov 30 21:12:20 2015
開始讀 , 讀者編號 Thread-7 ,現在時間是 Mon Nov 30 21:12:20 2015
開始讀 , 讀者編號 Thread-9 ,現在時間是 Mon Nov 30 21:12:20 2015
完成讀 , 讀者編號 Thread-1 , 現在時間是 Mon Nov 30 21:12:22 2015
完成讀 , 讀者編號 Thread-3 , 現在時間是 Mon Nov 30 21:12:22 2015
完成讀 , 讀者編號 Thread-5 , 現在時間是 Mon Nov 30 21:12:22 2015
完成讀 , 讀者編號 Thread-7 , 現在時間是 Mon Nov 30 21:12:22 2015

⑹ Python基礎:全局解釋器所GIL,

首先需要明確的一點是GIL並不是Python的特性,它是在實現Python解析器(CPython)時所引入的一個概念。就好比C++是一套語言(語法)標准,但是可以用不同的編譯器來編譯成可執行代碼。有名的編譯器例如GCC,INTEL C++,Visual C++等。Python也一樣,同樣一段代碼可以通過CPython,PyPy,Psyco等不同的Python執行環境來執行。像其中的JPython就沒有GIL。然而因為CPython是大部分環境下默認的Python執行環境。所以在很多人的概念里CPython就是Python,也就想當然的把GIL歸結為Python語言的缺陷。所以這里要先明確一點:GIL並不是Python的特性,Python完全可以不依賴於GIL
那麼CPython實現中的GIL又是什麼呢?GIL全稱Global Interpreter Lock為了避免誤導,我們還是來看一下官方給出的解釋:
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython』s memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.)
好吧,是不是看上去很糟糕?一個防止多線程並發執行機器碼的一個Mutex,乍一看就是個BUG般存在的全局鎖嘛!別急,我們下面慢慢的分析。
為什麼會有GIL
由於物理上得限制,各CPU廠商在核心頻率上的比賽已經被多核所取代。為了更有效的利用多核處理器的性能,就出現了多線程的編程方式,而隨之帶來的就是線程間數據一致性和狀態同步的困難。即使在CPU內部的Cache也不例外,為了有效解決多份緩存之間的數據同步時各廠商花費了不少心思,也不可避免的帶來了一定的性能損失。
Python當然也逃不開,為了利用多核,Python開始支持多線程。而解決多線程之間數據完整性和狀態同步的最簡單方法自然就是加鎖。 於是有了GIL這把超級大鎖,而當越來越多的代碼庫開發者接受了這種設定後,他們開始大量依賴這種特性(即默認python內部對象是thread-safe的,無需在實現時考慮額外的內存鎖和同步操作)。
慢慢的這種實現方式被發現是蛋疼且低效的。但當大家試圖去拆分和去除GIL的時候,發現大量庫代碼開發者已經重度依賴GIL而非常難以去除了。有多難?做個類比,像MySQL這樣的「小項目」為了把Buffer Pool Mutex這把大鎖拆分成各個小鎖也花了從5.5到5.6再到5.7多個大版為期近5年的時間,並且仍在繼續。MySQL這個背後有公司支持且有固定開發團隊的產品走的如此艱難,那又更何況Python這樣核心開發和代碼貢獻者高度社區化的團隊呢?
所以簡單的說GIL的存在更多的是歷史原因。如果推到重來,多線程的問題依然還是要面對,但是至少會比目前GIL這種方式會更優雅。
GIL的影響
從上文的介紹和官方的定義來看,GIL無疑就是一把全局排他鎖。毫無疑問全局鎖的存在會對多線程的效率有不小影響。甚至就幾乎等於Python是個單線程的程序。 那麼讀者就會說了,全局鎖只要釋放的勤快效率也不會差啊。只要在進行耗時的IO操作的時候,能釋放GIL,這樣也還是可以提升運行效率的嘛。或者說再差也不會比單線程的效率差吧。理論上是這樣,而實際上呢?Python比你想的更糟。
下面我們就對比下Python在多線程和單線程下得效率對比。測試方法很簡單,一個循環1億次的計數器函數。一個通過單線程執行兩次,一個多線程執行。最後比較執行總時間。測試環境為雙核的Mac pro。註:為了減少線程庫本身性能損耗對測試結果帶來的影響,這里單線程的代碼同樣使用了線程。只是順序的執行兩次,模擬單線程。

⑺ python mutex怎麼釋放

python 怎麼在循環中釋放內存 #include"stdio.h" main() { char st[15]; printf("input string:\n"); gets(st); puts(st); } 可以看出當輸入的字元串中含有空格時,輸出仍為全部字元串。說明gets函數並不以空格作為字元串輸入結束的標志

⑻ python線程怎麼銷毀

【Python】線程的創建、執行、互斥、同步、銷毀
還是《【Java】利用synchronized(this)完成線程的臨界區》(點擊打開鏈接)、《【Linux】線程互斥》(點擊打開鏈接)、《【C++】Windows線程的創建、執行、互斥、同步、銷毀》(點擊打開鏈接)中的設置多個線程對一個ticket進行自減操作,用來說明Python中多線程的運用,涉及的創建、執行、互斥、同步、銷毀問題。
運行結果如下,還是差不多,運行三次,每次的運行結果,每個線程最終的得票結果是不同的,但是4個線程最終「得票」的總和為 ticket 最初設置的值為100000,證明這4個線程成功實現了互斥。
雖然每次運行結果是不同,但是可以看得出每次運行結果大抵上是平均的。貌似Python對線程作系統資源的處理,比Java要好。
然而,Python總要實現多線程,代碼並不像想像中簡單,具體如下:
[python] view plain print?在CODE上查看代碼片派生到我的代碼片
# -*-coding:utf-8-*-
import threading;
mutex_lock = threading.RLock(); # 互斥鎖的聲明
ticket = 100000; # 總票數
# 用於統計各個線程的得票數
ticket_for_thread1 = 0;
ticket_for_thread2 = 0;
ticket_for_thread3 = 0;
ticket_for_thread4 = 0;
class myThread(threading.Thread): # 線程處理函數
def __init__(self, name):
threading.Thread.__init__(self); # 線程類必須的初始化
self.thread_name = name; # 將傳遞過來的name構造到類中的name
def run(self):
# 聲明在類中使用全局變數
global mutex_lock;
global ticket;
global ticket_for_thread1;
global ticket_for_thread2;
global ticket_for_thread3;
global ticket_for_thread4;
while 1:
mutex_lock.acquire(); # 臨界區開始,互斥的開始
# 僅能有一個線程↓↓↓↓↓↓↓↓↓↓↓↓
if ticket > 0:
ticket -= 1;
# 統計哪到線程拿到票
print "%s搶到了票!票還剩餘:%d。" % (self.thread_name, ticket);
if self.thread_name == "線程1":
ticket_for_thread1 += 1;
elif self.thread_name == "線程2":
ticket_for_thread2 += 1;
elif self.thread_name == "線程3":
ticket_for_thread3 += 1;
elif self.thread_name == "線程4":
ticket_for_thread4 += 1;
else:
break;
# 僅能有一個線程↑↑↑↑↑↑↑↑↑↑↑↑
mutex_lock.release(); # 臨界區結束,互斥的結束
mutex_lock.release(); # python在線程死亡的時候,不會清理已存在在線程函數的互斥鎖,必須程序猿自己主動清理
print "%s被銷毀了!" % (self.thread_name);
# 初始化線程
thread1 = myThread("線程1");
thread2 = myThread("線程2");
thread3 = myThread("線程3");
thread4 = myThread("線程4");
# 開啟線程
thread1.start();
thread2.start();
thread3.start();
thread4.start();
# 等到線程1、2、3、4結束才進行以下的代碼(同步)
thread1.join();
thread2.join();
thread3.join();
thread4.join();
print "票都搶光了,大家都散了吧!";
print "=========得票統計=========";
print "線程1:%d張" % (ticket_for_thread1);
print "線程2:%d張" % (ticket_for_thread2);
print "線程3:%d張" % (ticket_for_thread3);
print "線程4:%d張" % (ticket_for_thread4);
1、從上面的代碼可以看出,在Python2.7中要使用線程必須使用threading而不是古老的thread模塊。
如果你像網上部分遺留依舊的文章一樣,在Python2.7中使用thread來實現線程,至少在Eclipse的Pydev中會報錯:sys.excepthook is missing,lost sys.stderr如下圖所示:
所以必須使用現時Python建議使用的threading。
2、與其它編程語言類似,聲明一個互斥鎖,與一系列的得票數。之後,與Java同樣地,Python實現線程的函數,是要重寫一個類。而類中使用全局變數,則與同為腳本語言的php一樣《【php】global的使用與php的全局變數》(點擊打開鏈接),要用global才能使用這個全局變數,而不是C/C++可以直接使用。
3、需要注意的,Python需要在線程跑完class myThread(threading.Thread)這個類的def run(self)方法之前,必須自己手動清理互斥鎖,它不會像其它編程語言那樣,說線程跑完def run(self)方法,會自然而然地清理該線程被創建的互斥鎖。如果沒有最後一句手動清理互斥鎖,則會造成死鎖。
4、最後與其它編程語言一樣了,利用線程的join方法可以等待這個線程跑完def run(self)方法中的所有代碼,才執行之後的代碼,實現同步。否則主函數中的代碼,相當於與父線程。主函數開啟的線程,相當於其子線程,互不影響的。

⑼ python 什麼是全局解釋器鎖gil

什麼是Python全局解釋器鎖(GIL)?
每個CPU在同一時間只能執行一個線程,那麼其他的線程就必須等待該線程的全局解釋器,使用權消失後才能使用全局解釋器,即使多個線程直接不會相互影響在同一個進程下也只有一個線程使用CPU,這樣的機制稱為全局解釋器鎖(GIL)。GIL的設計簡化了CPython的實現,使得對象模型包括關鍵的內建類型,如:字典等,都是隱含的,可以並發訪問的,鎖住全局解釋器使得比較容易的實現對多線程的支持,但也損失了多處理器主機的並行計算能力。
Python全局解釋器鎖(GIL)是一種互斥鎖或鎖,僅允許一個線程持有Python解釋器的控制權。
全局解釋器鎖的好處
1、避免了大量的加鎖解鎖的好處;
2、使數據更加安全,解決多線程間的數據完整性和狀態同步。
全局解釋器鎖的劣勢
多核處理器退化成單核處理器,只能並發不能並行。
Python全局解釋器鎖(GIL)的作用
多線程情況下必須存在資源的競爭,GIL是為了保證在解釋器級別的線程唯一使用共享資源(cpu)。

⑽ python多線程更改臨界資源的時候有必要加鎖嗎

mutex = threading.Lock()
#鎖的使用
#創建鎖
mutex = threading.Lock()
#鎖定
mutex.acquire([timeout])
#釋放
mutex.release()

概念
好幾個人問我給資源加鎖是怎麼回事,其實並不是給資源加鎖, 而是用鎖去鎖定資源,你可以定義多個鎖, 像下面的代碼, 當你需要獨占某一資源時,任何一個鎖都可以鎖這個資源
就好比你用不同的鎖都可以把相同的一個門鎖住是一個道理

熱點內容
機械硬碟的存儲速度優於固態硬碟 發布:2024-04-26 16:02:13 瀏覽:117
訊捷壓縮器 發布:2024-04-26 16:02:08 瀏覽:268
安卓藍牙耳機丟了如何找回 發布:2024-04-26 15:36:13 瀏覽:540
win7最近打開文件夾 發布:2024-04-26 15:23:00 瀏覽:555
演算法筆談 發布:2024-04-26 15:14:34 瀏覽:284
技算計編程 發布:2024-04-26 14:43:42 瀏覽:140
開普票密碼區和備注是什麼意思 發布:2024-04-26 14:43:31 瀏覽:852
吃雞安卓和蘋果如何加好友 發布:2024-04-26 14:39:10 瀏覽:836
centos編譯命令 發布:2024-04-26 14:18:04 瀏覽:654
網路編程畢設 發布:2024-04-26 14:13:10 瀏覽:208