當前位置:首頁 » 編程語言 » python時間序列包

python時間序列包

發布時間: 2023-03-05 15:50:26

⑴ PyFlux庫函數是什麼

PyFlux是python編程語言的開源時間序列庫。PyFlux是Python中為處理時間序列問題而創建的開源庫。該庫有一系列極好的時間序列模型,包括但不限於 ARIMA、 GARCH 和 VAR 模型。簡而言之,PyFlux提供了一個時間序列建模的概率方法。

PyFlux允許使用時間序列建模,並且已經實現了像GARCH這樣的現代時間序列模型。

時間序列研究是統計學和計量經濟學的一個子領域,目標可以描述時間序列如何表現(以潛在的因素或興趣的特徵來表示),也可以藉此預測未來的行為。

(1)python時間序列包擴展閱讀:

Python擁有一個強大的標准庫。Python語言的核心只包含數字、字元串、列表、字典、文件等常見類型和函數,而由Python標准庫提供了系統管理、網路通信、文本處理、資料庫介面、圖形系統、XML處理等額外的功能。Python標准庫命名介面清晰、文檔良好,很容易學習和使用。

Python標准庫的主要功能有:

文本處理,包含文本格式化、正則表達式匹配、文本差異計算與合並、Unicode支持,二進制數據處理等功能

文件處理,包含文件操作、創建臨時文件、文件壓縮與歸檔、操作配置文件等功能

操作系統功能,包含線程與進程支持、IO復用、日期與時間處理、調用系統函數、寫日記(logging)等功能

網路通信,包含網路套接字,SSL加密通信、非同步網路通信等功能

網路協議,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多種網路協議,並提供了編寫網路伺服器的框架

W3C格式支持,包含HTML,SGML,XML的處理

其它功能,包括國際化支持、數學運算、HASH、Tkinter等

⑵ python pandas 時間序列

不知道你要怎麼定義波峰波谷
不過最簡單的演算法波峰就是大於臨近兩點值的點,波谷就是小於臨近兩點值的點

foriinrange(1,len(a)-1):
if(a.loc[i,0]<a.loc[i+1,0]anda.loc[i,0]<a.loc[i-1,0]):
printi
寫個循環,類似這樣的
更復雜的那就麻煩了

⑶ 如何用python做輿情時間序列可視化

如何批量處理評論信息情感分析,並且在時間軸上可視化呈現?輿情分析並不難,讓我們用Python來實現它吧。
痛點
你是一家連鎖火鍋店的區域經理,很注重顧客對餐廳的評價。從前,你苦惱的是顧客不愛寫評價。最近因為餐廳火了,分店越來越多,寫評論的顧客也多了起來,於是你新的痛苦來了——評論太多了,讀不過來。
從我這兒,你了解到了情感分析這個好用的自動化工具,一下子覺得見到了曙光。
你從某知名點評網站上,找到了自己一家分店的頁面,讓助手把上面的評論和發布時間數據弄下來。因為助手不會用爬蟲,所以只能把評論從網頁上一條條復制粘貼到Excel里。下班的時候,才弄下來27條。(注意這里我們使用的是真實評論數據。為了避免對被評論商家造成困擾,統一將該餐廳的名稱替換為「A餐廳」。特此說明。)
好在你只是想做個試驗而已,將就了吧。你用我之前介紹的中文信息情感分析工具,依次得出了每一條評論的情感數值。剛開始做出結果的時候,你很興奮,覺得自己找到了輿情分析的終極利器。
可是美好的時光總是短暫的。很快你就發現,如果每一條評論都分別運行一次程序,用機器來做分析,還真是不如自己挨條去讀省事兒。
怎麼辦呢?
序列
辦法自然是有的。我們可以利用《貸還是不貸:如何用Python和機器學習幫你決策?》一文介紹過的數據框,一次性處理多個數據,提升效率。
但是這還不夠,我們還可以把情感分析的結果在時間序列上可視化出來。這樣你一眼就可以看見趨勢——近一段時間里,大家是對餐廳究竟是更滿意了,還是越來越不滿意呢?
我們人類最擅長處理的,就是圖像。因為漫長的進化史逼迫我們不斷提升對圖像快速准確的處理能力,否則就會被環境淘汰掉。因此才會有「一幅圖勝過千言萬語」的說法。
准備
首先,你需要安裝Anaconda套裝。詳細的流程步驟請參考《 如何用Python做詞雲 》一文。
助手好不容易做好的Excel文件restaurant-comments.xlsx,請從這里下載。
用Excel打開,如果一切正常,請將該文件移動到咱們的工作目錄demo下。
因為本例中我們需要對中文評論作分析,因此使用的軟體包為SnowNLP。情感分析的基本應用方法,請參考《如何用Python做情感分析?》。
到你的系統「終端」(macOS, Linux)或者「命令提示符」(Windows)下,進入我們的工作目錄demo,執行以下命令。
pip install snownlp
pip install ggplot

運行環境配置完畢。
在終端或者命令提示符下鍵入:
jupyter notebook

如果Jupyter Notebook正確運行,下面我們就可以開始編寫代碼了。
代碼
我們在Jupyter Notebook中新建一個Python 2筆記本,起名為time-series。
首先我們引入數據框分析工具Pandas,簡寫成pd以方便調用。
import pandas as pd

接著,讀入Excel數據文件:
df = pd.read_excel("restaurant-comments.xlsx")

我們看看讀入內容是否完整:
df.head()

結果如下:
注意這里的時間列。如果你的Excel文件里的時間格式跟此處一樣,包含了日期和時間,那麼Pandas會非常智能地幫你把它識別為時間格式,接著往下做就可以了。
反之,如果你獲取到的時間只精確到日期,例如"2017-04-20"這樣,那麼Pandas只會把它當做字元串,後面的時間序列分析無法使用字元串數據。解決辦法是在這里加入以下兩行代碼:
from dateutil import parser
df["date"] = df.date.apply(parser.parse)

這樣,你就獲得了正確的時間數據了。
確認數據完整無誤後,我們要進行情感分析了。先用第一行的評論內容做個小實驗。
text = df.comments.iloc[0]

然後我們調用SnowNLP情感分析工具。
from snownlp import SnowNLP
s = SnowNLP(text)

顯示一下SnowNLP的分析結果:
s.sentiments

結果為:
0.6331975099099649

情感分析數值可以正確計算。在此基礎上,我們需要定義函數,以便批量處理所有的評論信息。
def get_sentiment_cn(text):
s = SnowNLP(text) return s.sentiments

然後,我們利用Python裡面強大的apply語句,來一次性處理所有評論,並且將生成的情感數值在數據框裡面單獨存為一列,稱為sentiment。
df["sentiment"] = df.comments.apply(get_sentiment_cn)

我們看看情感分析結果:
df.head()

新的列sentiment已經生成。我們之前介紹過,SnowNLP的結果取值范圍在0到1之間,代表了情感分析結果為正面的可能性。通過觀察前幾條數據,我們發現點評網站上,顧客對這家分店評價總體上還是正面的,而且有的評論是非常積極的。
但是少量數據的觀察,可能造成我們結論的偏頗。我們來把所有的情感分析結果數值做一下平均。使用mean()函數即可。
df.sentiment.mean()

結果為:
0.7114015318571119

結果數值超過0.7,整體上顧客對這家店的態度是正面的。
我們再來看看中位數值,使用的函數為median()。
df.sentiment.median()

結果為:
0.9563139038622388

我們發現了有趣的現象——中位數值不僅比平均值高,而且幾乎接近1(完全正面)。
這就意味著,大部分的評價一邊倒表示非常滿意。但是存在著少部分異常點,顯著拉低了平均值。
下面我們用情感的時間序列可視化功能,直觀查看這些異常點出現在什麼時間,以及它們的數值究竟有多低。
我們需要使用ggplot繪圖工具包。這個工具包原本只在R語言中提供,讓其他數據分析工具的用戶羨慕得流口水。幸好,後來它很快被移植到了Python平台。
我們從ggplot中引入繪圖函數,並且讓Jupyter Notebook可以直接顯示圖像。
%pylab inlinefrom ggplot import *

這里可能會報一些警告信息。沒有關系,不理會就是了。
下面我們繪制圖形。這里你可以輸入下面這一行語句。
ggplot(aes(x="date", y="sentiment"), data=df) + geom_point() + geom_line(color = 'blue') + scale_x_date(labels = date_format("%Y-%m-%d"))

你可以看到ggplot的繪圖語法是多麼簡潔和人性化。只需要告訴Python自己打算用哪個數據框,從中選擇哪列作為橫軸,哪列作為縱軸,先畫點,後連線,並且可以指定連線的顏色。然後,你需要讓X軸上的日期以何種格式顯示出來。所有的參數設定跟自然語言很相似,直觀而且易於理解。
執行後,就可以看到結果圖形了。
在圖中,我們發現許多正面評價情感分析數值極端的高。同時,我們也清晰地發現了那幾個數值極低的點。對應評論的情感分析數值接近於0。這幾條評論,被Python判定為基本上沒有正面情感了。
從時間上看,最近一段時間,幾乎每隔幾天就會出現一次比較嚴重的負面評價。
作為經理,你可能如坐針氈。希望盡快了解發生了什麼事兒。你不用在數據框或者Excel文件裡面一條條翻找情感數值最低的評論。Python數據框Pandas為你提供了非常好的排序功能。假設你希望找到所有評論里情感分析數值最低的那條,可以這樣執行:
df.sort(['sentiment'])[:1]

結果為:
情感分析結果數值幾乎就是0啊!不過這里數據框顯示評論信息不完全。我們需要將評論整體列印出來。
print(df.sort(['sentiment']).iloc[0].comments)

評論完整信息如下:
這次是在情人節當天過去的,以前從來沒在情人節正日子出來過,不是因為沒有男朋友,而是感覺哪哪人都多,所以特意錯開,這次實在是饞A餐廳了,所以趕在正日子也出來了,從下午四點多的時候我看排號就排到一百多了,我從家開車過去得堵的話一個小時,我一看提前兩個小時就在網上先排著號了,差不多我們是六點半到的,到那的時候我看號碼前面還有才三十多號,我想著肯定沒問題了,等一會就能吃上的,沒想到悲劇了,就從我們到那坐到等位區開始,大約是十分二十分一叫號,中途多次我都想走了,哈哈,哎,等到最後早上九點才吃上的,服務員感覺也沒以前清閑時周到了,不過這肯定的,一人負責好幾桌,今天節日這么多人,肯定是很累的,所以大多也都是我自己跑腿,沒讓服務員給弄太多,就蝦滑讓服務員下的,然後環境來說感覺衛生方面是不錯,就是有些太吵了,味道還是一如既往的那個味道,不過A餐廳最人性化的就是看我們等了兩個多小時,上來送了我們一張打折卡,而且當次就可以使用,這點感覺還是挺好的,不愧是A餐廳,就是比一般的要人性化,不過這次就是選錯日子了,以後還是得提前預約,要不就別趕節日去,太火爆了!
通過閱讀,你可以發現這位顧客確實有了一次比較糟糕的體驗——等候的時間太長了,以至於使用了「悲劇」一詞;另外還提及服務不夠周到,以及環境吵鬧等因素。正是這些詞彙的出現,使得分析結果數值非常低。
好在顧客很通情達理,而且對該分店的人性化做法給予了正面的評價。
從這個例子,你可以看出,雖然情感分析可以幫你自動化處理很多內容,然而你不能完全依賴它。
自然語言的分析,不僅要看錶達強烈情感的關鍵詞,也需要考慮到表述方式和上下文等諸多因素。這些內容,是現在自然語言處理領域的研究前沿。我們期待著早日應用到科學家們的研究成果,提升情感分析的准確度。
不過,即便目前的情感分析自動化處理不能達到非常准確,卻依然可以幫助你快速定位到那些可能有問題的異常點(anomalies)。從效率上,比人工處理要高出許多。
你讀完這條評論,長出了一口氣。總結了經驗教訓後,你決定將人性化的服務貫徹到底。你又想到,可以收集用戶等候時長數據,用數據分析為等待就餐的顧客提供更為合理的等待時長預期。這樣就可以避免顧客一直等到很晚了。
祝賀你,經理!在數據智能時代,你已經走在了正確的方向上。
下面,你該認真閱讀下一條負面評論了……
討論
除了情感分析和時間序列可視化,你覺得還可以如何挖掘中文評論信息?除了點評網站之外,你還知道哪些輿情分析的數據來源?歡迎留言分享給大家,我們一起交流討論。
如果你對我的文章感興趣,歡迎點贊,並且微信關注和置頂我的公眾號「玉樹芝蘭」(nkwangshuyi)。
如果你身邊有好友正在做輿情分析的研究工作,也歡迎你把這篇文章轉發給他們,共同學習和提高。

⑷ python時間序列(2)

時期(period)表示的是時間區間,比如數日、數月、數季、數年等。Period類所 表示的就是這種數據類型,其構造函數需要用到一個字元串或整數,以及表11-4中 的頻率:

這里,這個Period對象表示的是從2007年1月1日到2007年12月31日之間的整段時間。

只需對Period對象加上或減去一個整數即可達到根據其頻率進行位移的效果:

如果兩個Period對象擁有相同的頻率,則它們的差就是它們之間的單位數量:

period_range函數可用於創建規則的時期范圍:

PeriodIndex類保存了一組Period,它可以在任何pandas數據結構中被用作軸索引:

如果你有一個字元串數組,你也可以使用PeriodIndex類:

Period和PeriodIndex對象都可以通過其asfreq方法被轉換成別的頻率。假設我們有 一個年度時期,希望將其轉換為當年年初或年末的一個月度時期。該任務非常簡 單:

你可以將Period('2007','A-DEC')看做一個被劃分為多個月度時期的時間段中的游 標。圖11-1對此進行了說明。
對於一個不以12月結束的財政年度,月度子時期的歸屬情況就不一樣了:

在將高頻率轉換為低頻率時,超時期(superperiod)是由子時期(subperiod)所 屬的位置決定的。例如,在A-JUN頻率中,月份「2007年8月」實際上是屬於周期「2008年」的:

完整的PeriodIndex或TimeSeries的頻率轉換方式也是如此:

這里,根據年度時期的第一個月,每年的時期被取代為每月的時期。
如果我們想要 每年的最後一個工作日,我們可以使用「B」頻率,並指明想要該時期的末尾:

未完待續。。。

⑸ 如何在Python中用LSTM網路進行時間序列預測

時間序列模型

時間序列預測分析就是利用過去一段時間內某事件時間的特徵來預測未來一段時間內該事件的特徵。這是一類相對比較復雜的預測建模問題,和回歸分析模型的預測不同,時間序列模型是依賴於事件發生的先後順序的,同樣大小的值改變順序後輸入模型產生的結果是不同的。
舉個栗子:根據過去兩年某股票的每天的股價數據推測之後一周的股價變化;根據過去2年某店鋪每周想消費人數預測下周來店消費的人數等等

RNN 和 LSTM 模型

時間序列模型最常用最強大的的工具就是遞歸神經網路(recurrent neural network, RNN)。相比與普通神經網路的各計算結果之間相互獨立的特點,RNN的每一次隱含層的計算結果都與當前輸入以及上一次的隱含層結果相關。通過這種方法,RNN的計算結果便具備了記憶之前幾次結果的特點。

典型的RNN網路結構如下:

4. 模型訓練和結果預測
將上述數據集按4:1的比例隨機拆分為訓練集和驗證集,這是為了防止過度擬合。訓練模型。然後將數據的X列作為參數導入模型便可得到預測值,與實際的Y值相比便可得到該模型的優劣。

實現代碼

  • 時間間隔序列格式化成所需的訓練集格式

  • import pandas as pdimport numpy as npdef create_interval_dataset(dataset, look_back):

  • """ :param dataset: input array of time intervals :param look_back: each training set feature length :return: convert an array of values into a dataset matrix. """

  • dataX, dataY = [], [] for i in range(len(dataset) - look_back):

  • dataX.append(dataset[i:i+look_back])

  • dataY.append(dataset[i+look_back]) return np.asarray(dataX), np.asarray(dataY)


  • df = pd.read_csv("path-to-your-time-interval-file")

  • dataset_init = np.asarray(df) # if only 1 columndataX, dataY = create_interval_dataset(dataset, lookback=3) # look back if the training set sequence length

  • 這里的輸入數據來源是csv文件,如果輸入數據是來自資料庫的話可以參考這里

  • LSTM網路結構搭建

  • import pandas as pdimport numpy as npimport randomfrom keras.models import Sequential, model_from_jsonfrom keras.layers import Dense, LSTM, Dropoutclass NeuralNetwork():

  • def __init__(self, **kwargs):

  • """ :param **kwargs: output_dim=4: output dimension of LSTM layer; activation_lstm='tanh': activation function for LSTM layers; activation_dense='relu': activation function for Dense layer; activation_last='sigmoid': activation function for last layer; drop_out=0.2: fraction of input units to drop; np_epoch=10, the number of epoches to train the model. epoch is one forward pass and one backward pass of all the training examples; batch_size=32: number of samples per gradient update. The higher the batch size, the more memory space you'll need; loss='mean_square_error': loss function; optimizer='rmsprop' """

  • self.output_dim = kwargs.get('output_dim', 8) self.activation_lstm = kwargs.get('activation_lstm', 'relu') self.activation_dense = kwargs.get('activation_dense', 'relu') self.activation_last = kwargs.get('activation_last', 'softmax') # softmax for multiple output

  • self.dense_layer = kwargs.get('dense_layer', 2) # at least 2 layers

  • self.lstm_layer = kwargs.get('lstm_layer', 2) self.drop_out = kwargs.get('drop_out', 0.2) self.nb_epoch = kwargs.get('nb_epoch', 10) self.batch_size = kwargs.get('batch_size', 100) self.loss = kwargs.get('loss', 'categorical_crossentropy') self.optimizer = kwargs.get('optimizer', 'rmsprop') def NN_model(self, trainX, trainY, testX, testY):

  • """ :param trainX: training data set :param trainY: expect value of training data :param testX: test data set :param testY: epect value of test data :return: model after training """

  • print "Training model is LSTM network!"

  • input_dim = trainX[1].shape[1]

  • output_dim = trainY.shape[1] # one-hot label

  • # print predefined parameters of current model:

  • model = Sequential() # applying a LSTM layer with x dim output and y dim input. Use dropout parameter to avoid overfitting

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=input_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) for i in range(self.lstm_layer-2):

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) # argument return_sequences should be false in last lstm layer to avoid input dimension incompatibility with dense layer

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out)) for i in range(self.dense_layer-1):

  • model.add(Dense(output_dim=self.output_dim,

  • activation=self.activation_last))

  • model.add(Dense(output_dim=output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_last)) # configure the learning process

  • model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy']) # train the model with fixed number of epoches

  • model.fit(x=trainX, y=trainY, nb_epoch=self.nb_epoch, batch_size=self.batch_size, validation_data=(testX, testY)) # store model to json file

  • model_json = model.to_json() with open(model_path, "w") as json_file:

  • json_file.write(model_json) # store model weights to hdf5 file

  • if model_weight_path: if os.path.exists(model_weight_path):

  • os.remove(model_weight_path)

  • model.save_weights(model_weight_path) # eg: model_weight.h5

  • return model

  • 這里寫的只涉及LSTM網路的結構搭建,至於如何把數據處理規范化成網路所需的結構以及把模型預測結果與實際值比較統計的可視化,就需要根據實際情況做調整了。

    ⑹ python數據分析時間序列如何提取一個月的數據

    Pandas中,最基本的時間序列類型就是以時間戳為索引的Series對象。

    時間戳使用Timestamp(Series派生的子類)對象表示,該對象與datetime具有高度的兼容性,可以直接通過to_datetime()函數將datetime轉換為TimeStamp對象。

    import pandas as pd # 導入pandas模塊,並起個別名pd from datetime import datetime import numpy as np pd.to_datetime('20200828') # 將datetime轉換為Timestamp對象
    Timestamp('2020-08-28 00:00:00')
    當傳入的是多個datetime組成的列表,則Pandas會將其強制轉換為DatetimeIndex類對象。

    # 傳入多個datetime字元串 date_index = pd.to_datetime(['20200820', '20200828', '20200908']) date_index
    DatetimeIndex(['2020-08-20', '2020-08-28', '2020-09-08'],
    dtype='datetime64[ns]', freq=None)
    如何取出第一個時間戳

    date_index[0] # 取出第一個時間戳
    Timestamp('2020-08-20 00:00:00')
    2.在Pandas中,最基本的時間序列類型就是以時間戳為索引的Series對象。

    # 創建時間序列類型的Series對象 date_ser = pd.Series([11, 22, 33], index=date_index) date_ser
    2020-08-20 11
    2020-08-28 22
    2020-09-08 33
    dtype: int64
    也可將包含多個datetime對象的列表傳給index參數,同樣能創建具有時間戳索引的Series對象。

    # 指定索引為多個datetime的列表 date_list = [datetime(2020, 1, 1), datetime(2020, 1, 15), datetime(2020, 2, 20), datetime(2020, 4, 1), datetime(2020,

    ⑺ python中時間序列數據的一些處理方式

    datetime.timedelta對象代表兩個時間之間的時間差,兩個date或datetime對象相減就可以返回一個timedelta對象。
    利用以下數據進行說明:

    如果我們發現時間相關內容的變數為int,float,str等類型,不方便後面的分析,就需要使用該函數轉化為常用的時間變數格式:pandas.to_datetime

    轉換得到的時間單位如下:

    如果時間序列格式不統一,pd.to_datetime()的處理方式:

    當然,正確的轉換是這樣的:

    第一步:to_datetime()
    第二步:astype(datetime64[D]),astype(datetime64[M])

    本例中:

    order_dt_diff必須是Timedelta(Ɔ days 00:00:00')格式,可能是序列使用了diff()
    或者pct_change()。

    前者往往要通過'/np.timedelta'去掉單位days。後者其實沒有單位。

    假如我們要統計某共享單車一天內不同時間點的用戶使用數據,例如

    還有其他維度的提取,年、月、日、周,參見:
    Datetime properties

    注意 :.dt的對象必須為pandas.Series,而不可以是Series中的單個元素

    熱點內容
    編程類股票 發布:2024-05-20 19:54:34 瀏覽:920
    筆記本電腦設置密碼怎麼弄 發布:2024-05-20 19:30:21 瀏覽:456
    電腦租伺服器一天多少 發布:2024-05-20 19:23:15 瀏覽:775
    c語言程序三種基本結構 發布:2024-05-20 19:18:06 瀏覽:799
    小蟻運動相機存儲卡 發布:2024-05-20 19:17:31 瀏覽:82
    紅米4怎麼關閉密碼鎖屏密碼 發布:2024-05-20 18:55:00 瀏覽:767
    買手機看哪些參數配置圖片 發布:2024-05-20 18:35:02 瀏覽:8
    右鍵文件夾未響應 發布:2024-05-20 18:34:23 瀏覽:987
    汽車安卓軟體在哪裡下載 發布:2024-05-20 18:33:38 瀏覽:887
    編程智能積木 發布:2024-05-20 18:26:03 瀏覽:161