java模板類
1、java是純面向對象的語言(main都是寫到類里的),所以沒有原生的模板功能。
2、使用「模板模式」可以實現類似的效果,這也是java里最常用的模式之一。
以下是一篇教程:
模板方法模式的結構
模板方法模式是所有模式中最為常見的幾個模式之一,是基於繼承的代碼復用的基本技術。
模板方法模式需要開發抽象類和具體子類的設計師之間的協作。一個設計師負責給出一個演算法的輪廓和骨架,另一些設計師則負責給出這個演算法的各個邏輯步驟。代表這些具體邏輯步驟的方法稱做基本方法(primitive method);而將這些基本方法匯總起來的方法叫做模板方法(template method),這個設計模式的名字就是從此而來。
模板方法所代表的行為稱為頂級行為,其邏輯稱為頂級邏輯。模板方法模式的靜態結構圖如下所示:
這里涉及到兩個角色:
抽象模板(Abstract Template)角色有如下責任:
■定義了一個或多個抽象操作,以便讓子類實現。這些抽象操作叫做基本操作,它們是一個頂級邏輯的組成步驟。
■定義並實現了一個模板方法。這個模板方法一般是一個具體方法,它給出了一個頂級邏輯的骨架,而邏輯的組成步驟在相應的抽象操作中,推遲到子類實現。頂級邏輯也有可能調用一些具體方法。
具體模板(Concrete Template)角色又如下責任:
■實現父類所定義的一個或多個抽象方法,它們是一個頂級邏輯的組成步驟。
■每一個抽象模板角色都可以有任意多個具體模板角色與之對應,而每一個具體模板角色都可以給出這些抽象方法(也就是頂級邏輯的組成步驟)的不同實現,從而使得頂級邏輯的實現各不相同。
源代碼
抽象模板角色類,abstractMethod()、hookMethod()等基本方法是頂級邏輯的組成步驟,這個頂級邏輯由templateMethod()方法代表。
{
/**
*模板方法
*/
publicvoidtemplateMethod(){
//調用基本方法
abstractMethod();
hookMethod();
concreteMethod();
}
/**
*基本方法的聲明(由子類實現)
*/
();
/**
*基本方法(空方法)
*/
protectedvoidhookMethod(){}
/**
*基本方法(已經實現)
*/
(){
//業務相關的代碼
}
}
具體模板角色類,實現了父類所聲明的基本方法,abstractMethod()方法所代表的就是強制子類實現的剩餘邏輯,而hookMethod()方法是可選擇實現的邏輯,不是必須實現的。
{
//基本方法的實現
@Override
publicvoidabstractMethod(){
//業務相關的代碼
}
//重寫父類的方法
@Override
publicvoidhookMethod(){
//業務相關的代碼
}
}
模板模式的關鍵是:子類可以置換掉父類的可變部分,但是子類卻不可以改變模板方法所代表的頂級邏輯。
每當定義一個新的子類時,不要按照控制流程的思路去想,而應當按照「責任」的思路去想。換言之,應當考慮哪些操作是必須置換掉的,哪些操作是可以置換掉的,以及哪些操作是不可以置換掉的。使用模板模式可以使這些責任變得清晰。
『貳』 java的模板類實例化問題
class vector(T)這裡面的T表示某種具體的類類型,由你實際調用的時候來決定,你可以閱讀一些關於Java泛類型的知識,就會明白了。
然後針對你main()方法裡面v.add((byte)0);你把byte作為了"某種具體的類",那麼
vector<T> v=new vector<T>();
改為以下就可以了:(用byte的封裝類Byte作為某種具體類)
vector<Byte> v=new vector<Byte>(null);
『叄』 在JAVA中是如何體現C++的函數模板這種機制的
最初的Java是堅持強類型的OOP語言,所以拋棄了C/C++很多動態特性,包括指針、模板等等的,認為這樣語法簡單,不容易出錯。
後來由於開發者的強烈要求,又漸漸加入很多其他語言的特性,包括枚舉、泛型、註解等,甚至Java7開始想支持閉包等。
其實我覺得各個語言都有各個語言的特色,都弄得一樣了那就沒特色啦。沒有模板/泛型,程序邏輯一樣可以寫,嚴謹點寫個功能強大的一樣沒問題,何必把什麼特性都集中起來呢?
例如你的例子:
要求X、Y都是對象,並且實現Comparable介面。
那麼用(X.compareTo(Y)>0) ? X : Y就可以了。
例如對象封裝,也可以實現類似模板的功能啦,當然每類需求的實現方式都不一樣的。
不過,你為什麼一定問在JDK1.5之前的版本怎麼支持模板?就像最初的C++也不支持模板一下,老版本的Java當然也可以不支持泛型。目前JDK1.4之前的版本由於性能等原因已經基本被淘汰了,基本以JDK1.6為主流,那裡泛型還是能解決不少問題的。
『肆』 Java 怎麼把數組中存的map 值 取出來 模板類中
List<Map<String,String>> list = new ArrayList<Map<String,String>>();
Map map ;
for(int i = 0;i<5;i++){
map = new HashMap<>();
map.put("name","king"+i);
list.add(map);
}
for(Map<String,String> map2:list){
System.out.println("map的值:"+map2.get("name"));
}
『伍』 Java開發中的23種設計模式詳解(轉)_Java開發模式
設計模式(Design Patterns)
——可復用面向對象軟體的基礎
設計模式(Design pattern)是一套被反復使用、多數人知曉的、經過分類編目的、代碼設計經驗的總結。使用設計模式是為了可重用代碼、讓代碼更容易被他人理解、保證代碼可靠性。
毫無疑問,設計模式於己於他人於系統都是多贏的,設計模式使代碼編制真正工程猜模喚化,設計模式是軟體工程的基石,如同大廈的一塊塊磚石一樣。項目中合理的運用設計模式可以完美的解決很多問題,每種模式在現在中都有相應的原理來與之對應,每一個模式描述了一個在我們周圍不斷重復發生的問題,以及該問題的核心解決方案,這也是它能被廣泛應用的原因。
一、設計模式的分類
總體來說設計模式分為三大類:
創建型模式,共五種:工廠方法模式、抽象工廠模式、單例模式、建造者模式、原型模式。
結構型模式,共七種:適配器模式、裝飾器模式、代理模式、碼敬外觀模式、橋接模式、組合模式、享元模式。
行為型模式,共十一種:策略模式、模板方法模式、觀察者模式、迭代子模式、責任鏈模式、命令模式、備忘錄模式、狀態模式、訪問者模式、中介者模式、解釋器模式。
其實還有兩類:並發型模式和線程池模式。用一個圖片來整體描述一下:
二、設計模式的六大原則
1、開閉原則(Open Close Principle)
開閉原則就是說對擴展開放,對修改關閉。在程序需要進行拓展的時候,不能去修改原有的代碼,實現一個熱插拔的效果。所以一句話概括就是:為了使程序的擴展性好,易於維護和升級。想要達到這樣的效果,我們需要使用介面和抽象類,後面的具體設計中我們會提到這點。
2、里氏代換原則(Liskov Substitution Principle)
里氏代換原則(Liskov Substitution Principle LSP)面向對象設計的基本原則之一。
里氏代換原則中說,任何基類可以出現的地方,子類一定可以出現。
LSP是繼承復用的基石,只有當衍生類可以替換掉基類,軟體單位的功能不受到影響時,基類才能真正被復用,而衍生類也能夠在基類的基礎上增加新的行為。里氏代換原則是對「開-閉」原則的補充。實現「開-閉」原則的關鍵步驟就是抽象化。而基類與子類的繼承關系就是抽象化的具體實現,所以里氏代換原則是對實現抽象化的具體步驟的規范。—— From Bai 網路
3、依賴倒轉原則(Dependence Inversion Principle)
這個是開閉原則的基礎,具體內容:真對介面編程,依賴於抽象而不依賴於具體。
4、介面隔離原則(Interface Segregation Principle)
這個原則的意思是:使用多個隔離的介面,比使用單個介面要好。還是一個降低類之間的耦合度的意思,從這兒我們看出,其實設計模式就是一個軟體的設計思想,從大型軟體架構出發,為了升級和維護方便。所以上文中多次出現:降低依賴,降低耦合。
5、迪米特法則(最少知道原則)(Demeter Principle)
為什麼叫最少知道原則,就是說:一個實體應當盡量穗凱少的與其他實體之間發生相互作用,使得系統功能模塊相對獨立。
6、合成復用原則(Composite Reuse Principle)
原則是盡量使用合成/聚合的方式,而不是使用繼承。
三、Java的23中設計模式
從這一塊開始,我們詳細介紹Java中23種設計模式的概念,應用場景等情況,並結合他們的特點及設計模式的原則進行分析。
1、工廠方法模式(Factory Method)
工廠方法模式分為三種:
11、普通工廠模式,就是建立一個工廠類,對實現了同一介面的一些類進行實例的創建。首先看下關系圖:
舉例如下:(我們舉一個發送郵件和簡訊的例子)
首先,創建二者的共同介面:
[java]view plain publicinterfaceSender{publicvoidSend();}
其次,創建實現類:
[java]view plain {@OverridepublicvoidSend(){System.out.println("thisismailsender!");}} [java]view plain {@OverridepublicvoidSend(){System.out.println("thisissmssender!");}}
最後,建工廠類:
[java]view plain publicclassSendFactory{publicSenderproce(Stringtype){if("mail".equals(type)){returnnewMailSender();}elseif("sms".equals(type)){returnnewSmsSender();}else{System.out.println("請輸入正確的類型!");returnnull;}}}
我們來測試下:
publicclassFactoryTest{publicstaticvoidmain(String[]args){SendFactoryfactory=newSendFactory();Sendersender=factory.proce("sms");sender.Send();}}
輸出:this is sms sender!
22、多個工廠方法模式,是對普通工廠方法模式的改進,在普通工廠方法模式中,如果傳遞的字元串出錯,則不能正確創建對象,而多個工廠方法模式是提供多個工廠方法,分別創建對象。關系圖:
將上面的代碼做下修改,改動下SendFactory類就行,如下:
[java]view plainpublicclassSendFactory{publicSenderproceMail(){ returnnewMailSender();}publicSenderproceSms(){returnnewSmsSender();}}
測試類如下:
[java]view plain publicclassFactoryTest{publicstaticvoidmain(String[]args){SendFactoryfactory=newSendFactory();Sendersender=factory.proceMail();sender.Send();}}
輸出:this is mailsender!
33、靜態工廠方法模式,將上面的多個工廠方法模式里的方法置為靜態的,不需要創建實例,直接調用即可。
[java]view plain publicclassSendFactory{publicstaticSenderproceMail(){returnnewMailSender();}publicstaticSenderproceSms(){returnnewSmsSender();}} [java]view plain publicclassFactoryTest{publicstaticvoidmain(String[]args){Sendersender=SendFactory.proceMail();sender.Send();}}
輸出:this is mailsender!
總體來說,工廠模式適合:凡是出現了大量的產品需要創建,並且具有共同的介面時,可以通過工廠方法模式進行創建。在以上的三種模式中,第一種如果傳入的字元串有誤,不能正確創建對象,第三種相對於第二種,不需要實例化工廠類,所以,大多數情況下,我們會選用第三種——靜態工廠方法模式。
2、抽象工廠模式(Abstract Factory)
工廠方法模式有一個問題就是,類的創建依賴工廠類,也就是說,如果想要拓展程序,必須對工廠類進行修改,這違背了閉包原則,所以,從設計角度考慮,有一定的問題,如何解決?就用到抽象工廠模式,創建多個工廠類,這樣一旦需要增加新的功能,直接增加新的工廠類就可以了,不需要修改之前的代碼。因為抽象工廠不太好理解,我們先看看圖,然後就和代碼,就比較容易理解。
請看例子:
[java]view plain publicinterfaceSender{publicvoidSend();}
兩個實現類:
[java]view plain {@OverridepublicvoidSend(){System.out.println("thisismailsender!");}} [java]view plain {@OverridepublicvoidSend(){System.out.println("thisissmssender!");}}
兩個工廠類:
[java]view plain {@OverridepublicSenderproce(){returnnewMailSender();}} [java]view plain {@OverridepublicSenderproce(){returnnewSmsSender();}}
在提供一個介面:
[java]view plain publicinterfaceProvider{publicSenderproce();}
測試類:
[java]view plain publicclassTest{publicstaticvoidmain(String[]args){Providerprovider=newSendMailFactory();Sendersender=provider.proce();sender.Send();}}
其實這個模式的好處就是,如果你現在想增加一個功能:發及時信息,則只需做一個實現類,實現Sender介面,同時做一個工廠類,實現Provider介面,就OK了,無需去改動現成的代碼。這樣做,拓展性較好!
3、單例模式(Singleton)
單例對象(Singleton)是一種常用的設計模式。在Java應用中,單例對象能保證在一個JVM中,該對象只有一個實例存在。這樣的模式有幾個好處:
1、某些類創建比較頻繁,對於一些大型的對象,這是一筆很大的系統開銷。
2、省去了new操作符,降低了系統內存的使用頻率,減輕GC壓力。
3、有些類如交易所的核心交易引擎,控制著交易流程,如果該類可以創建多個的話,系統完全亂了。(比如一個軍隊出現了多個司令員同時指揮,肯定會亂成一團),所以只有使用單例模式,才能保證核心交易伺服器獨立控制整個流程。
首先我們寫一個簡單的單例類:
[java]view plain publicclassSingleton{/*持有私有靜態實例,防止被引用,此處賦值為null,目的是實現延遲載入*/=null;/*私有構造方法,防止被實例化*/privateSingleton(){}/*靜態工程方法,創建實例*/(){if(instance==null){instance=newSingleton();}returninstance;}/*如果該對象被用於序列化,可以保證對象在序列化前後保持一致*/publicObjectreadResolve(){returninstance;}}
這個類可以滿足基本要求,但是,像這樣毫無線程安全保護的類,如果我們把它放入多線程的環境下,肯定就會出現問題了,如何解決?我們首先會想到對getInstance方法加synchronized關鍵字,如下:
[java]view plain (){if(instance==null){instance=newSingleton();}returninstance;}
但是,synchronized關鍵字鎖住的是這個對象,這樣的用法,在性能上會有所下降,因為每次調用getInstance(),都要對對象上鎖,事實上,只有在第一次創建對象的時候需要加鎖,之後就不需要了,所以,這個地方需要改進。我們改成下面這個:
[java]view plain (){if(instance==null){synchronized(instance){if(instance==null){instance=newSingleton();}}}returninstance;}
似乎解決了之前提到的問題,將synchronized關鍵字加在了內部,也就是說當調用的時候是不需要加鎖的,只有在instance為null,並創建對象的時候才需要加鎖,性能有一定的提升。但是,這樣的情況,還是有可能有問題的,看下面的情況:在Java指令中創建對象和賦值操作是分開進行的,也就是說instance = new Singleton();語句是分兩步執行的。但是JVM並不保證這兩個操作的先後順序,也就是說有可能JVM會為新的Singleton實例分配空間,然後直接賦值給instance成員,然後再去初始化這個Singleton實例。這樣就可能出錯了,我們以A、B兩個線程為例:
a>A、B線程同時進入了第一個if判斷
b>A首先進入synchronized塊,由於instance為null,所以它執行instance = new Singleton();
c>由於JVM內部的優化機制,JVM先畫出了一些分配給Singleton實例的空白內存,並賦值給instance成員(注意此時JVM沒有開始初始化這個實例),然後A離開了synchronized塊。
d>B進入synchronized塊,由於instance此時不是null,因此它馬上離開了synchronized塊並將結果返回給調用該方法的程序。
e>此時B線程打算使用Singleton實例,卻發現它沒有被初始化,於是錯誤發生了。
所以程序還是有可能發生錯誤,其實程序在運行過程是很復雜的,從這點我們就可以看出,尤其是在寫多線程環境下的程序更有難度,有挑戰性。我們對該程序做進一步優化:
[java]view plain {=newSingleton();}(){returnSingletonFactory.instance;}
實際情況是,單例模式使用內部類來維護單例的實現,JVM內部的機制能夠保證當一個類被載入的時候,這個類的載入過程是線程互斥的。這樣當我們第一次調用getInstance的時候,JVM能夠幫我們保證instance只被創建一次,並且會保證把賦值給instance的內存初始化完畢,這樣我們就不用擔心上面的問題。同時該方法也只會在第一次調用的時候使用互斥機制,這樣就解決了低性能問題。這樣我們暫時總結一個完美的單例模式:
[java]view plain publicclassSingleton{/*私有構造方法,防止被實例化*/privateSingleton(){}/*此處使用一個內部類來維護單例*/{=newSingleton();}/*獲取實例*/(){returnSingletonFactory.instance;}/*如果該對象被用於序列化,可以保證對象在序列化前後保持一致*/publicObjectreadResolve(){returngetInstance();}}
其實說它完美,也不一定,如果在構造函數中拋出異常,實例將永遠得不到創建,也會出錯。所以說,十分完美的東西是沒有的,我們只能根據實際情況,選擇最適合自己應用場景的實現方法。也有人這樣實現:因為我們只需要在創建類的時候進行同步,所以只要將創建和getInstance()分開,單獨為創建加synchronized關鍵字,也是可以的:
[java]view plain publicclassSingletonTest{=null;privateSingletonTest(){}(){if(instance==null){instance=newSingletonTest();}}(){if(instance==null){syncInit();}returninstance;}}
考慮性能的話,整個程序只需創建一次實例,所以性能也不會有什麼影響。
補充:採用"影子實例"的辦法為單例對象的屬性同步更新
[java]view plain publicclassSingletonTest{=null;privateVectorproperties=null;publicVectorgetProperties(){returnproperties;}privateSingletonTest(){}(){if(instance==null){instance=newSingletonTest();}}(){if(instance==null){syncInit();}returninstance;}publicvoipdateProperties(){SingletonTestshadow=newSingletonTest();properties=shadow.getProperties();}}
通過單例模式的學習告訴我們:
1、單例模式理解起來簡單,但是具體實現起來還是有一定的難度。
2、synchronized關鍵字鎖定的是對象,在用的時候,一定要在恰當的地方使用(注意需要使用鎖的對象和過程,可能有的時候並不是整個對象及整個過程都需要鎖)。
到這兒,單例模式基本已經講完了,結尾處,筆者突然想到另一個問題,就是採用類的靜態方法,實現單例模式的效果,也是可行的,此處二者有什麼不同?
首先,靜態類不能實現介面。(從類的角度說是可以的,但是那樣就破壞了靜態了。因為介面中不允許有static修飾的方法,所以即使實現了也是非靜態的)
其次,單例可以被延遲初始化,靜態類一般在第一次載入是初始化。之所以延遲載入,是因為有些類比較龐大,所以延遲載入有助於提升性能。
再次,單例類可以被繼承,他的方法可以被覆寫。但是靜態類內部方法都是static,無法被覆寫。
最後一點,單例類比較靈活,畢竟從實現上只是一個普通的Java類,只要滿足單例的基本需求,你可以在裡面隨心所欲的實現一些其它功能,但是靜態類不行。從上面這些概括中,基本可以看出二者的區別,但是,從另一方面講,我們上面最後實現的那個單例模式,內部就是用一個靜態類來實現的,所以,二者有很大的關聯,只是我們考慮問題的層面不同罷了。兩種思想的結合,才能造就出完美的解決方案,就像HashMap採用數組+鏈表來實現一樣,其實生活中很多事情都是這樣,單用不同的方法來處理問題,總是有優點也有缺點,最完美的方法是,結合各個方法的優點,才能最好的解決問題!
4、建造者模式(Builder)
工廠類模式提供的是創建單個類的模式,而建造者模式則是將各種產品集中起來進行管理,用來創建復合對象,所謂復合對象就是指某個類具有不同的屬性,其實建造者模式就是前面抽象工廠模式和最後的Test結合起來得到的。我們看一下代碼:
還和前面一樣,一個Sender介面,兩個實現類MailSender和SmsSender。最後,建造者類如下: [java]view plain publicclassBuilder{privateList list=newArrayList ();publicvoidproceMailSender(intcount){for(inti=0;i0){pos--;}returncollection.get(pos);}@OverridepublicObjectnext(){if(pos