python數據挖掘教程
⑴ python數據挖掘從哪些
一. 基於Python的數據挖掘 基本架構
1. matplotlib, 圖形化
2. pandas,數據挖掘的關鍵, 提供各種挖掘分析的演算法
3. numpy, 提供基本的統計
scipy, 提供各種數學公式
4. python common lib,python基本框架
二. 環境搭建
1. 安裝python
2. 安裝pip
pandas依賴的pip版本,最低是8.0.0。如果pip是8以下的版本,如7.2.1,需要升級pip.
命令是「python -m pip install -U pip」,這是windows版本。
Linux是」pip install -U pip「
通過命令「pip --version」, 可以查看pip版本號
3. 安裝pandas
命令「pip install pandas", 這是windows版本。
Linux平台可用
sudo apt-get install python-pandas
4. 安裝matplotlib
pip install matplotlib
三. 數據類型
pypython common type
string list tuple dict set
6鍾學列
list, tuple, string, unicode string, buffer object, xrange
pandas type
ndarray, series dateFrame
ndarray, 數組類型,新增原因:
list, tuple是基於指針+對象設計的。即list,tuple存儲的是void*指針,指針指向具體對象的數據。
因為是void*指針,所以二者可以存儲各種數據類型,即數據類型可以不統一。
雖然存儲豐富,但如果數據量過大時,即處理大數據時,有弊端。
1. 存儲空間大,浪費內存。因為存兩部分,指針+數據
2. 讀取慢,通過index,找到指針;基於指針,找到數據
所以在大數據處理時,新增ndarray,數字類型,類似C++ 數組。存儲相同,讀取、修改快捷。
別名:array, 有利於節省內存、提高CPU的計算時間,有豐富的處理函數
series,變長字典,
類似一維數組的對象;有數據和索引組成
新增原因:
dict是無序的,它的key和value存在映射關系。但key和value之間是不獨立的,存儲在一起。
如果需要對一項進行操作,會影響到另外一項。所以有了series, series的key和value是獨立的,獨立存儲。
series的key是定長有序的。通過series.key獲取整個索引, 通過series.values獲取所有values.
series的key,可以通過series.index.name,設置唯一的名稱。
series整體也可以設置唯一名稱,通過series.name
DataFrame:
1. 一個表格型的數據結構
2. 含有一組有序的列(類似於index)
3. 可以認為是,共享一個index的Series集合
data1={'name':['java', 'c', 'python'], 'year': [2,2,3]}
frame = pd.DataFrame(data1)
------------------------------------------------
四. 基本的數據分析流程:
1. 數據的獲取
2. 數據准備--規格化,建立各種索引index
3. 數據的顯示、描述,用於調試
如df.index, df.values, df.head(n), df.tail(n) df.describe
4. 數據的選擇
index獲取, 切片獲取, 行、列獲取, 矩形區域獲取
index獲取,df.row1 或者 df['row1']
行列,df.loc[行list, 列list], 如df.loc[0:1,['co1','col2'] ]
通過二位索引,取二維左上角,df.iloc[0,0],也可以列表 df.iloc[0:2,0:2],取前2行。
5. 簡單的統計與處理
統計平均值、最大值等
6. Grouping 分組
df.groupby(df.row1)
7. Merge合並
append追加,
contact連接, 包含append功能,也可以兩個不同的二維數據結構合並
join連接, sql連接,基於相同欄位連接,如 sql的where, a.row1 = b.row1
------------------------------------------------
五. 高級的數據處理與可視化:
1. 聚類分析
聚類是數據挖掘描述性任務和預測性任務的一個重要組成部分,它以相似性為基礎,
把相似的對象通過靜態分類,分成不同的組別和子集。
在python中,有很多第三方庫提供了聚類演算法。
聚類演算法有很多, 其中K-均值演算法,因為其簡單、快捷的特點,被廣泛使用。
基本原理是,
1. 查找某數據集的中心,
2. 使用均方差,計算距離。使得每一個數據點都收斂在一個組內;各個組是完全隔離的
案例:
>>> from pylab import *
>>> from scipy.cluster.vq import *
>>>
>>> list1=[88,64,96,85]
>>> list2=[92,99,95,94]
>>> list3=[91,87,99,95]
>>> list4 = [78,99,97,81]
>>> list5=[88,78,98,84]
>>> list6=[100,95,100,92]
>>> tempdate = (list1, list2, list3, list4, list5, list6)
>>>
>>> tempdate
([88, 64, 96, 85], [92, 99, 95, 94], [91, 87, 99, 95], [78, 99, 97, 81], [88, 78
, 98, 84], [100, 95, 100, 92])
>>> date = vstack(tempdate)
>>>
>>> date
array([[ 88, 64, 96, 85],
[ 92, 99, 95, 94],
[ 91, 87, 99, 95],
[ 78, 99, 97, 81],
[ 88, 78, 98, 84],
[100, 95, 100, 92]])
>>> centroids,abc=kmeans(date,2) #查找聚類中心,第二個參數是設置分N類,如5類,則為5
>>> centroids # 基於每列查找的中心點,可能是平均值
array([[88, 71, 97, 84],
[90, 95, 97, 90]])
>>>
>>> result,cde=vq(date,centroids) #對數據集,基於聚類中心進行分類
>>> result
array([0, 1, 1, 1, 0, 1])
2. 繪圖基礎
python描繪庫,包含兩部分,
繪圖api, matplotlib提供各種描繪介面。
集成庫,pylab(包含numpy和matplotlib中的常用方法),描繪更快捷、方便。
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0,10)
plt.plot(t, t+2)
plt.plot(t,t, 'o', t,t+2, t,t**2, 'o') #(x,y)一組,默認是折線;『o'是散點,
plt.bar(t,t**2) # 柱狀圖
plt.show()
--------------------
import pylab as pl
t = np.arange(0,10)
plt.plot(t, t+2)
plt.show()
3. matplotlib圖像屬性控制
色彩、樣式
名稱: 圖、橫、縱軸,
plt.title('philip\'s python plot')
plt.xlabel('date')
plt.ylabel('value')
其他: pl.figure(figsize=(8,6),dpi=100)
pl.plot(x,y, color='red', linewidth=3, lable='line1')
pl.legend(loc='upper left')
子圖
pl.subplot(211) # 整體圖片,可以分為二維部分;
#第一個是圖的行,第二個是列;第三個是index, 從左上開始0遍歷 當前行,再下一行。
#如果是2位數,如11,需要『,』
axes(left, bottom, width, height) # 參數取值范圍是(0,1), left,是到左邊的距離,bottom是到下面的距離
4. pandas作圖
Series、DataFrame支持直接描繪,封裝了調用matplotlib的介面,如
series.close.plot()
df.close.plot() #具體參數類似matplotlib普通介面
屬性控制
類似matplotlib普通介面,修改各種圖片的類型,柱形圖、折線等
--------common-----------------
list, tuple, dict
--------numpy-----------------
ndarray, Series, DataFrame
⑵ 如何用Python進行大數據挖掘和分析
如何用Python進行大數據挖掘和分析?快速入門路徑圖
大數據無處不在。在時下這個年代,不管你喜歡與否,在運營一個成功的商業的過程中都有可能會遇到它。
什麼是 大數據 ?
大數據就像它看起來那樣——有大量的數據。單獨而言,你能從單一的數據獲取的洞見窮其有限。但是結合復雜數學模型以及強大計算能力的TB級數據,卻能創造出人類無法製造的洞見。大數據分析提供給商業的價值是無形的,並且每天都在超越人類的能力。
大數據分析的第一步就是要收集數據本身,也就是眾所周知的「數據挖掘」。大部分的企業處理著GB級的數據,這些數據有用戶數據、產品數據和地理位置數據。今天,我將會帶著大家一起探索如何用 Python 進行大數據挖掘和分析?
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼等。還有,Python是開源的,並且有很多用於數據科學的類庫。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
數據分析流程
一般可以按「數據獲取-數據存儲與提取-數據預處理-數據建模與分析-數據可視化」這樣的步驟來實施一個數據分析項目。按照這個流程,每個部分需要掌握的細分知識點如下:
數據獲取:公開數據、Python爬蟲
外部數據的獲取方式主要有以下兩種。
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urllib、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
總結
其實做數據挖掘不是夢,5步就能讓你成為一個Python爬蟲高手!
⑶ 如何用python進行大數據挖掘和分析
毫不誇張地說,大數據已經成為任何商業交流中不可或缺的一部分。桌面和移動搜索向全世界的營銷人員和公司以空前的規模提供著數據,並且隨著物聯網的到來,大量用以消費的數據還會呈指數級增長。這種消費數據對於想要更好地定位目標客戶、弄懂人們怎樣使用他們的產品或服務,並且通過收集信息來提高利潤的公司來說無疑是個金礦。
篩查數據並找到企業真正可以使用的結果的角色落到了軟體開發者、數據科學家和統計學家身上。現在有很多工具輔助大數據分析,但最受歡迎的就是Python。
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼,和索尼夢工廠。還有,Python是開源的,並且有很多用於數據科學的類庫。所以,大數據市場急需Python開發者,不是Python開發者的專家也可以以相當塊速度學習這門語言,從而最大化用在分析數據上的時間,最小化學習這門語言的時間。
用Python進行數據分析之前,你需要從Continuum.io下載Anaconda。這個包有著在Python中研究數據科學時你可能需要的一切東西。它的缺點是下載和更新都是以一個單元進行的,所以更新單個庫很耗時。但這很值得,畢竟它給了你所需的所有工具,所以你不需要糾結。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要成為一個Python開發者。這並不意味著你需要成為這門語言的大師,但你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
各種類庫
當你掌握了Python的基本知識點後,你需要了解它的有關數據科學的類庫是怎樣工作的以及哪些是你需要的。其中的要點包括NumPy,一個提供高級數學運算功能的基礎類庫,SciPy,一個專注於工具和演算法的可靠類庫,Sci-kit-learn,面向機器學習,還有Pandas,一套提供操作DataFrame功能的工具。
除了類庫之外,你也有必要知道Python是沒有公認的最好的集成開發環境(IDE)的,R語言也一樣。所以說,你需要親手試試不同的IDE再看看哪個更能滿足你的要求。開始時建議使用IPython Notebook,Rodeo和Spyder。和各種各樣的IDE一樣,Python也提供各種各樣的數據可視化庫,比如說Pygal,Bokeh和Seaborn。這些數據可視化工具中最必不可少的就是Matplotlib,一個簡單且有效的數值繪圖類庫。
所有的這些庫都包括在了Anaconda裡面,所以下載了之後,你就可以研究一下看看哪些工具組合更能滿足你的需要。用Python進行數據分析時你會犯很多錯誤,所以得小心一點。一旦你熟悉了安裝設置和每種工具後,你會發現Python是目前市面上用於大數據分析的最棒的平台之一。
希望能幫到你!
⑷ python數據挖掘是什麼
數據挖掘(data mining,簡稱DM),是指從大量的數據中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的信
息和知識的過程。
python數據挖掘常用模塊
numpy模塊:用於矩陣運算、隨機數的生成等
pandas模塊:用於數據的讀取、清洗、整理、運算、可視化等
matplotlib模塊:專用於數據可視化,當然含有統計類的seaborn模塊
statsmodels模塊:用於構建統計模型,如線性回歸、嶺回歸、邏輯回歸、主成分分析等
scipy模塊:專用於統計中的各種假設檢驗,如卡方檢驗、相關系數檢驗、正態性檢驗、t檢驗、F檢驗等
sklearn模塊:專用於機器學習,包含了常規的數據挖掘演算法,如決策樹、森林樹、提升樹、貝葉斯、K近鄰、SVM、GBDT、Kmeans等
數據分析和挖掘推薦的入門方式是?小公司如何利用數據分析和挖掘?
關於數據分析與挖掘的入門方式是先實現代碼和Python語法的落地(前期也需要你了解一些統計學知識、數學知識等),這個過程需要
你多閱讀相關的數據和查閱社區、論壇。然後你在代碼落地的過程中一定會對演算法中的參數或結果產生疑問,此時再去查看統計學和數據
挖掘方面的理論知識。這樣就形成了問題為導向的學習方法,如果將入門順序搞反了,可能在硬著頭皮研究理論演算法的過程中就打退堂鼓
了。
對於小公司來說,你得清楚的知道自己的痛點是什麼,這些痛點是否能夠體現在數據上,公司內部的交易數據、營銷數據、倉儲數據等是
否比較齊全。在這些數據的基礎上搭建核心KPI作為每日或每周的經營健康度衡量,數據分析側重於歷史的描述,數據挖掘則側重於未來
的預測。
差異在於對數據的敏感度和對數據的個性化理解。換句話說,就是懂分析的人能夠從數據中看出破綻,解決問題,甚至用數據創造價值;
不懂分析的人,做不到這些,更多的是描述數據。
更多技術請關注python視頻教程。
⑸ 《Python數據挖掘入門與實踐》pdf下載在線閱讀全文,求百度網盤雲資源
《Python數據挖掘入門與實踐》([澳] Robert Layton)電子書網盤下載免費在線閱讀
鏈接: https://pan..com/s/1nTpCBoYD2yuoks387BJstg
書名:Python數據挖掘入門與實踐
作者:[澳] Robert Layton
譯者:杜春曉
豆瓣評分:7.9
出版社:人民郵電出版社
出版年份:2016-7
頁數:252
內容簡介:
本書作為數據挖掘入門讀物,介紹了數據挖掘的基礎知識、基本工具和實踐方法,通過循序漸進地講解演算法,帶你輕松踏上數據挖掘之旅。本書採用理論與實踐相結合的方式,呈現了如何使用決策樹和隨機森林演算法預測美國職業籃球聯賽比賽結果,如何使用親和性分析方法推薦電影,如何使用樸素貝葉斯演算法進行社會媒體挖掘,等等。本書也涉及神經網路、深度學習、大數據處理等內容。
作者簡介:
計算機科學博士,網路犯罪問題和文本分析方面的專家。多年來一直熱衷於Python編程,參與過scikit-learn庫等很多開源庫的開發,曾擔任2014年度「谷歌編程之夏」項目導師。他曾與全球幾大數據挖掘公司密切合作,挖掘真實數據並研發相關應用。他的公司dataPipeline為多個行業提供數據挖掘和數據分析解決方案。
⑹ python機器學習,數據挖掘
需要掌握:
1、python語言的基本結構與語法與數前中據類型,模塊、基本用法,熟悉函數,類設計,包的使用野模及基本的編程方法;理解python數據挖掘與分析技術在當代各種大數據相關產品中的應用,並掌握該領域最關鍵技術的原理以及技術應用過程;能開發出一些實際的應用項目並初步勝任Python的數據挖掘和機器學習工作;
2、掌握網慧脊山絡信息獲取及文本挖掘的基本知識及深度應用,熟練運用使用Python獲取網路數據並獨立開發常見的爬蟲項目,熟練的進行文本分析處理。
⑺ 數據挖掘方向,Python中還需要學習哪些內容
對於數據挖掘:Python不是重點
重點是機器學習和資料庫系統
Python基礎知識扎實就好。參考劉江的Python教程
⑻ 數據挖掘方向,Python中還需要學習哪些內容
就題論題,還包括:
1. Python 資料庫連接庫,例如MySQL 連接庫的應用,這決定你的數據從哪裡來。這裡面涉及到sql語法和資料庫基本知識,是你在學習的時候必須一起學會的。
2. Python 做基本數據計算和預處理的庫,包括numpy ,scipy,pandas 這三個用得最多。
3. 數據分析和挖掘庫,主要是sklearn,Statsmodels。前者是最廣泛的機器學習庫,後者是側重於統計分析的庫。(要知道統計分析大多時候和數據挖掘都錯不能分開使用)
4. 圖形展示庫。matpotlib,這是用的最多的了。
說完題主本身 要求,樓上幾位說的對,你還需要一些關於數據挖掘演算法的基本知識和認知,否則即使你調用相關庫得到結果,很可能你都不知道怎麼解讀,如何優化,甚至在什麼場景下還如何選擇演算法等。因此基本知識你得了解。主要包括:
1.統計學相關,看看深入淺出數據分析和漫畫統計學吧,雖然是入門的書籍,但很容易懂。
2.數據挖掘相關,看看數據挖掘導論吧,這是講演算法本身得書。
剩下的就是去實踐了。有項目就多參與下項目,看看真正的數據挖掘項目是怎麼開展的,流程怎樣等。沒有項目可以去參加一些數據挖掘或機器學習方面的大賽,也是增加經驗得好方法。
⑼ python 數據挖掘需要用哪些庫和工具
python 數據挖掘常用的庫太多了!主要分為以下幾大類:
第一數據獲取:request,BeautifulSoup
第二基本數學庫:numpy
第三 資料庫出路 pymongo
第四 圖形可視化 matplotlib
第五 樹分析基本的庫 pandas
數據挖掘一般是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。數據挖掘本質上像是機器學習和人工智慧的基礎,它的主要目的是從各種各樣的數據來源中,提取出超集的信息,然後將這些信息合並讓你發現你從來沒有想到過的模式和內在關系。這就意味著,數據挖掘不是一種用來證明假說的方法,而是用來構建各種各樣的假說的方法。
想要了解更多有關python 數據挖掘的信息,可以了解一下CDA數據分析師的課程。CDA數據分析師證書的含金量是很高的,簡單從兩個方面分析一下:首先是企業對於CDA的認可,經管之家CDA LEVEL Ⅲ數據科學家認證證書,屬於行業頂尖的人才認證,已獲得IBM大數據大學,中國電信,蘇寧,德勤,獵聘,CDMS等企業的認可。CDA證書逐漸獲得各企業用人單位認可與引進,如中國電信、中國移動、德勤,蘇寧,中國銀行,重慶統計局等。點擊預約免費試聽課。
⑽ 教你如何用python6個步驟搞定金融數據挖掘預處理
數據預處理沒有標準的流程,通常針對不同的任務和數據集屬性的不同而不同。下面就一起看下常用六大步完成數據預處理。
Step 1:導入相關模塊
Step 2:獲取數據
特徵構造
Step 3:處理缺失值
Step 4:分類數據編碼
創建虛擬變數
Step 5:劃分訓練集和測試集
Step 6:特徵標准化
數據變換十大秘訣
數據變換[1]是將數據集的每個元素乘以常數;也就是說,將每個數變換為,其中,和都是實數。數據變換將可能改變數據的分布以及數據點的位置。
數據標准化[2](有時稱為 z-score 或 standar score)是已重新縮放為平均值為零且標准偏差為1的變數。對於標准化變數,每種情況下的值在標准化變數上的值都表明它與原始變數的均值(或原始變數的標准偏差)的差值。
歸一化數據 是將數據縮放到0到1范圍內。
Binarizing Data
二值化[3]是將任何實體的數據特徵轉換為二值化的向量以使分類器演算法更高效的過程。在一個簡單的示例中,將圖像的灰度從0-255光譜轉換為0-
1 光譜就是二值化。
Mean Removal
去均值法 是將均值從每一列或特徵中移除,使其以零為中心的過程。
One Hot Encoding
獨熱編碼[4]是將分類變數轉換為可以提供給ML演算法以更好地進行預測的形式的過程。
Label Encoding
標簽編碼 適用於具有分類變數並將數據轉換為數字的數據。
fit
transform
詞向量 用於帶有標簽和數字的數據。此外,詞向量可用於提取數據。
獲取特徵名稱
Polynomial Features
多項式特徵 用於生成多項式特徵和交互特徵。它還生成了一個新的特徵矩陣數據,該數據是由所有次數小於或等於指定次數的特徵的多項式組合組成的。
截距項
填補 (如用均值填補缺失值),它用列或特性數據中的平均值替換缺失的值