當前位置:首頁 » 編程語言 » python多進程變數

python多進程變數

發布時間: 2023-05-19 10:48:09

python多線程全局變數和鎖

1.python中數據類型,int,float,復數,字元,元組,做全局變數時需要在函數裡面用global申明變數,才能對變數進行操作。

而,對象,列表,詞典,不需要聲明,直接就是全局的。

2.線程鎖mutex=threading.Lock()

創建後就是全局的。線程調用函數可以直接在函數中使用。

mutex.acquire()開啟鎖

mutex=release()關閉鎖

要注意,死鎖的情況發生。

注意運行效率的變化:

正常1秒,完成56997921

加鎖之後,1秒只運行了531187,相差10倍多。

3.繼承.threading.Thread的類,無法調用__init__函數,無法在創建對象時初始化新建的屬性。

4.線程在cpu的執行,有隨機性

5. 新建線程時,需要傳參數時,args是一個元組,如果只有一個參數,一定後面要加一個,符號。不能只有一個參數否則線程會報創建參數錯誤。threading.Thread(target=fuc,args=(arg,))

Ⅱ python 多進程

基於官方文檔:
https://docs.python.org/zh-cn/3/library/multiprocessing.html
日樂購,剛才看到的一個博客,寫的都不太對,還是基於官方的比較穩妥
我就是喜歡抄官方的,哈哈

通常我們使用Process實例化一個進程,並調用 他的 start() 方法啟動它。
這種方法和 Thread 是一樣的。

上圖中,我寫了 p.join() 所以主進程是 等待 子進程執行完後,才執行 print("運行結束")
否則就是反過來了(這個不一定,看你的語句了,順序其實是隨機的)例如:

主進加個 sleep

所以不加join() ,其實子進程和主進程是各干各的,誰也不等誰。都執行完後,文件運行就結束了

上面我們用了 os.getpid() 和 os.getppid() 獲取 當前進程,和父進程的id
下面就講一下,這兩個函數的用法:
os.getpid()
返回當前進程的id
os.getppid()
返回父進程的id。 父進程退出後,unix 返回初始化進程(1)中的一個
windows返回相同的id (可能被其他進程使用了)
這也就解釋了,為啥我上面 的程序運行多次, 第一次列印的parentid 都是 14212 了。
而子進程的父級 process id 是調用他的那個進程的 id : 1940

視頻筆記:
多進程:使用大致方法:

參考: 進程通信(pipe和queue)

pool.map (函數可以有return 也可以共享內存或queue) 結果直接是個列表

poll.apply_async() (同map,只不過是一個進程,返回結果用 xx.get() 獲得)

報錯:

參考 : https://blog.csdn.net/xiemanR/article/details/71700531

把 pool = Pool() 放到 if name == " main ": 下面初始化搞定。
結果:

這個肯定有解釋的

測試多進程計算效果:
進程池運行:

結果:

普通計算:

我們同樣傳入 1 2 10 三個參數測試:

其實對比下來開始快了一半的;
我們把循環里的數字去掉一個 0;
單進程:

多進程:

兩次測試 單進程/進程池 分別為 0.669 和 0.772 幾乎成正比的。
問題 二:
視圖:
post 視圖裡面

Music 類:

直接報錯:

寫在 類裡面也 在函數里用 self.pool 調用也不行,也是相同的錯誤。

最後 把 pool = Pool 直接寫在 search 函數裡面,奇跡出現了:

前台也能顯示搜索的音樂結果了

總結一點,進程這個東西,最好 寫在 直接運行的函數裡面,而不是 一個函數跳來跳去。因為最後可能 是在子進程的子進程運行的,這是不許的,會報錯。
還有一點,多進程運行的函數對象,不能是 lambda 函數。也許lambda 虛擬,在內存??

使用 pool.map 子進程 函數報錯,導致整個 pool 掛了:
參考: https://blog.csdn.net/hedongho/article/details/79139606
主要你要,對函數內部捕獲錯誤,而不能讓異常拋出就可以了。

關於map 傳多個函數參數
我一開始,就是正常思維,多個參數,搞個元祖,讓參數一一對應不就行了:

報錯:

參考:
https://blog.csdn.net/qq_15969343/article/details/84672527
普通的 process 當讓可以穿多個參數,map 卻不知道咋傳的。
apply_async 和map 一樣,不知道咋傳的。

最簡單的方法:
使用 starmap 而不是 map

結果:
子進程結束
1.8399453163146973
成功拿到結果了

關於map 和 starmap 不同的地方看源碼

關於apply_async() ,我沒找到多參數的方法,大不了用 一個迭代的 starmap 實現。哈哈

關於 上面源碼裡面有 itertools.starmap
itertools 用法參考:
https://docs.python.org/zh-cn/3/library/itertools.html#itertool-functions

有個問題,多進程最好不要使用全部的 cpu , 因為這樣可能影響其他任務,所以 在進程池 添加 process 參數 指定,cpu 個數:

上面就是預留了 一個cpu 干其他事的

後面直接使用 Queue 遇到這個問題:

解決:
Manager().Queue() 代替 Queue()

因為 queue.get() 是堵塞型的,所以可以提前判斷是不是 空的,以免堵塞進程。比如下面這樣:
使用 queue.empty() 空為True

Ⅲ python 多進程

os.fork()指令會創建另外一個進程,他的輸出源也是你的python command line或者其他IDE。所以你會看見2個提示符。另外,IDE要處理那麼多輸出源,當然會很卡。還有,你連打下3次這個命令,相當於對三個進程都進行了下達指令,所以這時候你的進程數目為8(看不懂的建議看小學數學)。你的各個進程的輸出會類似於打架,所以窗口會變得很慢。
建議:用pid來區分各個進程(os.fork()在父進程會返回pid,子進程會返回0),例如:
import os
import time
pid=os.fork()
if pid==0:
time.sleep(0.1);

print "Child."

else:
print "The child's pid is:"+str(pid)

//end

以上代碼中子進程我給他暫停0.1秒來防止與父進程的輸出「打架」,當然有更好的解決方法,由於字數限制不打出來了,具體就是鎖住輸出源,通過之後再解鎖,可以網路。

點贊、採納、轉發,素質三連,友誼你我他!

Ⅳ python中多進程和多線程的區別

什麼是線程、進程?
進程(process)與線程(thread)是操作系統的基本概念,它們比較抽象,不容易掌握。
關於這兩者,最經典的一句話就是「進程是資源分配的最小單位,線程是CPU調度的最小單位」,線程是程序中一個單一的順序控制流程,進程內一個相對獨立的、可調度的執行單元,是系統獨立調度和分配CPU的基本單位指運行中的程序的調度單位,在單個程序中同時運行多個線程完成不同的工作,稱為多線程。
進程與線程的區別是什麼?
進程是資源分配的基本單位,所有與該進程有關的資源,都被記錄在進程式控制制塊PCB中,以表示該進程擁有這些資源或正在使用它們,另外,進程也是搶占處理機的調度單位,它擁有一個完整的虛擬地址空間,當進程發生調度時,不同的進程擁有不同的虛擬地址空間,而同一進程內的不同線程共享同一地址空間。
與進程相對應的,線程與資源分配無關,它屬於某一個進程,並與進程內的其他線程一起共享進程的資源,線程只由相關堆棧(系統棧或用戶棧)寄存器和線程式控制製表TCB組成,寄存器可被用來存儲線程內的局部變數,但不能存儲其他線程的相關變數。
通常在一個進程中可以包含若干個線程,它們可以利用進程所擁有的資源,在引入線程的操作系統中,通常都是把進程作為分配資源的基本單位,而把線程作為獨立運行和獨立調度的基本單位。
由於線程比進程更小,基本上不擁有系統資源,所以對它的調度所付出的開銷就會小得多,能更高效的提高系統內多個程序間並發執行的程度,從而顯著提高系統資源的利用率和吞吐量。
因而近年來推出的通用操作系統都引入了線程,以便進一步提高系統的並發性,並把它視為現代操作系統的一個重要指標。

Ⅳ python3.4.3 多進程之間結果變數的傳遞問題,程序無任何結果輸出

多進程間共享的變數要使用特殊的數據結構,在multiprocessing包里有提供,常用的有Queue, Value, Array等,這里比較適合用Queue

修改後的程序如下,注意Result賦值,和ProcessCheck的參數

另外,Result要排序後輸出的話,要用循環從Queue取值構建list再排序,這里省略了

importdatetime
importsys
importtime
importmultiprocessing
PartStart=[]#每個process計算的起點
PartEnd=[]#每個process計算的終點
Result=multiprocessing.Queue()#所有結果存儲在Result數組中
ProcessCount=10#進程數
EndNum=9999999#計算范圍,默認100開始,終止數可以任意修改,大於100即可

print('Start:%s'%datetime.datetime.now().strftime("%Y/%d/%m%H:%M:%S"))
start=time.time()

d=int(((EndNum-99)/ProcessCount)+0.5)
foriinrange(ProcessCount):
PartStart.append(100+i*d)
PartEnd.append(PartStart[i]+d-1)
PartEnd[ProcessCount-1]=EndNum
#==========================================
#這段代碼只是計算每個process的計算起點和終點

defCheckNum(Number):
tmp=str(Number)
len_num=len(tmp)
sum_num=0
foriinrange(len_num):
sum_num=sum_num+(int(tmp[i])**len_num)
ifsum_num==int(Number):
returnTrue
#print(Number,"是水仙花數")
else:
returnFalse
#print(Number,"不是水仙花數")
defProcessCheck(Start,End,Result):
forjinrange(int(Start),int(End)+1):
ifCheckNum(j):
#print(j,"是水仙花數")
print("helloworld")
Result.put(str(j)+"是水仙花數")
#============================================
#這段代碼用於計算某數值區間內的水仙花數,並存儲進result數組中,也是每個process運行的代碼

defmain():
threads=[]
foriinrange(ProcessCount):
p=multiprocessing.Process(target=ProcessCheck,args=(PartStart[i],PartEnd[i],Result))
threads.append(p)
foriinrange(ProcessCount):
threads[i].start()
foriinrange(ProcessCount):
threads[i].join()
#Result.sort(key=lambdat:t[0])
foriinrange(Result.qsize()):
print(Result.get())
#將最後的結果排序輸出,但沒有任何結果出現
end=time.time()
input('End:%s'%datetime.datetime.now().strftime("%Y/%d/%m%H:%M:%S")+" "+"共耗時:"+str(end-start))
#這個input沒有任何意義,主要是防止程序直接結束退出
if__name__=='__main__':
main()
熱點內容
ftp搭建win7 發布:2025-05-20 10:06:06 瀏覽:81
訪問堅果 發布:2025-05-20 10:06:02 瀏覽:393
ftpxlight 發布:2025-05-20 10:05:22 瀏覽:110
java的實驗報告 發布:2025-05-20 10:02:06 瀏覽:528
豪華配置高電動轎車有哪些 發布:2025-05-20 10:01:59 瀏覽:487
哪些電腦配置低 發布:2025-05-20 09:34:16 瀏覽:955
地板網站源碼 發布:2025-05-20 09:27:23 瀏覽:346
安卓視頻轉換器怎麼使用 發布:2025-05-20 09:20:52 瀏覽:544
telnet批量腳本 發布:2025-05-20 09:11:58 瀏覽:627
搭建jrebel伺服器 發布:2025-05-20 08:57:40 瀏覽:903